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Chigüiro Collection





Contents

1 Preliminaries 7

2 Natural numbers 13
2.1 Peano axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The induction principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Countable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Real and complex numbers 21
3.1 Ordered fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The field of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Sequences and Series 33
4.1 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Sequences in metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Sequences in normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Sequences in an ordered field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Basic criteria of convergence and series in R . . . . . . . . . . . . . . . . . . . 49
4.5.2 Series in normed spaces and absolute convergence . . . . . . . . . . . . . . . 53

4.6 Cantor’s construction of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Continuous functions 63
5.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Properties of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Sequences and series of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Integration and Differentiation in R 85
6.1 Differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Local behaviour of differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 The Riemann-Stieltjes integral in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Riemann integration and differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Differentiation and integration of sequences of functions . . . . . . . . . . . . . . . . 115

7 Taylor series and approximation of functions 117
7.1 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Construction of differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Dirac sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3



4 CONTENTS

8 Basic Topology 131
8.1 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Compact sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.3 Connected sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Exercises 141

References 153

Index 155

Greek Alphabet 161

Last Change: Mon 14 Aug 2017 10:52:12 AM -05



CONTENTS 5

These lecture notes are work in progress. They may be abandoned or changed radically at any
moment. If you find mistakes or have suggestions how to improve them, please let me know.

Many students found numerous errors and improved parts of the script considerably. Special thanks
for a very long list of errors and many improvements goes to Federico Fuentes.

I started writing these notes while I was teaching an introductory course on analysis at the Univer-
sidad de los Andes, Bogotá, Colombia in 2008-2. Since then, there have been changes every time I
taught it again and hopefully it converges to an error-free state. The lecture is aimed at pregrade
students who are already familiar with calculus.

The script is very much influenced by the lecture notes on Analysis 1 of my teacher C. Tretter and
by the book Analysis 1 by T. Bröcker [Brö92]. In addition, I was mainly using the books by Rudin
[Rud76] and Dieudonné [Die69] besides several other books as sources to prepare the lecture.

An important part of any mathematics lecture are exercises. For each week there is a problem
sheet with exercises (stolen from various books) which hopefully help to understand the material
presented in the lecture.

Corrections, comments and remarks on the text are most welcome!

Bogotá, August 2017,
Monika Winklmeier.
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Chapter 1

Preliminaries

The following is not intended to serve as an introduction into logic. It only tries to fix the meaning
of some symbols the occur frequently.

Statements

A statement A is either true or false.

Examples: “The inner angles of an equilateral triangle are all equal.” “Bogotá has more inhabitants
than Berlin.” “The sun is closer to the earth than the moon.” “Today is Monday.”

Non-Example: “This sentence is false.”

Statements A and B can be negated and connected:

¬A “not A”; the statement A is not true.

A ∧ B “A and B”; both A and B are true.

A ∨B “A or B”; at least one of the statements A and B is true.

A =⇒ B “A implies B”;
or: “A is sufficient for B.”
or: “B is necessary for A.”

A ⇐⇒ B (A =⇒ B) ∧ (B =⇒ A)”

“A is true if and only if B is is true.”

or: “A and B are equivalent.”

or: “A is necessary and sufficient for B.”

For convenience, sometimes the notation A ⇐= B is used instead of B =⇒ A.

Obviously, A ⇐⇒ ¬(¬A) and (A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

Sets and Quantors

Let M be a set and x an object. Then exactly one of the following statements is true:

x ∈M “x is an element of M” or “x lies in M”.

x 6∈M “x is not an element of M” or “x does not lie in M”.

Hence, ¬(x ∈M) ⇐⇒ (x 6∈M).

Last Change: Mon 08 Feb 2021 10:51:34 AM -05



8

Let M be a set and A a statement. Then we have the following statements:

∀ x ∈M : A “For all elements x of M the statement A is true”.

∃ x ∈M : A “There exists at least one element x of M for which the
statement A is true.”

∃! x ∈M : A “There exists exactly one element x of M for which the
statement A is true.”

6 ∃ x ∈M : A “There exists no element x of M for which the statement
A is true.”

It is easy to see that ¬(∃ x ∈M : A) is equivalent to 6 ∃ x ∈M : A.
Instead of “∀x ∈M : A”, also the notation “A, x ∈M,” is used.

Definitions

For definitions, the symbols := and :⇐⇒ are used. The left hand side is defined by the right hand
side.

Examples:

• A triangle ∆ is called equilateral. :⇐⇒ The length of all sides of ∆ are equal.

• A := “The inner angles of an equilateral triangle are all equal”.

• M := {1, 2, 3}.

More on sets

Let X be a set and A(x) a statement depending on the object x. The set

{x ∈ X : A(x)} or {x ∈ X | A(x)}

is the set of all x ∈ X such that A is true.
The set which contains no elements is called the empty set. It is denoted by ∅.
Let M and N be sets. Then

M ⊆ N :⇐⇒ ∀ x ∈M : x ∈ N ,

M = N :⇐⇒ (M ⊆ N) ∧ (N ⊆M).

A set M with M ⊆ N is called a subset of N . In this case N is called a superset of M and we write
N ⊇M .

Each set N has the trivial subsets ∅ and N . A subset M ⊆ N is called a proper subset of N if M
is not a trivial subset of N .

Other useful definitions are

N \M := {x : x ∈ N ∧ x 6∈M} difference,

N ∪M := {x : x ∈ N ∨ x ∈M} union,

N ∩M := {x : x ∈ N ∧ x ∈M} intersection,

∅ := {} empty set (note: ∅ 6= {0}),
P(N) := {M :M ⊆ N} power set ,

N ×M := {(x, y) : x ∈ N, y ∈M} Cartesian product .

The sets M and N are called disjoint if and only if M ∩N = ∅. Often the union of disjoint sets is
denoted by M ∪̇N or M ⊔ N .
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Relations

A relation R on a set M is a subset of M ×M . Instead of (x, y) ∈ R and (x, y) /∈ R we write xR y
and x 6Ry, respectively.
A relation R on a set M is called

• reflexive if and only if xRx for all x ∈M .

• symmetric if and only if for all x, y ∈M the relation xR y implies y Rx.

• transitive if and only if for all x, y, z ∈M the relations xR y and y R z imply xR z.

Examples for relations are =, ⊆, ⊥, ≤, 6=.

Ordered sets

(M, <) is called a (totally) ordered set by the relation < if the relation < is transitive and for
x, y ∈M exactly one of the following statements holds:

x < y, x = y, y < x.

We use the following notations:

x > y :⇐⇒ y < x,

x ≤ y :⇐⇒ x = y ∨ x < y,

x ≥ y :⇐⇒ x = y ∨ x > y.

Definition 1.1. Let (M,<) be a totally ordered set, N ⊆M and x ∈M .

x is a lower bound of N :⇐⇒ x ≤ n, n ∈ N,

x is an upper bound of N :⇐⇒ x ≥ n, n ∈ N.

We say that

N is bounded from below :⇐⇒ N has a lower bound,

N is bounded from above :⇐⇒ N has an upper bound,

N is bounded :⇐⇒ N has an upper and a lower bound.

The infimum of N , denoted by inf N , is the greatest lower bound of N , i. e., inf N is a lower bound
of N and for every lower bound x′ of N we have inf N ≥ x′. If an element n of N is a lower bound
of N , then it is called minimum of N , denoted by minN .
The supremum of N , denoted by supN , ist the least upper bound of N , i. e., supN is an upper
bound of N and for every upper bound x of N it follows that supN ≤ x. If an element n of N is
an upper bound of N , then it is called maximum of N , denoted by maxN .

Remark. Neither the infimum nor the minimum need to exist. If they exist, then they are unique.
If the minimum exists, then also the infimum exists and minN = inf N . The same assertions hold
for the supremum and the maximum.

Functions

Let M and N 6= ∅ be sets. A function (or a mapping) from M to N

f :M → N, x 7→ f(x),

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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assigns to each element x ∈ X a unique f(x) ∈ N . M is called the domain of f .

G(f) := graph of f :=
{(
x, f(x)

)
: x ∈M

}
⊆M ×N ,

R(f) := range of f :=
{
f(x) : x ∈M

}
.

A function f :M → N is called

injective (or one-to-one) :⇐⇒ ∀ x, x′ ∈M :
(
f(x) = f(x′) =⇒ x = x′

)
,

surjective :⇐⇒ R(f) = N ,

bijective :⇐⇒ f injective ∧ f surjective.

Since
f bijective ⇐⇒ ∀ y ∈ N ∃! x ∈M : f(x) = y,

a bijective function f :M → N defines a function N →M , the so-called inverse function of f :

f−1 : N →M, y 7→ x =: f−1(y).

Remark 1.2. A function is not only the rule how to assign an element y to some x. The sets M
and N are also part of the function. For example, the following functions are all different:

f1 : R → R, x 7→ x2,

f2 : (0,∞) → R, x 7→ x2,

f3 : (0,∞) → (0,∞), x 7→ x2,

f4 : (0,∞) → (1,∞), x 7→ x2.

The function f1 is neither injective nor surjective, the function f2 is injective, the function f3 is
bijective, and the function f4 is not well-defined.

Let M and N be sets and f :M → N a function. Given a subset A ⊆M we define the restriction
of f to A by

f |A : A→ N, f |A(x) = f(x).

f is then called extension of f |A. Another notation for the restriction of f is f ↾A.
The image of A under f is

f(A) := R(f |A) := {y ∈ N : ∃x ∈ A : f(x) = y} = {f(x) : x ∈ A}.
For a subset B ⊆ N the set

f−1(B) := {x ∈M : f(x) ∈ B}
is called the preimage of B under f .

Two functions f, g :M → N are equal, denoted by f ≡ g, if and only if

f(x) = g(x), x ∈M.

For example, in Remark 1.2 the functions f1|(0,∞) and f2 are equal, f2 and f3 are not equal.

For sets L, M, N and functions f : L→M , g :M → N we define the composition of f and g

h = g ◦ f : L→ N, x 7→ h(x) := (g ◦ f)(x) := g(f(x)).

As a diagram:

L
f

//

h=g◦f

@@
M

g
// N

Last Change: Mon 08 Feb 2021 10:51:34 AM -05



Chapter 1. Preliminaries 11

Example. Let f :M → N bijective. Then

f−1 ◦ f :M →M, (f−1 ◦ f)(x) = x,

f ◦ f−1 : N → N, (f ◦ f−1)(y) = y.

Proofs

Usually, there are several ways to prove statements like A =⇒ B. The end of proofs are usually
indicated by the symbol . The most common types of proofs are the following:

Direct proof

A direct proof of a statement C starts with a set of axioms that are agreed upon. Using a chain of
conclusions, finally C is established.

Example 1.3. For all n ∈ N the following holds:

n is even =⇒ n2 is even.

Proof. n even =⇒ ∃m ∈ N : n = 2m

=⇒ n2 = (2m)2 = 2 · 2m2

=⇒ n2 = 2m′ for m′ = 2m2 ∈ N

=⇒ n2 is even.

(The natural numbers N are introduced in Section 2.1.)

Proof by transposition

Often it is simpler to proof ¬B =⇒ ¬A than the equivalent statement A =⇒ B.

Example 1.4. For all n ∈ N the following holds:

n2 is even =⇒ n is even.

Proof. The implication above is equivalent to the implication:

For all n ∈ N the following holds: n is odd =⇒ n2 is odd.

The proof of the latter statement is similar to the proof of example 1.3:

n odd =⇒ ∃m ∈ N0 : n = 2m+ 1

=⇒ n2 = (2m+ 1)2 = (2m)2 + 2 · 2m+ 1

=⇒ n2 = 2m′ + 1 for m′ = 2m2 + 2m ∈ N

=⇒ n2 is odd.

Proof by contradiction

In order to proof a statement A =⇒ B it is assumed that both A and ¬B are true. Then it is
shown that this leads to a contradiction, indicated in these notes by z.

Example 1.5. For all n ∈ N the following holds:

n2 is odd =⇒ n is odd.
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12

Proof. Assume that the implication is wrong. Then there exists a n ∈ N such that n2 is odd but n
is even. This contradicts the assertion of Example 1.3.

Example 1.6. a, b ∈ R =⇒ 2ab ≤ a2 + b2.

Proof. Assume that the implication is wrong. Then there exist a, b ∈ R such that 2ab > a2 + b2. It
follows that

0 > a2 + b2 − 2ab = (a− b)2 ≥ 0. z

Remark. The fact that statement A implies statement B and that B is true, does not imply that
also A is true. For example, the implication

−1 = 1 =⇒ (−1)2 = 12

is true and the statement on the right hand side is true, but this does not imply that the initial
statement −1 = 1 is true.

Proof by Induction

The idea of proof by induction is to show a statement A(1) (base of induction). When the impli-
cation A(n) =⇒ A(n + 1) n ∈ N, is shown, then the statement A(n) is true for all n ∈ N. The
induction principle is discussed in Section 2.2.
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Chapter 2

Natural numbers

The sets

N ⊆ Z ⊆ Q ⊆ R ⊆ C

can be introduced axiomatically, see [Lan51].
In this chapter the natural numbers

N0 = {0, 1, 2, . . . } and N = N0 \ {0} = {1, 2, . . . }

are defined by the Peano axioms.

2.1 Peano axioms

The set of the natural numbers N0 satisfies the following axioms:

(P1) 0 ∈ N0,

(P2) there exists a mapping ν : N0 → N,

(P3) ν is injective, that is: m,n ∈ N, m 6= n =⇒ ν(m) 6= ν(n),

(P4) Axiom of Induction: for all M ⊆ N0 the following implication holds:(
0 ∈M ∧ (n ∈M =⇒ ν(n) ∈M)

)
=⇒ M = N0.

Remark. • For n ∈ N the number ν(n) is called the successor of n.

• (P1) implies that the natural numbers are not the empty set.

• (P2) implies that 0 is not the successor of any natural number.

• (P4) implies that ν is surjective.

As usual, we write

ν(0) = 1, ν(ν(0)) = 2, ν(ν(. . . ν︸ ︷︷ ︸
n times

(0) . . . )) = n.

The operations + (addition) and · (multiplication) are introduced by using the function ν:

Last Change: Mon 08 Feb 2021 10:51:35 AM -05



14 2.2. The induction principle

Definition 2.1. For n,m ∈ N0 let

n+ 0 := n, n+ 1 := ν(n), n+ ν(m) := ν(n+m)

n · 0 := 0, n · 1 := n, n · ν(m) := n ·m+ n.

Remark 2.2. (i) It can be shown that + and · are commutative, associative and distributive
(see Section 3.1).

(ii) For m,n ∈ N exactly one of the following relations holds:

(a) m = n.

(b) There exists exactly one x ∈ N such that n = m+ x.

(c) There exists exactly one x ∈ N such that m = n+ x.

In case (b) the number x =: n−m is called the difference of m and n.

Definition 2.3. Let m,n ∈ N0. Then

m < n :⇐⇒ ∃x ∈ N : n = m+ x.

Remark. It can be shown that (N0, <) is a totally ordered set.

Theorem 2.4 (well-ordering principle). Every non-empty subset of N0 has a smallest element.

Proof. We have to show:

M ⊆ N0, M 6= ∅ =⇒ ∃ m0 ∈M :
(
∀ m ∈M : m0 ≤ m

)
.

Let M ⊆ N0, M 6= ∅. Then there exists an m0 ∈M . Let

A = {k ∈ N0 : k ≤ m, m ∈M}.

Obviously, 0 ∈ A and m0 + 1 6∈ A, hence A 6= N0. Therefore there exists an a ∈ A such that
a + 1 6∈ A (otherwise A = N0 by the axiom (P4)). Hence there must be an element m ∈ M such
that a ≤ m < a+ 1, hence m = a and a is the minimum of M .

Without proof we cite the following important facts:

Theorem 2.5. The natural numbers are not bounded from above, i. e.

∄ N ∈ N0 :
(
∀ n ∈ N0 : n ≤ N

)
.

Theorem 2.6 (Euclidean algorithm, Division with remainder). For every m ∈ N and
n ∈ N0 there exist uniquely determined k, l ∈ N0, l < m, such that

n = k ·m+ l. (2.1)

2.2 The induction principle

Principle of induction. Let (A(n))n∈N be a family of statements, such that

(i) Basis : A(0) is true.

(ii) Inductive step: For all n ∈ N0 the implication A(n) =⇒ A(n+ 1) is true.
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Chapter 2. Natural numbers 15

Then A(n) is true for all n ∈ N0.

Proof. Let M := {n ∈ N0 : A(n) is true } ⊆ N0. Then 0 ∈ M by (i) and with every m ∈ M also
ν(m) ⊆M by (ii). By (P4) it follows that M = N0.

A variation of the induction principle is the following: Let n0 ∈ N0 and assume that

(i) Basis : A(n0) is true.

(ii) Inductive step: For all n ∈ N0, n ≥ n0, the implication A(n) =⇒ A(n+ 1) is true.

Then A(n) is true for all n ∈ N0, n ≥ n0.

Remark (Complete induction principle). Assume that for all n ∈ N the implication

A(k) is true for all k < n =⇒ A(n) is true

holds. Then A(n) holds for all n ∈ N0.

Proof. Assume that there exists an n ∈ N0 such that A(n) is not true. Then the set B := {n ∈ N0 :
A(n) is not true} is not empty. By the well-ordering principle (Theorem 2.4) B has a minimum
n0 := minB and by definition of B the statement A(m) is true for all m < n0. Hence the induction
assumption implies that A(n0) is true. z

The principle of induction can be used for definitions. For example:

Definition 2.7. Let k0 ∈ N0 and ak ∈ N, k ∈ N0, k ≥ k0. Then the symbols

n∑

k=k0

ak,
n∏

k=k0

ak, n ∈ N, n ≥ k0,

are defined by

k0∑

k=k0

ak := ak0
,

k0∏

k=k0

ak := ak0
,

and

n+1∑

k=k0

ak :=

(
n∑

k=k0

ak

)
+ an+1,

n+1∏

k=k0

ak :=

(
n∏

k=k0

ak

)
· an+1, n ≥ k0.

For n < k0 we define the empty sum and empty product by

n∑

k=k0

ak = 0,

n∏

k=k0

ak = 1.

Theorem 2.8.

n∑

k=1

k = 1 + 2 + · · ·+ n =
1

2
n(n+ 1), n ∈ N.

Proof by induction on n.

(i) Basis n = 1:

1∑

k=1

k = 1 =
1

2
1(1 + 1). X
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16 2.3. Countable sets

(ii) Induction step: ny n+ 1 for arbitrary n ∈ N.

We write down the induction hypothesis and what we want to prove:

induction hypothesis:

n∑

k=1

k =
1

2
n(n+ 1). (statement A(n))

we want to show:

n+1∑

k=1

k =
1

2
(n+ 1)(n+ 2). (statement A(n+ 1))

The implication A(n) =⇒ A(n+ 1) follows from

n+1∑

k=1

k =
( n∑

k=1

k
)
+ (n+ 1)

ind.hyp.
=

1

2
n(n+ 1) + (n+ 1)

=
(1
2
n+ 1

)
(n+ 1) =

1

2
(n+ 2)(n+ 1).

Proposition 2.9. 2n > n2, n ∈ N, n ≥ 5.

Proof by induction on n, n0 = 5.

n = 5 : 25 = 32 > 25 = 52. X

ny n+ 1 : 2n+1 = 2 · 2n
ind.hyp.
> 2n2. Since for n ≥ 3

n2 = n(n− 2 + 2) = n(n− 2) + 2n ≥ 1 + 2n

it follows that

2n+1 = 2 · 2n
ind.hyp
> 2n2 = n2 + n2 ≥ n2 + 2n+ 1 = (n+ 1)2.

2.3 Countable sets

Definition. The setsM and N have the same cardinal number if and only if there exists a bijection
ϕ :M → N . In this case we write M ∼ N .

Obviously, the relation ∼ is

(i) reflexive: M ∼M ,
(ii) symmetric: M ∼ N =⇒ N ∼M ,
(iii) transitive: M ∼ N ∧ N ∼ P =⇒ M ∼ P .

Remark. For m,n ∈ N the following equivalence holds:

{1, 2, . . . , n} ∼ {1, 2, . . . , m} ⇐⇒ n = m.

Definition 2.10. A set M is called

(i) finite if M = ∅ or if M ∼ {1, 2, . . . , n} for some n ∈ N,
(ii) infinite if it is not finite,
(iii) countable (or denumerable) if M ∼ N,
(iv) uncountable if it is neither countable nor finite,
(v) at most countable if it is either countable or finite.
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Chapter 2. Natural numbers 17

If M ∼ {1, 2, . . . , n} for some n ∈ N, then

#M := |M | := n = number of elements in M.

Examples. The sets N, N0, −N, Z, Q are countable, see Corollary 2.14 (Exercise 2.5).
The set of all real numbers R is uncountable (Corollary 4.57).

The proofs of the following facts can be found, e. g., in [Rud76, Chapter 2].

Proposition 2.11. Any subset of a countable set is at most countable.

Proposition 2.12. The finite union of finite sets is finite.
The countable union of finite sets is at most countable.
The finite union of countable sets is countable.
The countable union of countable sets is countable.

Proposition 2.13. If M and N are countable, then M ×N is countable.

Corollary 2.14. The sets Z and Q are countable.

Proof. Z = N0 ∪ (−N) is countable by Proposition 2.12.
Since every element of Q is of the form p

q with some p ∈ Z and q ∈ N, the set Q can be identified
with a subset of the countable set Z×N, so Q is at most countable. On the other hand, Q contains
the subset { 1

n : n ∈ N} which evidently has the same cardinality as N. Therefore Q cannot be
finite by Proposition 2.12. In conclusion, Q is countable.

2.4 Binomial coefficients

Definition 2.15. For n ∈ N0 we define n! ∈ N (“n factorial”) recursively by

(i) 0! := 1,

(ii) (n+ 1)! := (n+ 1) · n!, n ∈ N0.

Remark. n! =

n∏

k=1

k = 1 · 2 · · · · · n, n ∈ N0.

1! = 1, 2! = 2, 3! = 6, 4! = 24, . . . , 10! = 3 628 800 is growing very fast.

Theorem 2.16. Let M,N finite sets with #M = #N = n ∈ N elements. Then there are exactly
n! bijections M → N .

Proof by induction on n. (i) Basis : For n = 1, the assertion is clear.

(ii) Induction step ny n+ 1: Let M and N be sets with n+ 1 elements. To define a bijection
f : M → N we fix an arbitrary element x ∈ M . Then there are n + 1 possible values
of f(x) ∈ N . The mapping f : M \ {x} → N \ {f(x)} must also be a bijection, hence by
induction hypothesis there are n! possibilities to extend f : {x} → f(x) to a bijectionM → N .
In summary, there are exactly (n+ 1) · n! = (n+ 1)! different bijections M → N .

Definition 2.17. Let M be a set. A permutation of M is a bijection M →M .

By Theorem 2.16 a set M with n elements has exactly n! permutations. Moreover, since an order
on M is equivalent to a bijection {1, 2, . . . , n} →M , there are exactly n! order of M .
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18 2.4. Binomial coefficients

Example. • M = {a} has only one order and only the permutation a 7→ a.

• M = {a, b} with a 6= b has
2 order 1 7→ a, 2 7→ b and 1 7→ b, 2 7→ a,
2 permutations: a 7→ a, b 7→ b and a 7→ b, b 7→ a.

Remark. For the rest of this section the rational numbers Q are used (for the definition of the
binomial coefficients). This could be avoided by combining the definition and theorem 2.20 to
something like: Given k, n ∈ N0, k ≤ n there exists a natural number x such that xk!(n− k)! = n!.
The number x is then denoted by x =

(
n
k

)
.

Definition 2.18. For k, m ∈ N0 we define the binomial coefficients

(k, m) :=

(
k +m

k

)
:=

(k +m)!

k!m!
.

(“k +m choose k”). We set

(
n

k

)
= 0 if k > n.

Remark. Let k, n ∈ N0, k ≤ n. It follows immediately from the definition that

(
n

k

)
=

(
n

n− k

)
and

(
n

0

)
=

(
n

n

)
= 1.

Proposition 2.19.

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
, k, n ∈ N, k ≤ n− 1.

Proof. Using Definition 2.18 a straightforward calculation yields

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! (n− 1− (k − 1))!
+

(n− 1)!

k! (n− 1− k)!

=
(n− 1)!

k! (n− k)!
(k + n− k) =

n!

k! (n− k)!
=

(
n

k

)
.

Theorem 2.20. Let M be a set with #M = n <∞. Then there are exactly

(
n

k

)
different subsets

of M with cardinality k ≤ n.

Corollary 2.21.

(
n

k

)
∈ N for all k, n ∈ N0, k ≤ n.

Proof of Theorem 2.20. We prove the claim by induction on n.
n = 0: In this case M = ∅ and necessarily k = 0. Since ∅ is the only subset of M the number of all

subsets with zero elements is 1 =

(
0

0

)
.

ny n+ 1: Let #M = n+ 1, k ∈ N0, k ≤ n+ 1, and define

C(n, k) := #{N ⊆M : #N = k}.

We have to show

C(n, k) =

(
n+ 1

k

)
.
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Chapter 2. Natural numbers 19

Fix x ∈M . Since by induction hypothesis and the defintion of
(

n
n+1

)
there are exactly

(
n
k

)
subsets

of M \ {x} with cardinality k, there are exactly
(
n
k

)
subsets of M with cardinality k which do

not contain x. Again by induction hypothesis, there exist exactly
(

n
k−1

)
subsets of M \ {x} with

cardinality k − 1, therefore there exist exactly
(

n
k−1

)
subsets of M with cardinality k containing x.

Since an arbitrary subset of M either contains or does not contain the element x, the number of all
subsets with cardinality k is

C(n, k) =

(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
.

Theorem 2.22 (Binomial expansion). For numbers x, y and n ∈ N0 the following holds:

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k =

∑

0≤k≤n
k+m=n

(k,m)xkym.

Remark. The formula holds for all x, y in any commutative ring R with the canonical actions of
N on R, for example for real numbers, matrices, functions, etc.

Proof. The second equality is clear. We prove the first equality by induction on n.

n = 0 : (x+ y)0 = 1 =

(
0

0

)
x0y0. X

ny n+ 1 : Using the induction hypothesis we find

(x+ y)n+1 = (x+ y) · (x+ y)n = (x+ y)

n∑

k=0

(
n

k

)
xkyn−k

=

n∑

k=0

(
n

k

)
xk+1yn−k +

n∑

k=0

(
n

k

)
xkyn−k+1.

An index shift k y k − 1 in the first sum yields

(x+ y)n+1 =

n+1∑

k=1

(
n

k − 1

)
xkyn−(k−1) +

n∑

k=0

(
n

k

)
xkyn−(k−1)

= xn+1 +

n∑

k=1

((
n

k − 1

)
+

(
n

k

))

︸ ︷︷ ︸
=(n+1

k ) by Prop. 2.19

xkyn+1−k + yn+1

=

n+1∑

k=0

(
n+ 1

k

)
xkyn+1−k.

In the special cases x = y = 1 and x = −y = 1, Theorem 2.22 yields

Corollary 2.23.

n∑

k=0

(
n

k

)
= 2n for n ∈ N0 and

n∑

k=0

(−1)k
(
n

k

)
= 0 for n ∈ N.
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20 2.4. Binomial coefficients

Proof. The formulae follow from the binomial expansion (Theorem 2.22):

n∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n, n ∈ N0,

n∑

k=0

(−)k
(
n

k

)
=

n∑

k=0

(
n

k

)
(−1)k1n−k = (1− 1)n = 0n = 0, n ∈ N.

Corollary 2.24. Let M be a set with #M = n <∞.

(i) By Theorem 2.20 and Corollary 2.23, M has 2n subsets, i. e., #PM = 2n.

(ii) If n 6= 0, then M has as many subsets with an even number of elements as subsets with an
odd number of elements by Theorem 2.20 and Corollary 2.23.
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Chapter 3

Real and complex numbers

Integers

The ring of integer numbers Z is the smallest extension of the natural numbers such that for each
n ∈ N the equation

x+ n = 0

has a solution in Z and (Z,+, · ) is a commutative ring with identity, that is, the associativity and
commutativity laws hold. The solution of x+n = 0 is denoted by −n and we writem+(−n) = m−n.

Rational numbers

The rational numbers Q are the field of fractions of Z, that is, the smallest field containing Z such
that for each n ∈ Z \ {0} the equation

x · n = 1

has a solution in Q. The elements of Q are equivalence classes of the form p
q with p, q ∈ Z, q 6= 0.

The order relation < on N in Definition 2.3 can be extended to Z and Q.

The field Q is still not sufficient:

(i) Not all equations have solution, e. g., x2 = 2 has no solution in Q.

(ii) Not every bounded subset of Q has a supremum, for instance {x ∈ Q : x2 < 2} has no
supremum in Q (see Exercise 3.3).

Proof of (i). Assume that there exist p, q ∈ Z, q 6= 0, without common divisor such that
(

p
q

)2
= 2.

Since p2 = 2q2, there exists an p′ ∈ Z such that p = 2p′. Since 2q2 = 4p′2, 2 divides also q, in
contradiction to the assumption that p and q have no common divisors.
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22 3.1. Ordered fields

3.1 Ordered fields

Definition 3.1. A field (K,+, · ) is a set K together with operations

+ : K ×K → K, (x, y) 7→ x+ y, (addition)

· : K ×K → K, (x, y) 7→ x · y, (multiplication)

satisfying the following axioms:

Axioms of addition

(A1) x+ (y + z) = (x+ y) + z, x, y, z ∈ K (associativity),

(A2) x+ y = y + x, x, y ∈ K (commutativity),

(A3) ∃ 0 ∈ K : x+ 0 = x, x ∈ K (identity element 0 of addition),

(A4) ∀ x ∈ K ∃ −x ∈ K : x+ (−x) = 0 (additive inverse element).

Axioms of multiplication

(M1) x · (y · z) = (x · y) · z, x, y, z ∈ K (associativity),

(M2) x · y = y · x, x, y ∈ K (commutativity),

(M3) ∃ 1 ∈ K \ {0} : x · 1 = x, x ∈ K (multiplicative identity element 1),

(M4) ∀ x ∈ K, x 6= 0, ∃ x−1 ∈ K : x · x−1 = 1 (multiplicative inverse element).

Law of Distribution

(D) x · (y + z) = x · y + x · z, x, y, z ∈ K.

If it is clear what the operations + and · on K are, then one writes usually simply K instead of
(K,+, · ).

Notation 3.2. The following notation is commonly used:

x− y := x+ (−y), xy := x · y, x, y ∈ K,
x

y
:= x · y−1, x, y ∈ K, y 6= 0,

xy + z := (x · y) + z, etc. x, y, z ∈ K.

Remark 3.3. • (K,+) satisfying the axioms (A1) – (A4) is called a commutative group.

• (K,+, · ) satisfying the axioms (A1) – (A4), (M1), (M2) and (D) is called a commutative ring.

Examples. • (Q,+, · ) and (R,+, · ) are fields,

• (Z,+, · ) is a ring but not a field because (M4) is not satisfied,

• (N,+, · ) is not a ring because (A4) is not satisfies,

• (F2,+, · ) with F2 = {0, 1} and +, · defined by

+ 0 1 · 0 1
0 0 1 0 0 0
1 1 0 1 0 1
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Chapter 3. Real and complex numbers 23

is the only field with 2 elements.

The following corollary follows immediately from the axioms:

Corollary 3.4. For a field (K,+, · ) the following is true:

(i) The identity elements 0 and 1 are uniquely determined.

(ii) For x ∈ K and y ∈ K \ {0} the inverse elements −x and y−1 are uniquely determined.

(iii) −0 = 0, 1−1 = 1.

(iv) −(−x) = x, x ∈ K.

(v) −(x+ y) = −x+ (−y), x, y ∈ K.

(vi) The equation a+ x = b for a, b ∈ K has the unique solution x = b− a in K.

(vii) (x−1)−1 = x, x ∈ K, x 6= 0.

(viii) (x · y)−1 = x−1 · y−1, x, y ∈ K, x, y 6= 0.

(ix) The equation a · x = b for a, b ∈ K, a 6= 0 has the unique solution x = ba−1 in K.

(x) x · 0 = 0 · x = 0, x ∈ K.

(xi)
(
x · y = 0 ⇐⇒ x = 0 ∨ y = 0

)
, x, y ∈ K.

(xii) (−x) · y = −(x · y), x, y ∈ K; in particular, −y = −1 · y.
(xiii) (−x) · (−y) = x · y, x, y ∈ K.

Proof. We prove only (i), (vi), (x) and (xi).

(i) Uniqueness of the additive identity : Let 0, 0′ ∈ K be additive identity elements. We have to
show 0 = 0′. This follows from

0′
(A3)
= 0′ + 0

(A2)
= 0 + 0′

(A3)
= 0.

The uniqueness of the multiplicative identity element can be proved analogously.

(vi) Existence of the solution: Let x = b− a. Then x is a solution of a+ x = b since

a+ (b− a)
(A2)
= a+ (−a+ b)

(A1)
= (a+ (−a))︸ ︷︷ ︸

=0 by (A4)

+b = 0 + b
(A2)
= b+ 0

(A3)
= b.

Uniquness of the solution: Let s, s′ ∈ K be solutions of a+ x = b. Then

s = s+ b− b = s+ (s′ + a)− b
(A1)
=

(A2)
(s+ a)− b+ s′ = b− b+ s′ = 0 + s′

(A2)
= s′ + 0

(A3)
= s′.

(x) Since the solution of x · 0 + x = x · 0 is unique by (vi) and since (use (D) in the first line and
(A3) in the second line)

x · 0 + x · 0 = x(0 + 0) = x · 0,
x · 0 + 0 = x · 0.

it follows that x · 0 = 0. the commutativity (M2) yields 0 · x = x · 0 = 0.

(xi) “ =⇒ ”: Let x · y = 0. If x = 0, then the assertion is clear. Now assume x 6= 0.

y
(M3)
= y · 1 (M4)

= y · (x · x−1)
(M1)
= (y · x) · x−1 = 0 · x−1 (x)

= 0.

“⇐=”: Follows from (x).

Last Change: Mon 08 Feb 2021 10:51:36 AM -05



24 3.1. Ordered fields

Definition 3.5. Let (K,+, · ) be a field. For x, y ∈ K, y 6= 0, define

nx := xn :=

n∑

j=1

x, xn :=

n∏

j=1

x, n ∈ N0,

nx := xn := −n(−x), yn := (y−n)−1, n ∈ Z \ N0.

Proposition 3.6. Let (K,+, · ) a field and x, y ∈ K, n,m ∈ Z. Then

(i) nx+mx = (n+m)x, (ii) n(mx) = (nm)x, (iii) n(x+ y) = nx+ny,

If x, y 6= 0, then also

(iv) xn · xm = xn+m, (v) (xn)m = xn·m, (vi) (x · y)n = xn · yn.
The statements (iv), (v) and (vi) hold for x = 0 or y = 0 if m,n > 0.

Proof. We prove only the last statement. The other ones can be proved similarly.

First, let n ∈ N0.

n = 0: By Definition 3.5 and (M3): (xy)0 = 1 = 1 · 1 = x0 · y0. X

ny n+ 1: By Definition 3.5 and the induction hypothesis:

xn+1 · yn+1 = (x · xn) · (y · yn) (M1)
=

(M2)
(x · y) · (xn · yn)︸ ︷︷ ︸

=(x·y)n

= (x · y) · (x · y)n

= (x · y)n+1.

Now let n ∈ Z\N0, i. e., −n ∈ N. By Definition 3.5 and what we have already shown it follows that

xn · yn =
(
x−1

)−n ·
(
y−1

)−n
=
(
x−1 · y−1

)−n Cor.3.4(viii)
=

(
(x · y)−1

)−n
= (x · y)n.

Notation 3.7. Let (K,+, · ) a field, A,B ⊆ K and x ∈ K. Then

x+A := {x+ a : a ∈ A},
xA := {xa : a ∈ A},

A+B := {a+ b : a ∈ A, b ∈ B}.

Ordered fields

Definition 3.8. A field (K,+, · , >) is an ordered field if (K,+, · ) is a field and the property “> 0”
(positivity) is compatible with + and · , i. e., the order axioms hold:

(OA1) For all x ∈ K exactly one of the following properties holds:

x > 0, x = 0, −x > 0,

(OA2) x, y ∈ K, x > 0 ∧ y > 0 =⇒ x+ y > 0.

(OA3) x, y ∈ K, x > 0 ∧ y > 0 =⇒ x · y > 0.

Let x, y ∈ K. Then

x is positive :⇐⇒ x > 0,
x is negative :⇐⇒ x < 0,
x is non-negative :⇐⇒ x ≥ 0 :⇐⇒ (x > 0 ∨ x = 0)
x is non-positive :⇐⇒ x ≤ 0 :⇐⇒ (x < 0 ∨ x = 0).

x < y :⇐⇒ x− y < 0, x ≤ y :⇐⇒ x− y ≤ 0,
x > y :⇐⇒ x− y > 0, x ≥ y :⇐⇒ x− y ≥ 0.
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Usually the ordered field (K,+, · , >) is denoted by K.

Examples. (Q,+, ·, <) and (R,+, ·, <) are ordered fields.

The following rules are immediate consequences of the order axioms:

Corollary 3.9. For elements a, x, x′, y, y′ in an ordered field (K,+, · , >) the following holds:

(i) Exactly one of the following holds: x < y, x = y, x > y.

(ii) x < y ∧ y < a =⇒ x < a,

(iii) x < y =⇒ x+ a < y + a,

(iv) x < y ∧ x′ < y′ =⇒ x+ x′ < y + y′,

(v) x < y ∧ a > 0 =⇒ a · x < a · y,
x < y ∧ a < 0 =⇒ a · x > a · y,

(vi) 0 ≤ x < y ∧ 0 ≤ x′ < y′ =⇒ 0 ≤ x′ · x < y′ · y,
(vii) x2 > 0, x 6= 0,

(viii) x > 0 =⇒ x−1 > 0,

(ix) 0 < x < y =⇒ 0 < y−1 < x−1,

(x) 1 > 0.

Properties (i) and (ii) show that (K,>) is a totally ordered set.

Proof. Property (i) is clear.

Proof of (ii): By assumption y − x > 0 and a − y > 0, therefore, by axiom (OA2), a − x =
(a− y) + (y − x) > 0 which is equivalent to x < a.

Proof of (vii): If x > 0 then the assertion follows from axiom (OA3). If x < 0 then x2 =
(−x︸︷︷︸

>0

)(−x︸︷︷︸
>0

) > 0.

Proof of (viii): x−1 = x · x−1 · x−1 > 0 by (vii) and axiom (OA3).

Proof of (x): Follows from 1 = 1 · 1 and (vii).

For the proof of the other properties, see Exercise 3.1.

Corollary 3.9 shows that the field F2 is not an ordered field since in F2 we have that 1+ 1 = 0 6> 0,
in contradiction to property (iv). Actually, every ordered field must have infinitely many elements.
Indeed, assume (K,+, · , >) is a finite ordered field. Since 1 > 0 by (x), property (iv) yields (use
induction): 0 <

∑n
j=1 1, n ∈ N. On the other hand, since K is finite, there is an m ∈ N such that∑m

j=1 1 = 0. z

Definition 3.10. Let (K,+, · , >) be an ordered field.

K+ := {x ∈ K : x > 0}, K0
+ := {x ∈ K : x ≥ 0},

K− := K \K0
+ = {x ∈ K : x < 0}.

For x ∈ K define the absolute value (or modulus) of x by

abs(x) := |x| :=
{
x, if x ≥ 0,

−x, if x < 0,
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and the sign of x by

sign(x) :=

{
x/|x|, if x 6= 0,

0, if x = 0.

The functions abs : K → K, x 7→ abs(x) and sign : K → K, x 7→ sign(x) are called the absolute
value function and sign function.

The next proposition states some elementary properties of the absolute value.

Proposition 3.11. Let (K,+, · , >) be an ordered field and x, y ∈ K. Then:

(i) |x| ≥ 0, and |x| = 0 ⇐⇒ x = 0,

(ii) | − x| = |x|,
(iii) x ≤ |x| and −x ≤ |x|,
(iv) |xy| = |x| · |y|,
(v) sign(x) ∈ {−1, 0, 1} and sign(x) · abs(x) = x.

Fundamental is the so-called triangle inequality.

Theorem 3.12. Let (K,+, · , >) be an ordered field and x, y ∈ K. Then

|x+ y| ≤ |x|+ |y|. (3.1)

Proof. Since substituting x by −x and y by −y does not change the formula, we can assume without
restriction that x+ y ≥ 0. Now

|x+ y| = x+ y ≤ |x|+ |y|.

Corollary 3.13. Let (K,+, · , >) be an ordered field and x, y, z ∈ K. Then

|x− y| ≤ |x|+ |y|, |x+ y| ≥
∣∣|x| − |y|

∣∣ and |x− y| ≥
∣∣|x| − |y|

∣∣.

Proof. The first inequality follows directly from the triangle inequality

|x− y| = |x+ (−y)| ≤ |x|+ | − y| = |x|+ |y|.
In the same way, the third inequality follows from the second inequality. To prove the second
inequality we not that |x| = |x + y − y| ≤ |x + y| + |y|. Without restriction we can assume that
|x| ≥ |y| because the assertion in symmetric in x and y. Therefore |x+y| ≥ |x|−|y| =

∣∣|x|−|y|
∣∣.

Theorem 3.14 (Bernoulli’s inequality). Let (K,+, · , >) be an ordered field. For x ∈ K,
x ≥ −1 and n ∈ N0 Bernoulli’s inequality holds:

(1 + x)n ≥ 1 + nx. (3.2)

Proof by induction on n.

n = 0: (1 + x)0 = 1 = 1 + 0 · x.
ny n+ 1: The induction hypothesis yields

(1 + x)n+1 = (1 + x)︸ ︷︷ ︸
≥0

≥ 1 + nx by ind.hyp.︷ ︸︸ ︷
(1 + x)n ≥ (1 + x)(1 + nx) = 1 + (n+ 1)x+ nx2︸︷︷︸

≥0

≥ 1 + (n+ 1)x.
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Definition 3.15. (Least-upper-bound-property) An ordered field (K,+, · , >) has the least-
upper-bound-property if every non-empty subset which has an upper bound has a supremum (least
upper bound).

The least upper bound property is also called the (Dedekind) completeness.

Definition and Theorem 3.16. Every ordered field (K,+, · , >) with the least-upper-bound-property
has the so-called Archimedean property

(AP) For x, y ∈ K, x > 0, there exists an n ∈ N0 such that

nx > y.

Proof. Assume there is no such n. Then the non-empty set

M = {nx : n ∈ N0}

is bounded by y hence, by the completeness assumption, supM =: s exists. Since 0 < s − x < s
there exists an m0 ∈ N such that m0x > s − x because s is the supremum of M (otherwise s − x
would be an upper bound ofM which is smaller than s). This leads to s < (m0+1)x ∈M . z

Example. (R,+, · , >) und (Q,+, · , >) have the Archimedean property. There exist ordered fields
without the Archimedean property.

The Archimedean property implies the following theorem.

Theorem 3.17. Let (K,+, · , >) be an ordered field with the Archimedean property and x, ε ∈ K,
ε > 0.

(i) If x > 1, then there exists an N ∈ N such that

xN > ε.

(ii) If x < 1, then there exists an N ∈ N such that

xN < ε.

Proof. (i) Since x > 1 there exists an y > 0 such that x = 1 + y. Bernoulli’s inequality yields

xn = (1 + y)n ≥ 1 + ny, n ∈ N0.

By the Archimedean property (AP) there exists an N ∈ N0 such that Ny > ε, also

xN ≥ 1 +Ny > 1 + ε > ε.

(ii): If x ≤ 0, we may choose N = 1. Now let us assume that 0 < x < 1. Since x−1 > 1 and ε−1 > 0
there exists an N ∈ N0 such that 0 < ε−1 < (x−1)N = x−N by (i), hence xN < ε.

3.2 The real numbers

It can be shown that up to isomorphy there is exactly one field R containing the natural numbers
N satisfying

• the field axioms (A1)–(A4), (M1)–(M4), (D),
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28 3.2. The real numbers

• the order axioms (OA1)–(OA3),

• least-upper-bound-property (Definition 3.15).

The existence of the real numbers will be shown in Section 4.6 using Cauchy sequences. Another way
to construct the real numbers uses the so-called Dedekind cuts, see for instance [Rud76, Appendix
to Chapter 1].

Remark. N ⊆ Z ⊆ Q ⊆ R, and the restriction of the order on R to N coincides with the order
defined in Definition 2.3.

Special subsets of R are the intervals:

Definition 3.18. For a, b ∈ R, a < b, we define the sets

[a, b] := {x ∈ R : a ≤ x ≤ b} (closed interval),

(a, b) := {x ∈ R : a < x < b} (open interval),

[a, b) := {x ∈ R : a ≤ x < b} (right half-open interval),

(a, b] := {x ∈ R : a < x ≤ b} (left half-open interval).

Remark. Let a < b ∈ R. Then sup((a, b)) = sup((a, b]) = max((a, b]) = b, (a, b) has no maximum.

Proposition 3.19. For every x ∈ R+ there exists an n ∈ N0 with n ≤ x < n+ 1.

Proof. Exercise 3.3

Proposition 3.20. Every interval in R contains a rational number.

Proof. Exercise 3.3

For the proof of the next theorem we use the following

Remark. Let 0 < a < b ∈ R and n ∈ N, n ≥ 2. Then

bn − an < (b− a)nbn−1. (3.3)

Proof. Using b− a > 0 and ak < bk, k ∈ N0, we obtain

bn − an = (b− a)(bn−1 + bn−2a+ · · ·+ ban−2 + an−1) < (b− a)nbn−1

Definition and Theorem 3.21. For every real x > 0 and every n ∈ N there is exactly one real
y > 0 such that yn = x.

This y is called the nth root of x denoted by y =: n
√
x =: x

1
n . In addition we define the nth root of

0 to be 0.

Proof. Uniqueness : Follows from Corollary 3.9 (vi): 0 ≤ y1 < y2 =⇒ yn1 < yn2 .

Existence: For n = 1 choose y = x. Now let n ≥ 2. Let A := {t ∈ R : t > 0, tn ≤ x}. The set A is
not empty since it contains t0 := x

1+x . (because 0 < t0 < 1 and therfore tn0 < t0 < x). Moreover, the

set is bounded from above since (1+x)2 > 1+x > x. Since R has the least-upper-bound-property,

y := supA

exists. We want to show that yn = x.
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Step 1: Show yn ≥ x. Assume that yn < x. Then there exists an h ∈ R such that

0 < h < min
{
1,

x− yn

n(y + 1)n−1

}
.

The inequality (3.3) (with a = y and b = y + h) yields

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn.

Since (y + h)n < x it follows that y + h ∈ A in contradiction to y being an upper bound of A.

Step 2: Show yn ≤ x. Assume that yn > x. Then

k :=
yn − x

nyn−1
.

satisfies 0 < k < y. Inequality (3.3) yields that for all t ≥ y − k

yn − tn ≤ yn − (y − k)n < nkyn−1 = yn − x.

Therefore, [y − k,∞) ∩A = ∅. Since y is an upper bound of A, also y − k is an upper bound of A,
in contradiction to y being the least upper bound of A.

Since we have shown that yn ≤ x and yn ≥ x it follows that yn = x.

The extended real line

Definition 3.22. The extended real line is R := R ∪ {−∞, ∞} with the convention that −∞ <
x <∞ for all x ∈ R.

R is not a field but for x ∈ R we define

x+∞ = ∞+ x = ∞, x−∞ = −∞+ x = −∞,
x

∞ =
x

−∞ = 0,

∞ · x = x · ∞ =

{
∞ if x > 0,

−∞ if x < 0,
−∞ · x = x · (−∞) =

{
−∞ if x > 0,

∞ if x < 0.

For a, b ∈ R let

(−∞, b] := {x ∈ R : x ≤ b}, [a, ∞) := {x ∈ R : x ≥ a},
(−∞, b) := {x ∈ R : x < b}, (a, ∞) := {x ∈ R : x > a},

(−∞, ∞) := R.

Definition 3.23. Let A ⊂ R. We define

supA = ∞ if A has no upper bound,

inf A = −∞ if A has no lower bound,

sup ∅ = −∞, inf ∅ = ∞.

3.3 The field of complex numbers

Definition 3.24. A complex number is an element (a, b) ∈ R×R. The set of all complex numbers
is denoted by C. Two complex numbers z1 = (a1, b1) and z2 = (a2, b2) are equal if and only if
a1 = a2 and b1 = b2.
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30 3.3. The field of complex numbers

On C the operations + and · are defined by

+ : C× C → C, (a, b) + (c, d) := (a+ c, b+ d),

· : C× C → C, (a, b) · (c, d) := (ac− bd, ad+ bc).

The absolute value (or modulus) of a complex number z = (a, b) is

|z| := (a2 + b2)
1
2 ∈ R.

The complex conjugation is the map

C → C, z = (a, b) 7→ z := (a,−b).

For a complex number z = (a, b) we set

Re z := a (real part of z), Im z := a (imaginary part of z).

Straightforward calculations show:

Proposition 3.25. (C,+, · ) is a field with additive identity (0, 0) and multiplicative identity (1, 0).
For z = (a, b) the additive inverse is −z = (−a,−b). If z 6= (0, 0), then its multiplicative inverse is
z−1 = (a/|z|2,−b/|z|2).

Since (a, 0)+(b, 0) = (a+b, 0) and (a, 0)·(b, 0) = (a·b, 0) for all a, b ∈ R, the field R can be identified
with the subfield {(a, 0) : a ∈ R} ⊂ C via the field homomorphism R → C, a 7→ (a, 0). Note that

|(a, 0)| =
√
a2 = |a| in agreement with the definition of the absolute value of real numbers.

Definition 3.26. i := (0, 1).

Theorem 3.27. (i) i2 = −1,

(ii) (a, b) = a+ ib, a, b ∈ R.

Proof. (i) i2 = (0, 1)2 = (0, 1)(0, 1) = (0− 1, 0 + 0) = (−1, 0) = −1.

(ii) a+ ib = (a, 0) + (0, 1)(b, 0) = (a, 0) + (0, b) = (a, b).

The preceding theorem shows that calculations with complex numbers can be carried out as for
real numbers if we take into account that i2 = −1.

The next proposition collects often used properties of complex numbers.

Proposition 3.28. Let z, w ∈ C.

(i) z = z, z = z ⇐⇒ Im z = 0, z = −z ⇐⇒ Re z = 0,

(ii) z + w = z + w,

(iii) zw = z w, in particular z−1 = z−1 for z 6= 0,

(iv) z + z = 2Re z, z − z = 2i Im z,

(v) zz = |z|2 ≥ 0 and |z| = 0 ⇐⇒ z = 0,

(vi) |z| = |z|,

(vii) |zw| = |z| |w|, in particular |z−1| = |z|−1 for z 6= 0.
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(viii) |Re z| ≤ |z|, | Im z| ≤ |z|,

(ix) |z + w| ≤ |z|+ |w|.

Proof. (i), (ii), (iii), (iv), (v) and (vi) are easy to check.
For the proof of (vii), let z = a+ ib, w = c+ id with a, b, c, d ∈ R. Then

|zw|2 = |(a+ ib)(c+ id)|2 = |(ac− bd) + i(ad+ bc)|2 = (ac− bd)2 + (ad+ bc)2

= a2c2 + b2d2 + a2d2 + b2c2 = (a2 + b2)(c2 + d2) = |z|2 |w|2.

Taking the square root yields the assertion.
The assertion about the real part of z in (viii) follows from

|Re z|2 = |a|2 = a2 ≤ a2 + b2 = |z|2.

The assertion about the imaginary part is proved analogously.
In order to prove the triangle inequality in (ix), note that wz = wz, hence

|z + w|2 = (z + w)(z + w) = zz + ww + zw + wz = |z|2 + |w|2 + zw + zw

= |z|2 + |w|2 + 2Re(zw) ≤ |z|2 + |w|2 + 2|Re(zw)|
≤ |z|2 + |w|2 + 2|zw| = |z|2 + |w|2 + 2|z| |w| = (|z|+ |w|)2.

The assertion follows by taking the square root.

Remark. Note that C cannot be ordered because i2 = −1 < 0 (cf. Corollary 3.9 (vii)).
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Chapter 4

Sequences and Series

In this chapter, the notion of convergence is introduced, one of the most important concepts in
analysis. To this end, it is necessary to consider the distance between points in a given set which
leads to the definition of metric spaces. Next we deal with sequences in metric spaces and give
criteria for convergence and divergence. If, in addition, the metric space is equipped with the struc-
ture of a vector space compatible with the given metric, then relationship between the arithmetics
and properties of sequences can be established.

4.1 Metric spaces

A metric space is a set of points X together with a function X×X → R that measures the distance
between two points in X and satisfies the properties that are expected from a distance.

Definition 4.1. Let X be a set. A metric on X is a function

d : X ×X → R, (x, y) 7→ d(x, y),

such that

(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x), x, y ∈ X (symmetry),

(iii) d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ X. (triangle inequality).

Then, (X, d) is called a metric space and d(x, y) is the distance between the points x, y ∈ X.

Note that the definition of d implies

d(x, y) ≥ 0, x, y ∈ X,

since the triangle inequality yields 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

Examples. (i) Any set X with |X| ≤ 1,

(ii) Q, R, C with d(x, y) = |x−y| are metric spaces. If not stated explicitely otherwise, we always
consider Q,R,C as equipped with this metric.
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34 4.2. Sequences in metric spaces

(iii) Let F = Q, R or C and n ∈ N. Then Fn with the Euclidean metric

d(x, y) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2 , x =



x1
...
xn


 , y =



y1
...
yn


 ∈ Fn,

is a metric space. Note that for n = 1 the euclidian metric coincides with the metric defined
in (iii).

(iv) The set X with the discrete metric

d(x, y) =

{
0, x = y,

1, x 6= y.

Remark. Let (X, d) be a metric space and Y ⊆ X a subset. Then (Y, d|Y ×Y ) is also a metric
space.

Special subsets of metric spaces are open and closed balls.

Definition 4.2. Let (X, d) be a metric space. For a ∈ X and r ∈ R+ we define

Br(a) := {x ∈ X : d(a, x) < r} =: open ball with centre at a and radius r,

Kr(a) := {x ∈ X : d(a, x) ≤ r} =: closed ball with centre at a and radius r.

Example. In the special case of R the open balls are exactly the open intervals, and the closed
balls are the closed intervals.

Definition 4.3. Let (X, d) be a metric space. For a subset M ⊆ X

diamM := sup{d(x, y) : x, y ∈M}

is the diameter of M . M is called bounded if diamM <∞.

Remark. (Exercise 4.1)

• M bounded ⇐⇒ ∃ a ∈ X, r > 0 : M ⊂ Br(a).

• A subset M ⊆ R is bounded in the sense of Definition 1.1 (as a subset of an ordered set) if
and only if it is bounded in the sense of Definition 4.3 (as a subset of a metric space).

• A subset M ⊆ R is bounded if and only if there exist a,∈ R and r > 0 such that M ⊆ Br(a).

4.2 Sequences in metric spaces

Definition 4.4. Let (X, d) be a metric space. A sequence in X is a map

N → X, n 7→ xn ∈ X.

The sequence is usually denoted by

(xn)n∈N, (xn)
∞
n=1, or (x1, x2, . . . ).

The xn are called terms of the sequence.
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The important properties of the domain of a sequence are that it is countable and ordered. There-
fore, instead of the index set N any subset M = {m, m+1, m+2, . . . } ⊆ Z can be used as domain
of a sequence (note that there is an order preserving bijection between N and M).

Since a sequence (xn)n∈N in a metric space (X, d) defines the set {xn : n ∈ N} ⊆ X, one writes
(xn)n∈N ⊆ X.

Examples (Sequences in R).

• xn := a, n ∈ N for some a ∈ R: (a, a, a, . . . ) (constant sequence),

• xn = 1
n , n ∈ N: (1, 1

2 ,
1
3 , . . . ),

• xn = xn, n ∈ N, for a fixed x ∈ R: (x, x2, x3, . . . ),

• xn = (−1)n, n ∈ N: (−1, 1, −1, . . . ),

• x0 = 0, x1 = 1, xn+1 = xn−1 + xn, n ∈ N: (0, 1, 1, 2, 3, 5, . . . ) (Fibonacci sequence).

Definition 4.5. Let (X, d) be a metric space. A sequence (xn)n∈N ⊆ X is said to be convergent if
and only if

∃ a ∈ X ∀ε > 0 ∃N ∈ N ∀n ≥ N d(xn, a) < ε.

The sequence is then said to converge to a, and a is called the limit of (xn)n∈N denoted by

lim
n→∞

xn = a, or xn
n→∞−−−−→ a, or xn → a, n→ ∞. (4.1)

A sequence is said to be divergent if it does not converge.

The sequence (xn)n∈N is said to be bounded if {xn : n ∈ N} is bounded in X.

(Here and in the following, a statement like ε > 0 always means ε ∈ R, ε > 0.)

The definition says that a sequence (xn)n∈N ⊆ X converges to a ∈ X if and only if for every r > 0
almost all (i. e.all with exception of finitely many) xn lie in Br(a).

The next theorem justifies the notation a = limn→N xn in (4.1).

Theorem 4.6 (Uniqueness of the limit). The limit of a convergent sequence in a metric space
is unique.

Proof. Let (X, d) be a metric space and (xn)n∈N a convergent sequence in X. Let a, b ∈ X such
that xn → a and xn → b for n → ∞ and a 6= b. Then d(a, b) > 0 and there exist Na, Nb ∈ N such
that

d(xn, a) <
d(a, b)

2
, n ≥ Na, d(xn, b) <

d(a, b)

2
, n ≥ Nb.

Let N = max{Na, Nb}. Then the triangle inequality yields for n ≥ N the contradiction

d(a, b) ≤ d(xn, a) + d(xn, b) <
d(a, b)

2
+
d(a, b)

2
= d(a, b).

Examples 4.7. Consider some of the sequences in R of the example at the beginning of this section:

(i) xn = a, n ∈ N, for some a ∈ R: (xn)n∈N is bounded and limn→∞ xn = a.

(ii) xn = 1
n , n ∈ N. The sequence (xn)n∈N is bounded and converges to 0.
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Proof. The sequence is bounded because { 1
n : n ∈ N} ⊆ B2(0). To prove the convergence,

let ε > 0. By the Archimedean property, there exists an N ∈ N such that N > 1
ε . It follows

that

|xn − 0| = 1

n
≤ 1

N
< ε, n ≥ N.

(iii) xn = (−1)n, n ∈ N. The sequence (xn)n∈N is bounded and divergent.

Proof. The sequence is bounded since {(−1)n : n ∈ N} = {−1, 1} ⊆ B2(0). Let 0 < ε < 1
2

and assume that (xn)n∈N converges to some a ∈ R. Then there exists an N ∈ N such that
d(xn, a) < ε, n ≥ N . By the triangle inequality, it follows that

2 = d(xN , xN+1) ≤ d(xN , a) + d(xN+1, a) <
1

2
+

1

2
= 1. z

Therefore ((−1)n)n∈N does not converge in R.

(iv) lim
n→∞

n

n+ 1
= 1. (Exercise)

(v) lim
n→∞

n

2n
= 0. (see Exercise 4.3)

Theorem 4.8. Every convergent sequence in a metric space is bounded.

Note that not every bounded sequence converges as Example 4.7 (iii) shows.

Proof of Theorem 4.8. Let (X, d) be a metric space, (xn)n∈N ⊆ X a convergent sequence and let
a := limn→N xn. Then there exists an N ∈ N such that

d(xn, a) < 1, n ≥ N.

Let R := max{d(a, x1), d(a, x2), . . . , d(a, xN−1)} + 1. Then d(a, xn) < R for all n ∈ N, hence
(xn)n∈N ⊆ BR(a).

Definition 4.9. Let (X, d) be a metric space. A sequence (xn)n∈N ⊆ X is called a Cauchy sequence
in X if and only if

∀ε > 0 ∃ N ∈ N ∀n,m ≥ N d(xn, xm) < ε.

Theorem 4.10. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (X, d) be a metric space, (xn)n∈N ⊆ X a convergent sequence and a := limn→∞ xn. Let
ε > 0. Then there exists a N ∈ N such that

d(xn, a) <
ε

2
, n ≥ N.

Therefore, by the triangle inequality,

d(xn, xm) ≤ d(xn, a) + d(xm, a) <
ε

2
+
ε

2
= ε, n,m ≥ N.

Note that the converse is not true.
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Example. Consider the metric spaces (R, d) and the subspace ((0, 1), d|(0,1)) where d is the usual

metric on R. Let xn = 1
n , n ∈ N. We already showed that (xn)n∈N converges to 0 in R, hence it

is also a Cauchy sequence. Since (xn)n∈N ⊆ (0, 1) and the metric on (0, 1) is a restriction of the
metric on R, the sequence is also a Cauchy sequence in ((0, 1), d|(0,1)). But the sequence does not
converge in ((0, 1), d|(0,1)). Indeed, if it would converge to some a ∈ (0, 1), then it would converge
to a also in the metric space (R, d). The uniqueness of the limit would imply a = 0, in contradiction
to a /∈ (0, 1).

Definition 4.11. A metric space in which every Cauchy sequence converges is called a complete
metric space.

Examples 4.12. • Q is not a complete metric space.

• The metric spaces R, C, Rn, Cn are complete.

The completeness of R is equivalent to the least-upper-bound-property on R.

Theorem 4.13. Every Cauchy sequence in a metric space is bounded.

Proof. Let (X, d) be a metric space and (xn)n∈N ⊆ X a Cauchy sequence. Then there exists an
N ∈ N such that

d(xn, xm) < 1, n,m ≥ N.

Hence, by the triangle inequality,

d(x1, xn) ≤ d(x1, xN ) + d(xN , xn) < d(x1, xN ) + 1.

Let R := max{d(x1, x2), d(x1, x3), . . . , d(x1, xN )}+ 1. Then (xn)n∈N ⊆ BR(x1) which implies the
assertion.

Definition 4.14. Let (X, d) be a metric space, (xn)n∈N ⊆ X a sequence in X and ρ : N → N such
that ρ(n) < ρ(n+ 1), n ∈ N. Then (xρ(n))n∈N is called a subsequence of (xn)n∈N.

Theorem 4.15. Let (X, d) be a metric space and (xn)n∈N ⊆ X.

(i) If (xn)n∈N converges, then every subsequence converges and has the same limit.

(ii) If (xn)n∈N is a Cauchy sequence and contains a convergent subsequence, then it converges.

Proof. (i): Let (xρ(n))n∈N be a subsequence of the convergent sequence (xn)n∈N ⊆ X and let
a := limn→∞ xn. Let ε > 0. Then there exists an N ∈ N such that d(xn, a) < ε, n ≥ N . Now
choose M ∈ N such that ρ(M) ≥ N . Since ρ(n) ≥ N for all n ≥M , it follows that d(xρ(n), a) < ε,
n ≥M .

(ii) Let (xn)n∈N ⊆ X be a Cauchy sequence with the convergent subsequence (xρ(n))n∈N. Let

a := limn∈N xρ(n) and ε > 0. By assumption, there exists an K ∈ N such that d(xρ(k), a) <
ε
2 for

k ≥ K and an M ∈ N such that d(xn, xm) < ε
2 , n,m > M .

Let N := max{K,M}. Then, using that ρ(k) ≥ k for all k ∈ N, we obtain

d(xn, a) ≤ d(xn, xρ(N)) + d(xρ(N), a) <
ε

2
+
ε

2
= ε, n ≥ ρ(N).
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4.3 Sequences in normed spaces

Next we want to consider metric spaces with the additional structure of a vector space such that
the metric is compatible with the algebraic structure.

Definition 4.16. Let F be a field. A set V is called an F-vector space if there are operations

+ : V × V → V, (x, y) 7→ x+ y, x, y ∈ V (Addition),

· : F× V → V, (λ, x) 7→ λ · x, λ ∈ F, x ∈ V (scalar multiplication),

satisfying the following axioms:

Axioms of vector space addition

(VS1) x+ (y + z) = (x+ y) + z, x, y, z ∈ V ,

(VS2) x+ y = y + x, x, y ∈ V ,

(VS3) ∃ 0V ∈ V : ∀x ∈ V x+ 0V = x,

(VS4) ∀x ∈ V ∃ − x ∈ V : x+ (−x) = 0V .

Axioms of scalar multiplication

(VS5) λ · (x+ y) = λ · x+ λ · y, λ ∈ F, x, y ∈ V ,

(VS6) (λ+ µ) · x = λ · x+ µ · x, λ, µ ∈ F, x ∈ V ,

(VS7) λ · (µ · x) = (λ · µ) · x, λ, µ ∈ F, x ∈ V ,

(VS8) 1 · x = x, x ∈ V .

The elements of V are called vectors, the elements of F are called scalars. It is custom to write λx
instead of λ · x for λ ∈ F and x ∈ V .

Corollary 4.17. Let V be a F-vector space. Then:

(i) 0V and −x are uniquely determined,

(ii) 0 · x = 0V , x ∈ V ,

(iii) (−1) · x = −x, x ∈ V .

Proof. (i) Analogously to the proof of uniqueness of the additive identity in fields (Corollary 3.4).

(ii) Let λ = 1, µ = 0 ∈ F and x ∈ V arbitrary. By axiom (VS6) it follows that

x
(VS8)
= 1 · x = (1 + 0) · x (VS6)

= 1 · x+ 0 · x (VS8)
= x+ 0 · x.

Therefore 0 · x = 0V by the uniqueness of 0V shown in (i).

(iii) Let λ = 1, µ = −1 and x ∈ V arbitrary. Then

0V
(ii)
= 0 · x = (1− 1) · x (VS6)

= 1 · x+ (−1) · x, (VS8)
= x+ (−1) · x.

Therefore (−1) · x = −x by the uniqueness of −x shown in (i).

Examples. • Every field F is an F-vector space.
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• Let F be a field and n = 1. For x = (xj)
n
j=1, y = (yj)

n
j=1 ∈ Fn = F× · · · × F and λ ∈ F let

x+ y := (xj + yj)
n
j=1 = (x1 + y1, . . . , xn + yn),

λ · x := (λxj)
n
j=1 = (λx1, . . . , λxn).

It is easy to check that Fn is a F-vector space. For n = 1 this vector space coincides with the
vector space above.

• C is a R-vector space; R is a Q-vector space.

• Let F be a field, X 6= ∅ a set and denote the set of all functions f : X → F by FX . For
f, g ∈ FX and λ ∈ F define

f + g : X → F, (f + g)(x) = f(x) + g(x), x ∈ X,

λ · f : X → F, (λ · f)(x) = λf(x), x ∈ X.

Then FX is a F-vector space.

Now we want to equip a vector space V with a metric that is compatible with the algebraic structure
on V .

Definition 4.18. Let F = R or C and V a F-vector space. A norm on V is a map

‖ · ‖ : V → R, x 7→ ‖x‖

such that

(i) ‖x‖ = 0 ⇐⇒ x = 0, x ∈ V ,

(ii) ‖λx‖ = |λ| ‖x‖, λ ∈ F, x ∈ V ,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ V .

Then (V, ‖ · ‖) is called a normed space.

Remark. Instead of R or C, F can be any field with a norm in the sense above. Usually we always
deal with R- or C-vector spaces.

Immediately from the definition of a normed spaces follows the following proposition.

Proposition 4.19. Every normed space (V, ‖ · ‖) is a metric space with the metric

d(x, y) := ‖x− y‖, x, y ∈ V.

In particular, ‖x‖ = d(x, 0) ≥ 0, x ∈ V .

Using the proposition above, convergent sequences and Cauchy sequences are also defined in normed
spaces. Let (xn)n∈N be a sequence in the normed space (V, ‖ · ‖). Then

• (xn)n∈N converges to a ∈ V :⇐⇒ ∀ε > 0 ∃N ∈ N ∀n ≥ N ‖xn − a‖ < ε.

• (xn)n∈N is a Cauchy sequence in V

:⇐⇒ ∀ε > 0 ∃N ∈ N ∀m,n ≥ N ‖xn − xm‖ < ε.

Definition 4.20. A normed space in which every Cauchy sequence converges is called a Banach
space.
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In the following, F is always assumed to be R or C.

Examples. • Every ordered field is a normed space with the absolute value as norm.

• Q with the norm ‖x‖ = |x| is a normed space but it is not complete.

• R and C with the norm ‖x‖ = |x| are Banach spaces.

• If V = Rn or Cn, n ∈ N and

‖x‖ =
√
|x1|2 + · · ·+ |xn|2, x = (xj)

n
j=1 ∈ Fn,

then (Fn, ‖ · ‖) are Banach spaces. The norm ‖ · ‖ is called the Euclidean norm on Fn.

Analogously to Corollary 3.13 for ordered fields the following lemma can be shown:

Lemma 4.21. Let (V, ‖ · ‖) be a normed space. Then

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x− y‖ ≤ ‖x‖+ ‖y‖, x, y ∈ V.

Proposition 4.22. Let (V, ‖ · ‖) be a normed space over F = R or C.

(i) (xn)n∈N Cauchy sequence in V =⇒ (‖xn‖)n∈N Cauchy sequence in R.

(ii) (xn)n∈N converges in V =⇒ (‖xn‖)n∈N converges in R.

In this case: ‖ limn→∞ xn‖ = limn→∞ ‖xn‖.

Proof. (i) Let ε > 0. Since (xn)n∈N is a Cauchy sequence, there exists an N ∈ N such that

∣∣‖xn‖ − ‖xm‖
∣∣ ≤ ‖xn − xm‖ < ε, m, n ≥ N.

(ii) Let ε > 0. Let ε > 0 and let limn→∞ xn := a. Then there is an N ∈ N such that

∣∣‖xn‖ − ‖a‖
∣∣ ≤ ‖xn − a‖ < ε, n ≥ N.

Note that in both cases the converse direction is wrong as the example ((−1)n)n∈N shows. Moreover,
any normed space over a non-complete field F is not complete.

Proposition 4.23. Let (V, ‖ · ‖) be a normed space over F = R or C and (xn)n∈N a sequence in V .

(i) lim
n→∞

xn = 0 ⇐⇒ lim
n→∞

‖xn‖ = 0,

(ii) lim
n→∞

xn = a ⇐⇒ lim
n→∞

(xn − a) = 0, ⇐⇒ lim
n→∞

‖xn − a‖ = 0,

(iii) If there exists a sequence (λn)λ∈N ⊆ F and an N0 ∈ N, such that λn → 0, n→ ∞ and

‖xn‖ ≤ |λn|, n ≥ N0,

then lim
n→∞

xn = 0.

Proof. (i) and (ii) are immediate consequences of Proposition 4.22. For the proof of (iii) fix an
ε > 0. Then there is an N ∈ N such that |λn| < ε, n ≥ N . Hence

‖xn‖ ≤ |λn| < ε, n ≥ max{N0, N}.

Next we show that the algebraic operations on a normed space and taking limits are compatible.

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 41

Theorem 4.24. Let (V, ‖ · ‖) be a normed space over a field F and let λ ∈ F.

(i) If (an)n∈N, (bn)n∈N are Cauchy sequences in V , then so are

(an + bn)n∈N and (λan)n∈N.

(ii) If (an)n∈N, (bn)n∈N are convergent sequences in V , then so are

(an + bn)n∈N and (λan)n∈N,

and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn, lim
n→∞

λan = λ lim
n→∞

an.

Proof. (i) Let ε > 0. Then there exist Na ∈ N and Nb ∈ N such that

‖an − am‖ < ε

2
, m, n ≥ Na,

‖bn − bm‖ < ε

2
, m, n ≥ Nb.

For m,n ≥ max{Na, Nb} it follows that

‖(an + bn)− (am + bm)‖ ≤ ‖an − am‖+ ‖bn − bm‖ < ε

2
+
ε

2
= ε,

hence (an + bn)n∈N is a Cauchy sequence.

If λ = 0, then (λan)n∈N = (0)n∈N a constant sequence and therefore a Cauchy sequence. Now let
λ 6= 0 and ε > 0. Then there exist N ∈ N such that ‖an − am‖ < ε

|λ| for all m,n ≥ N , hence

‖λan − λam‖ = |λ|‖an − am‖ < |λ| ε|λ| = ε, m, n ≥ N.

(ii) is proved similarly.

Example. The sequence (xn)n∈N where xn := n+1
n , n ∈ N, converges to 1.

Proof. Since the constant sequence (1)n∈N and the sequence ( 1n )n∈N converge, we have that

lim
n→∞

xn = lim
n→∞

(
1 +

1

n

)
= lim

n→∞
1 + lim

n→∞
1

n
= 1 + 0 = 1.

Theorem 4.25. Let (V, ‖ · ‖) be a normed space over the field F with norm | · |.

(i) If (λn)n∈N ⊆ F and (xn)n∈N ⊆ V are Cauchy sequences, then so is

(λnxn)n∈N ⊆ V.

(ii) If (λn)n∈N ⊆ F and (xn)n∈N ⊆ V are convergent, then so is (λnxn)n∈N ⊆ V and

lim
n→∞

(λnxn) = ( lim
n→∞

λn)( lim
n→∞

xn).

(iii) If the sequences (λn)n∈N ⊆ F and (xn)n∈N ⊆ V are bounded and at least one of them converges
to 0, then sequence of the products converges to 0.
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Proof. (i) Since the sequences (λn)n∈N and (xn)n∈N are Cauchy sequences, they are bounded (The-
orem 4.13). Let Rx, Rλ ∈ R such that

‖xn‖ ≤ Rx, |λn| ≤ Rλ, n ∈ N.

For ε > 0 choose Nx, Nλ ∈ N such that

‖xn − xm‖ < ε

2Rλ
, m, n ≥ Nx, and |λn − λm| < ε

2Rx
, m, n ≥ Nλ.

For all m,n ≥ max{Nx, Nλ} it follows that

‖λnxn − λmxm‖ = ‖λn(xn − xm)− (λm − λn)xm‖
≤ |λn| ‖xn − xm‖+ |λm − λn| ‖xm‖ < Rλ

ε

2Rλ
+Rx

ε

2Rx
= ε.

(ii) is proved similarly.

(iii) is proved similarly. Let Rx, Rλ as in the proof of (i). Without restriction we assume that
xn → 0, n→ ∞. Therefore

‖λnxn‖ = |λn| ‖xn‖ ≤ Rλ ‖xn‖ → 0, n→ ∞,

=⇒ ‖λnxn‖ → 0, n→ ∞, (by Prop. 4.23 (iii))

=⇒ λnxn → 0, n→ ∞, (by Prop. 4.23 (i))

Example. Let xn := (−1)n n!
nn ∈ R, n ∈ N. Since 0 < m

n < 1 for m = 1, . . . , n− 1 it follows that

|xn| =
n

n
· n− 1

n
· · · · · 1

n
.

Since ( 1n )n∈N converges to 0 by Example 4.7 (ii), Theorem 4.25 (iii) yields that (xn)n∈N converges
to zero.

Theorem 4.26. Let (V, ‖ · ‖) be a normed space over a field F with norm | · |. Let (λn)n∈N ⊆ F
and (xn)n∈N ⊆ V be convergent sequences such that limn→∞ λn 6= 0. Then there exists an N0 ∈ N
such that λn 6= 0, n ≥ N0 and the sequence ( 1

λn
xn)

∞
n=N0

converges with

lim
n→∞

1

λn
xn =

( 1

lim
n→∞

λn

)
( lim
n→∞

xn).

Proof. Let a := limn→∞ λn 6= 0. Then there exists an N0 ∈ N such that |λn − a| < |a|
2 , n ≥ N0,

hence, by the triangle inequality,

|λn| ≥ |a| − |λ− a| ≥ |a| − |a|
2

=
|a|
2
> 0, n ≥ N0.

Let ε > 0. Then there exists an N ∈ N such that

|λn − a| ≤ ε|a|2
2

, n ≥ N.

Therefore we have for all n ≥ max{N0, N}
∣∣∣ 1
λn

− 1

a

∣∣∣ = 1

|a||λn|
∣∣a− λn

∣∣ ≤ 1

|a| |a|2
ε|a|2
2

= ε.

This shows

lim
n→∞

1

λn
=

1

limn→∞ λn
.

The assertion of the theorem follows now by Theorem 4.25(ii).
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Remark. Important special cases of Theorem 4.24, Theorem 4.25 and Theorem 4.26 are when
V = R or V = C. For example, Theorem 4.25 shows that

(an)n∈N, (bn)n∈N ⊆ C convergent

=⇒ (anbn)n∈N ⊆ C convergent and lim
n→∞

(anbn) = ( lim
n→∞

an)( lim
n→∞

bn).

Example. Let xn :=
n3 + n2

7n3 + 12n− 1
, n ∈ N. Then lim

n→∞
xn =

1

7
.

Proof. Since xn = 1+n−1

7+12n−2−n−3 , n ∈ N, and the limits limn→∞
1
n , limn→∞

1
n2 and limn→∞

1
n3 exist

and are equal to zero, Theorem 4.24, Theorem 4.25 and Theorem 4.26 yield

lim
n→∞

xn = lim
n→∞

1 + n−1

7 + 12n−2 − n−3
=

1 + 0

7 + 0− 0
=

1

7
.

Theorem 4.27. (i) Let m ∈ N, F = R or C and (Fm, ‖ · ‖) with the Euclidean norm ‖ · ‖.
Let (xn)n∈N be a sequence in Fm with xn = (x1,n, . . . , xm,n), n ∈ N. Then (xn)n∈N is a
Cauchy sequence in Fm if and only if for all j = 1, . . . , m the sequences (xj,n)n∈N are Cauchy
sequences in F. The sequence (xn)n∈N is convergent in Fm if and only if for all j = 1, . . . , m
the sequences (xj,n)n∈N are convergent in F. In this case

lim
n→N

xn = ( lim
n→N

x1,n, . . . , lim
n→N

xm,n).

(ii) Let (zn)n∈N ⊆ C and xn := Re zn, yn := Im zn, n ∈ N. Then (zn)n∈N is a Cauchy sequence if
and only if both (xn)n∈N and (yn)n∈N are Cauchy sequences in R and (zn)n∈N is convergent
if and only if both (xn)n∈N and (yn)n∈N are convergent in R. In this case

lim
n→N

zn = lim
n→N

xn + i lim
n→N

yn.

In particular, it follows that C and Fm are complete since R is complete.

4.4 Sequences in an ordered field

Let F be an ordered field. As in Definition 3.23 we can extend the order on F to an order on
F = F ∪ {−∞,∞}. The most important example is, of course, F = R.

Definition 4.28. Let F be an ordered field. We say that a sequence (xn)n∈N ⊆ F diverges to ∞ ,
in formula limn→∞ xn = ∞, if and only if

∀R ∈ F ∃N ∈ N ∀n ≥ N xn > R.

The sequence (xn)n∈N diverges to −∞ if and only if (−xn)n∈N diverges to∞, in formula limn→∞ xn =
−∞.

Remark 4.29. • limn→N xn = ∞ =⇒ {xn : n ∈ N} ⊆ F is not bounded from above.

• limn→N xn = −∞ =⇒ {xn : n ∈ N} ⊆ F is not bounded from below.

• The converse is not true: For example, the sequence (xn)n∈N ⊆ R with xn = (1 + (−1)n)n
does not diverge to ∞ but {xn : n ∈ N} = 2N0 is unbounded above.

• limn→∞ xn = −∞ ⇐⇒ ∀R ∈ F ∃N ∈ N ∀n ≥ N xn < R.
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44 4.4. Sequences in an ordered field

Proposition 4.30. Let F be an ordered field and (xn)n∈N ⊆ F.

(i) If limn→∞ |xn| = ∞, then there exists an N ∈ N such that xn 6= 0, n ≥ N and limn→∞ x−1
n =

0.

(ii) If xn > 0, n ∈ N, and limn→∞ xn = 0, then limn→∞ x−1
n = ∞.

If xn < 0, n ∈ N, and limn→∞ xn = 0, then limn→∞ x−1
n = −∞.

If xn 6= 0, n ∈ N, and limn→∞ xn = 0, then limn→∞ |x−1
n | = ∞.

(iii) If there exists a sequence (λn)n∈N ⊆ F such that limn→N λn = ∞ and an N ∈ N such that
xn > λn, n ≥ N, then limn→N xn = ∞.

Theorem 4.31. Let F be and ordered field and (xn)n∈N, (yn)n∈N ⊆ F convergent sequences. As-
sume that there exists an N0 ∈ N such that

xn ≤ yn, n ≥ N0. (4.2)

Then limn→∞ xn ≤ limn→∞ yn.

Proof. Assume limn→∞ xn > limn→∞ yn. Then

0 < lim
n→∞

xn − lim
n→∞

yn = lim
n→∞

(xn − yn).

and there exists an N ∈ N such that

xn − yn ≥ 1

2
lim
n→∞

(xn − yn) > 0, n ≥ N, (4.3)

(see proof of Theorem 4.26). Hence we obtain the contradiction

0
(4.2)

≥ xN+N0
− yN+N0

(4.3)
> 0.

Remark. Even if condition (4.2) is substituted by xn < yn, n ∈ N, we cannot conclude limn→∞ xn <
limn→∞ yn, as the example xn = 1

n and yn = 0, n ∈ N, shows.

Corollary 4.32. Let F be an ordered field, (xn)n∈N ⊆ F a convergent sequence. Assume that there
exist N0 ∈ N and α, β ∈ F such that α ≤ xn ≤ β, n ≥ N0. Then

α ≤ lim
n→∞

xn ≤ β.

Corollary 4.33 (Sandwich lemma). Let F be an ordered field, (an)n∈N, (bn)n∈N convergent
sequences in F with

lim
n→∞

an = lim
n→∞

bn = a.

Let (xn)n∈N ⊆ F and N ∈ N such that

an ≤ xn ≤ bn, n ≥ N.

Then also (xn)n∈N converges and limn→∞ xn = a.

Definition 4.34. Let F be an ordered field. A sequence (xn)n∈N ⊆ F is called

(i) monotonically increasing ⇐⇒ xn+1 ≥ xn, n ≥ 1,

(ii) strictly monotonically increasing ⇐⇒ xn+1 > xn, n ≥ 1.
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(iii) (strictly) monotonically decreasing, if (−xn)n∈N is (strictly) monotonically increasing.

(iv) (strictly) monotonic, if it is either (strictly) monotonically increasing or (strictly) monotoni-
cally decreasing.

Not every convergent sequence is monotonic, and not every monotonic sequence is convergent or
bounded.

Theorem 4.35. Let F be a complete ordered field and (xn)n∈N a monotonic sequence in F. Then

(xn)n∈N is convergent ⇐⇒ (xn)n∈N is bounded.

Proof. “=⇒” is shown in Theorem 4.8 (every convergent sequence in a metric space is bounded).

“⇐=” Without restriction, we may assume that (xn)n∈N is increasing. Since (xn)n∈N is bounded
and F is complete, it follows that

a := sup{xn : n ∈ N} <∞.

Let ε > 0. By Exercise 3.4 it follows that there exists an N ∈ N such that a− ε < xN ≤ a. Using
that xn ≤ a, n ∈ N, and the monotonicity of the sequence we find

|xn − a| = a− xn ≤ a− xN < ε, n ≥ N,

which implies the convergence of (xn)n∈N.

Corollary 4.36. Let F be a complete ordered field and (xn)n∈N a bounded monotonic sequence in
F. Then (xn)n∈N converges and

lim
n→∞

xn =

{
sup{xn : n ∈ N}, if (xn)n∈N is increasing,

inf{xn : n ∈ N}, if (xn)n∈N is decreasing.

In Theorem 3.21 we showed that for x > 0 and k ∈ N there exists exactly one solution of the
equation yk = x but the proof is not constructive, i. e., it gives no rule how to find y. The following
example gives a constructive proof.

Example 4.37 (kth root in R). Let x > 0 and k ∈ N. Define the sequence (xn)n∈N recursively
by

x0 = x+ 1, xn+1 = xn

(
1− xkn − x

kxkn

)
, n ∈ N.

(i) The sequence (xn)n∈N converges.

(ii) limn→∞ xn = k
√
x.

Proof. (i) We show the following by induction on n:

(a) xn > 0, n ∈ N, (b) xn ≤ xn−1, n ∈ N, (c) xkn ≥ x, n ∈ N.

n = 0: (a) and (c) are clearly satisfied, and for (b) there is nothing to prove.

ny n+ 1:

(a) xn+1 > 0 because xn > 0 and kxkn − (xkn − x) = (k − 1)xkn + x > 0.

(b) xkn ≥ x by induction hypothesis. Therefore 1−xk
n−x
kxn

< 1 and hence xn+1 = xn
(
1−xk

n−x
kxk

n

)
≤ xn.
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(c) Note that −xk
n−x
kxn

=
x−xk

n

kxn
> − xk

n

kxk
n
= − 1

k > −1. Therefore, Bernoulli’s inequality (3.2) shows

xkn+1 = xkn

(
1− xkn − x

kxkn

)k

≥ xkn

(
1− k

xkn − x

kxkn

)
= xkn

(
1− k

xkn − x

kxkn

)
= x.

(a) and (b) imply that (xn)n∈N is a bounded monotonic sequence, hence it converges by Theo-
rem 4.35.

(ii) From the definition of the xn it follows that

kxk−1
n xn+1 = (k − 1)xkn + x. (4.4)

Let y := limn→∞ xn. Taking the limit on both sides in (4.4) shows that

kyk−1y = (k − 1)yk + x,

hence yk = x.

Another important example is the definition of Euler’s number.

Example 4.38. The limit

e := lim
n→∞

(
1 +

1

n

)n

exists and is called Euler’s number (e = 2,71828182...).

Proof. See Exercise 4.12.

Not every sequence in an ordered field is monotonic, but every sequence contains a monotonic
subsequences.

Theorem 4.39. In an ordered field F every sequence (xn)n∈N ⊆ F contains a monotonic subse-
quence.

Proof. We call an xn a “low” if xn ≤ xm for all m ≥ n. There are two possible cases:

Case 1: The sequence contains infinitely many low terms. Then the subsequence which consists of
all low terms is monotonically increasing.

Case 2: The sequence contains only finitely many low terms. Then there exists a N ∈ N such
for all n ≥ N the term xn is not low. Hence for every n ≥ N there exists an m > n such that
xm < xn because xn is not low. Let n1 := N . Since xn1

is not a low term of the sequence, there
exists an n2 > n1 such that xn2

< xn1
. Inductively, we can find n1 < n2 < n3 < . . . such that

xn1
> xn2

> xn3
> . . . . The sequence (xnk

)k∈N is a monotonically decreasing subsequence of
(xn)n∈N.

Theorem 4.40 (Bolzano-Weierstraß).

(i) Every bounded sequence in R contains a convergent subsequence.

(ii) Every bounded sequence in C contains a convergent subsequence.

Proof. (i) By Theorem 4.39 every sequence contains a monotonic subsequence. Since R is complete
and every subsequence of a bounded sequence is bounded, this subsequences must converge by
Theorem 4.35.
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(ii) Let (zn)n∈N be a bounded sequence in C and let xn := Re zn and yn := Im zn. Then (xn)n∈N

and (yn)n∈N are bounded sequences in R (by Proposition 3.28). By (i) there exists a conver-
gent subsequence (xnk

)k∈N of (xn)n∈N. Again by (i), (ynk
)k∈N contains a convergent subsequence

(ynkm
)m∈N. Therefore, (xnkm

+ i ynkm
)m∈N is convergent subsequence of (zn)n∈N.

Remark. The Bolzano-Weierstraß theorem is equivalent to the completeness of R.

Definition 4.41. Let (xn)n∈N be sequence in a metric space X. A value a ∈ X is called a cluster
value of (xn)n∈N if there exists a subsequence that converges to a.

In addition, for an ordered field ∞ is a cluster value of a sequence (xn)n∈N in the field, if it
contains a subsequence that diverges to ∞ and −∞ is a cluster value of the sequence if it contains
a subsequence that diverges to −∞.

Remark. The Bolzano-Weierstraß Theorem implies

(i) that every sequence in R contains either a convergent subsequence or a subsequence that
diverges to ∞ or −∞,

(ii) that every sequence in R has a cluster value.

Remark 4.42. (i) If a sequence in a metric space converges, then it has exactly one cluster
value. The reverse is not true.

(ii) A bounded sequence in R or C is convergent if and only if it has exactly one cluster value.

(iii) Let x = (xn)n∈N be a sequence in a metric space. Then a is a cluster value of x if and only
if for each ε > 0 the ball Bε(a) contains infinitely many terms of the sequence, that is, there
are infinitely many n ∈ N such that xn ∈ Bε(a). In formula: #{n ∈ N : xn ∈ Bε(a)}) = ∞.
Note, however, that #(Bε(a)∩{xn|n ∈ N}) <∞ is possible as the example ((−1)n)n∈N shows.

Proof. (iii) Let a be a cluster value of x. Then it has a subsequence (xnk
)k∈N which converges to

a. For given ε > 0 there exist an K ∈ N such that d(a, xnk
) < ε, k > K, hence xnk

∈ Bε(a) for
every k > K.
Assume now that for every ε > 0 infinitely many xn lie in Bε(a). Then we can choose inductively
n1 < n2 < . . . such that xnk

∈ B 1
k
, k ∈ N, i. e., d(xnk

, a) < 1
k , k ∈ N. Hence a is a cluster value of

the sequence because the subsequence (xnk
)k∈N converges to a.

Definition 4.43. Let F be a complete ordered field and (xn)n∈N a sequence in F. The limes
superior and limes inferior

lim sup
n→∞

xn := lim xn := inf{x ∈ F : xn ≤ x for almost all xn},

lim inf
n→∞

xn := lim xn:= sup{x ∈ F : xn ≥ x for almost all xn}.

Proposition 4.44. Let F be a complete ordered field and (xn)n∈N ⊆ F. Then lim supn→∞ xn is
the greatest cluster value of (xn)n∈N and lim infn→∞ xn is the smallest cluster value of (xn)n∈N.

Proof. We show only the assertion for a := lim supn→∞ xn. If a = ∞, then the sequence contains
a subsequence which diverges to ∞, hence ∞ is a cluster value. Obviously, it is the largest cluster
value. If a = −∞, then the sequence diverges to −∞, hence −∞ is the only cluster value.

Now assume a ∈ R. First we show that a is the greatest accumulation point. Let ε > 0. Then
xn ≤ a + ε

2 for almost all all xn. Hence, only finitely many xn lie in B ε
2
(a + ε). Therefore, by

Remark 4.42, a+ ε cannot be a cluster value.
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We have to show that a is cluster value of (xn)n∈N. If a is not a cluster value, then there exists an
ε > 0 such that at most finitely many xn lie in Bε(a). Since in addition only finitely many xn are
larger than a+ ǫ/2, it follows that xn ≤ a− ε

2 for almost all xn.

To prove the assertion for lim inf, we only need to apply the claim to the sequence (−xn)n∈N and
observe that lim inf xn = − lim sup(−xn) and that the largest accumulation point of (xn)n∈N is
equal to the negative o f the smallest accumulation point of (−xn)n∈N.

Corollary 4.45. A sequence (xn)n∈N is convergent if and only if lim supn→∞ xn = lim infn→∞ xn.

Remark. Another characterisation of lim sup and lim inf is the following: For the sequence (xn)n∈N

define the sequences (y+n )n∈N and (y−n )n∈N in F ∪ {±∞} by

y+n := sup{xk : k ≥ n}, y−n := inf{xk : k ≥ n}.

Then (y+n )n∈N is monotonically decreasing and (y−n )n∈N is monotonically increasing (and therefore
convergent in F ∪ {±∞}) and

lim sup
n→∞

xn = lim
n→∞

y+n , lim inf
n→∞

xn = lim
n→∞

y−n .

Proof. Exercise 4.8. Obviously, the sequence (y+n )n∈N is monotonically decreasing and xk ≤ y+n
for k ≥ n.

Case 1. (xk)k∈N unbounded from above. Then y+n = ∞, n ∈ N, and lim supn→∞ xn = ∞ =
limn→∞ y+n .

Case 2. (xk)k∈N bounded from above and has no cluster value a ∈ R. Then the sequence (xn)n∈N

diverges to −∞, i.e., for every R ∈ R exists nR ∈ N such that xn ≤ R for all n ≥ nR. Hence also
y+n ≤ nR for all n ≥ nR and therefore limn→∞ y+n = −∞ = lim supn→∞ xn.

Case 3. (xk)k∈N bounded from above and has at least one cluster value a ∈ R. Then y+n ≥ a,
n ∈ N, and (y+n )n∈N converges by Theorem 4.35 (since the sequence is bounded and monotonic).
Let y := limn→∞ y+n . First we show that y is the greatest cluster value of (xn)n∈N. Let b > y and
ε := b− y. Since (y+n )n∈N is decreasing, there exists N ∈ R such that y+n < b− ǫ

2 , n ≥ N , but then
also xn ≤ y+n < b− ǫ

2 , n ≥ N . In particular, B ε
2
(b)∩{xn : n ≥ N} = ∅. This implies that b cannot

be cluster value of (xn)n∈N.
Next we show that y is a cluster value. To this end we construct a subsequence (xnk

)k∈N of (xn)n∈N

which converges to y. By the definition of y1 there exists an n1 such that 0 ≤ y1 − xn1
< 1

1
(use Exercise 3.4). Now assume that nk, k = 1, . . . , m, are chosen such that nk < nk+1 and
0 ≤ ynk−1

−xnk
< 1

k . By the definition of ynm
there exists an nm+1 such that |ym−xnm+1

| < 1
m+1 .

Since the sequences (ynk
)k∈N and (ynk

− xnk
)k∈N converge, also (xnk

)k ∈ N converges and

lim
k→∞

xnk
= lim

k→∞
(xnk

− ynk
) + ynk

= lim
k→∞

(xnk
− ynk

) + lim
k→∞

+ynk
= 0 + y = y.

Alternative proof of Case 3. If (xk)k∈N is bounded from above and has at least one cluster value
a ∈ R, then α := lim supn→∞ xn ∈ R. Since α is an accumulation point of (xk)k∈N, there exists a
subsequence (xkm

)m∈N which converges to α. In particular, α is a lower bound for (y+k )k∈N because
y+k ≥ sup{xkm

: km ≥ k} ≥ limm→∞ xkm
= α for all k ∈ N. Since (y+k )k∈N is decreasing, it is

convergent and limk→∞ yk ≥ α.
Now let ǫ > 0. Since α is the largest accumulation point of (xn)n∈N, there must be N ∈ N such
that xn ≤ α+ ǫ for all n ≥ N (otherwise there would be a subsequence (xkm

)m∈N with xkm
≥ α+ ǫ

for all m ∈ N and this subsequence must have an accumulation point ≥ α+ ǫ > α). Consequently,
yn = sup{xk : k ≥ n} ≤ α + ǫ para todo n ≥ N . It follows that limn→∞ yn ≤ α + ǫ. Since this is
true for all ǫ > 0, we actually have limn→∞ yn ≤ α.

The claim for lim inf can be proved analogously (or can be deduced from the claim non lim sup
applied to (−x)n∈N).
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4.5 Series

4.5.1 Basic criteria of convergence and series in R

Definition 4.46. Let (V, ‖ · ‖) be a normed space, (xn)n∈N ⊆ V . Then we define the partial sums

sn :=
n∑

k=1

xk, n ∈ N.

The sequence (sn)n∈N is a series in V , denoted by
∑∞

k=1
xn. The series is convergent if the sequence

of the partial sums is convergent. In this case, s := limn→∞ sn exists and we write

∞∑

k=1

xn = s.

Otherwise the series is called divergent. In the special case where V is an ordered field, we write

∞∑

k=1

xn = ±∞

if limn→∞ sn = ±∞.

Remark. • ∑∞
k=1 xn is not a sum but the limit of a sequence.

• The symbol
∑∞

k=1 xn has two meanings: it denotes the sequence of the partial sums, and it
denotes its limit if is exists.

Example.
∑∞

n=1
1 +

1

n
diverges.

Proof. sn :=
∑n

k=1 1 +
1
k ≥ n(1 + 1

n ) ≥ n+ 1. Therefore the sequence of the partial sums diverges
to ∞.

Example.

∞∑

n=1

1

n!
converges. (See Exercise 4.12.)

Theorem 4.47. Let (V, ‖ · ‖) be a normed space over a field F, λ ∈ F and
∑∞

n=1 xn,
∑∞

n=1 yn
convergent series in V . Then

∑∞
n=1 λxn + yn converges.

Proof. Apply Theorem 4.24 to the sequences of the partial sums.

Theorem 4.48. Let (V, ‖ · ‖) be a complete normed space and (xn)n∈N ⊆ V .

(i) Cauchy criterion for series:

∞∑

n=1

xn converges ⇐⇒ ∀ε > 0 ∃N ∈ N ∀n ≥ m ≥ N
∥∥∥

n∑

k=m

xn

∥∥∥ < ε.

(ii)
∑∞

n=1
xn converges =⇒ lim

n→∞
xn = 0.
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Proof. Since V is a complete normed space, the series converges if and only if the sequence of the
partial sums sn :=

∑n
k=1 xk is a Cauchy sequence. This is the case if and only if for every ε > 0

there exists an N ∈ N such that for m− 1, n ≥ N , without restriction m− 1 < n,

‖sn − sm−1‖ =
∥∥∥

n∑

k=m

xn

∥∥∥ < ε.

In particular, it follows that

‖xn‖ = ‖sn − sn−1‖ < ε, n ≥ N,

so also the second part of the theorem is proved.

Note that limn→∞ xn = 0 does not implies the convergence of the series
∑∞

n=1 xn as the following
example shows:

Example 4.49 (Harmonic series).

∞∑

n=1

1

n
= ∞.

Proof. Let sn :=
∑n

k=1
1
k . Then (sn)n∈N is not a Cauchy sequence since

|s2n − sn| =
2n∑

k=n+1

1

k
≥

2n∑

k=n+1

1

2n
=

1

2
.

Therefore, the harmonic series diverges. Since it is monotonically increasing, it follows that is
diverges to ∞.

Example 4.50 (Geometric series). Let z ∈ C.

(i) |z| ≥ 1 =⇒
∞∑

n=0

zn diverges.

(ii) |z| < 1 =⇒
∞∑

n=0

zn converges and
∞∑

n=0

zn =
1

1− z
.

Proof. If |z| ≥ 1 then |z|n = |zn| does not converge to 0, hence the sum cannot converge by
Theorem 4.47.

Now let |z| < 1 and let sn :=
∑n

k=0 z
k. Then

(1− z)sn = (1− z)

n∑

k=0

zk =

n∑

k=0

zk +

n+1∑

k=1

zk = 1− zn+1.

Since |z| < 1, we have that z 6= 1 and limn→∞ zn = 0. So we obtain

sn =
1− zn+1

1− z
→ 1

1− z
, n→ ∞. (4.5)

Theorem 4.51. Let (xk)k∈N ⊆ R, xk ≥ 0, k ∈ N, and define sn :=
∑n

k=1 xk, n ∈ N. Then

∞∑

k=1

xk converges ⇐⇒ (sn)n∈N bounded.
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Proof. The theorem follows immediately from Theorem 4.35 since the sequence (sn)n∈N is mono-
tonically increasing.

Example 4.52. The series

∞∑

k=1

1

k2
converges.

Proof. Since 1
k2 ≥ 0 for all k ∈ N, it suffices to show that the sequence of the partial sums

sn :=
∑n

k=1 is bounded. This follows from

0 ≤ sn − 1 =
n∑

k=2

1

k2
≤

n∑

k=2

1

k(k − 1)
=

n∑

k=2

1

k − 1
− 1

k
=

n∑

k=2

1

k − 1
−

n∑

k=2

1

k

= 1− 1

n
≤ 1.

Definition 4.53. A series in R is called alternating if it is of the form

±
∞∑

n=0

(−)nxn

with xn ≥ 0, n ∈ N.

Theorem 4.54 (Leibniz criterion). Let (xn)n∈N ⊆ R be a monotonically decreasing sequence
such that xn ≥ 0, n ∈ N, and limn→∞ xn = 0. Then

s :=
∞∑

n=0

(−)nxn

exists and |s− sn| ≤ xn+1 where sn :=
∑n

k=0(−)kxk, n ∈ N.

Proof. First we show that the subsequences (s2n)n∈N and (s2n+1)n∈N converge. For all n ∈ N

s2n ≥ s2n − x2n+1 + x2n+2 = s2n+2, (4.6)

s2n+1 ≤ s2n+1 − x2n+2 + x2n+3 = s2n+3, (4.7)

s2n ≥ s2n − x2n+1 = s2n+1

(4.6)

≥ s1, (4.8)

s2n+1 ≤ s2n+1 + x2n+2 = s2n+2

(4.7)

≤ s0. (4.9)

By (4.6) and (4.8) the sequence (s2n)n∈N is monotonically decreasing and bounded from below,
hence convergent by Theorem 4.35. Analogously, using (4.7) and (4.9), it follows that the sequence
(s2n+1)n∈N is convergent.
Let a := limn→∞ x2n.

lim
n→∞

s2n+1 = lim
n→∞

(s2n+1 − xn + xn) = ( lim
n→∞

s2n+1 − xn) + lim
n→∞

xn = a+ 0 = a.

Since (s2n)n∈N and (s2n+1)n∈N have the same limit, it follows that also (sn)n∈N converges and has
the same limit.

The error estimate follows from

|s2n − s| = s2n − s
︸︷︷︸

≥ s2n+1

≤ s2n − s2n+1 = x2n+1,

|s2n+1 − s| = s
︸︷︷︸

≤ s2n+2

− s2n+1 ≤ s2n+2 − s2n+1 = x2n+2.
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x1x2 x3x4

Figure 4.1: Leibniz criterion.

x1x2 x3x4

Figure 4.2: Leibniz criterion in the case that limxn 6= 0.

Remark. If in the preceding theorem limn→∞ xn = x not necessarily equal to zero, but otherwise
all assumptions are satisfied, then the sequence of the partial sums (sn)n∈N has exactly two cluster
values and

lim sup
n→∞

sn − lim inf
n→∞

sn = lim
n→∞

xn.

Examples.
∑∞

k=1(−)n 1
k = ln 2,

∑∞
k=1(−)n 1

2k−1 = π
4 .

Proof of the limits: Example 6.71 and Exercise 7.1.

Definition 4.55. Let b ∈ N, b ≥ 2, ℓ ∈ N0, (ak)
∞
k=−ℓ ⊆ {0, 1, . . . , b− 1}. Then the sum

±
∞∑

k=−ℓ

akb
−k

is called a b-adic fraction1. If there exists a K ∈ N such that ak = 0, k ≥ K, then it is called a
finite b-adic fraction.

Theorem 4.56. (i) Each b-adic fraction converges to a real number.

(ii) Each real number has a representation as a b-adic fraction. The representation is unique if
ak 6= b− 1 for almost all k ≥ −ℓ.

Proof. (i) It suffices to show that ±∑∞
k=−ℓ akb

−k is a Cauchy sequence. Let ε > 0. Since b ≥ 2 >

1not to be confused with p-adic fractions from number theory
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1, there exists an N ∈ N such that b−N < ε. For n > m ≥ N it follows that

∣∣∣∣∣

n∑

k=−ℓ

akb
−k −

m∑

k=−ℓ

akb
−k

∣∣∣∣∣ =
n∑

k=m+1

akb
−k ≤ (b− 1)

n∑

k=m+1

b−k

= (b− 1)b−(m+1)
n∑

k=0

b−k = (b− 1)b−(m+1) 1

1− 1
b

= b−m ≤ b−N < ε.

(ii) Let x ∈ R. Without loss of generality we can assume x > 0. By Theorem 3.17 there exists
an N ∈ Z such that bN ≤ x < bN+1. We will construct a sequence (an)

∞
n=N ⊂ {0, . . . , b− 1} such

that for all n ≥ N :

n∑

k=N

akb
−k

︸ ︷︷ ︸
:=sn

≤ x <
( n∑

k=N

akb
−k
)
+ b−(n) =

( n∑

k=N

akb
−k
)
+ bb−(n+1). (4.10)

Let aN = max{a ∈ N0 : ab−N ≤ x}; obviously we have 0 ≤ aN ≤ b − 1 and aNb
−N/ ≤ x <

(aN +1)bN . Let n ≥ N and assume that we have already chosen aN , . . . , an ∈ {0, . . . , b− 1} such
that (4.10) holds for n. Let an+1 = max{a ∈ N0 : ab−(n+1) ≤ x− sn}. Obviously, 0 ≤ an+1 ≤ b− 1
and the inequalities (4.10) hold also for n+ 1. Since |sn − x| < b−n → ∞, n → ∞, it follows that
b-adic fraction constructed above converges to x.

Corollary 4.57 (Cantor). R is uncountable.

Proof. Let A = {(an)n∈N : an ∈ {0, 1}, n ∈ N} be the set consisting of all sequences that contain
only 0 and 1. Assume that A is countable. Then A = {xn : n ∈ N}. Each xn ∈ A is a sequence
(xn,k)k∈N. We construct a sequence y = (yn)n∈N ∈ A as follows: Let yk = 0 if xk,k = 1 and yk = 1
if xk,k = 0. Since yk ∈ {0, 1}, k ∈ N, we hae that y ∈ A. On the other hand, y 6= xn for all n ∈ N.
Hence the set A is not countable.

Since by Theorem 4.56 the map

A→ R, a = (an)n∈N 7→
∑

n∈N

an10
−n

is well-defined and injective, R contains an uncountable set and therefore it is not countable.

4.5.2 Series in normed spaces and absolute convergence

Definition 4.58. Let (V, ‖ · ‖) be a normed space, (xn)n∈N ⊆ V . The series
∑∞

n=1 xn is called
absolutely convergent if the series

∞∑

n=1

‖xn‖

converges in R.

Theorem 4.59. Let (V, ‖ · ‖) be a complete normed space and (xn)n∈N ⊆ V . Then

∞∑

n=1

‖xn‖ converges =⇒
∞∑

n=1

xn converges.
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Proof. Let ε > 0. Since the series is absolutely convergent there exists an N ∈ N such that for all
n ≥ m ≥ N

∥∥∥
n∑

k=m

xn

∥∥∥ ≤
n∑

k=m

‖xn‖ < ε.

Therefore the series
∑∞

k=1 xn converges by the Cauchy criterion (Theorem 4.48).

Lemma 4.60. Let (V, ‖ · ‖) be a complete normed space and (xn)n∈N ⊆ V such that
∑∞

n=1 ‖xn‖
converges. Then

∥∥∥
∞∑

n=1

xn

∥∥∥ ≤
∞∑

n=1

‖xn‖.

Proof. For all n ∈ N we have
∥∥∥
∑n

k=1 xk

∥∥∥ ≤ ∑n
k=1 ‖xk‖. Taking the limit n → ∞ on both sides

proves the assertion.

Criteria for absolute convergence

Theorem 4.61 (Comparison test). Let (V, ‖ · ‖) be a complete normed space, (xn)n∈N ⊆ V ,
(an)n∈N ⊆ R, N0 ∈ N such that an ≥ ‖xn‖, n ≥ N0. Then

∞∑

n=1

an converges =⇒
∞∑

n=1

xn converges and

∞∑

n=1

‖xn‖ ≤
∞∑

n=1

an.

Proof. Let ε > 0. Since
∑

n∈N an converges, there exists an N ∈ N such that

n∑

k=m

‖xk‖ ≤
n∑

k=m

ak < ε, n ≥ m ≥ max{N0, N}.

Therefore the series
∑∞

k=1 ‖xn‖ converges by the Cauchy criterion (Theorem 4.48) which implies
that also the series

∑∞
k=1 xn converges (Theorem 4.59).

Example. The series
∑n

k=1
1
ks converges for s ≥ 2 by the comparison test since 0 < 1

ks ≤ 1
k2 ,

k ∈ N, and
∑n

k=1
1
k2 converges by Example 4.52.

Remark. ζ(s) =
∑n

k=1
1
ks defines the so-called Riemann Zeta function. .

Theorem 4.62 (Root test). Let (V, ‖ · ‖) be a complete normed space, (xn)n∈N ⊆ V and a =
lim supn→∞

n
√

‖xn‖. Then

a > 1 =⇒
∞∑

n=1

xn divergent,

a < 1 =⇒
∞∑

n=1

xn absolutely convergent.

Proof. Assume that a > 1. Then there exists a subsequence (xnk
)k∈N such that nk

√
xnk

≥ 1, k ∈ N.
Hence (xnk

)k∈N does not converge to 0, therefore the series does not converge (Theorem 4.48).

Now let a < 1 and fix a q such that a < q < 1. Since a is the greatest cluster value of ( n
√
‖xn‖)n∈N

there exists a K ∈ N such that q > k
√
‖xk‖) for all k ≥ K. Since

∑∞
k=K qk is a convergent harmonic

series and qk > ‖xk‖, k ≥ K. it follows by the comparison test that also
∑∞

k=K ‖xk‖ converges.

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 55

Similarly, the ratio test is proved.

Theorem 4.63 (Ratio test). Let (V, ‖ · ‖) be a complete normed space and let (xn)n∈N ⊆ V .
If there exists an a > 1 such that ‖xn+1‖ ≥ a‖xn‖ for almost all n ∈ N, then the series

∑∞
n=1 xn

diverges.
If there exists an 0 < a < 1 such that ‖xn+1‖ ≤ a‖xn‖ for almost all n ∈ N, then the series

∑∞
n=1 xn

converges absolutely.

For a = 1 in Theorem 4.62 or Theorem 4.63 then the root respectively ratio test gives no information

about convergence of the series as the examples
∑∞

n=1
1
n and

∑∞
n=1

(−1)n

n show.

Examples 4.64. (i)
∑∞

n=0

zn

n!
converges absolutely for every z ∈ C.

Proof. The assertion is clear for z = 0. For z ∈ C \ {0} the assertion follows from the ratio test
since, for n > 2|z|

|zn+1|
(n+ 1)!

( |zn|
n!

)−1

=
|z|
n+ 1

<
|z|

2|z|+ 1
<

1

2
< 1.

(ii) The ratio and root tests give no information about convergence of
∑∞

n=0

1

k2
since lim supn→∞

1
kn =

1 = limn→∞
1

(k+1)2

(
1
kn

)−1
.

(iii)
∑∞

n=0
2−k+(−)k =

1

2
+ 1 +

1

8
+

1

4
+ · · · converges absolutely.

Proof. Since limk→∞ 2k = limk→∞ 2−k = 1 by Exercise 4.5 the root test yields

lim sup
n→∞

k
√

2−k+(−)k = lim sup
n→∞

(
2−1 2

(−)k

k

)
= 2−1 lim sup

n→∞
2

(−)k

k =
1

2
< 1.

Note that in the last example the ratio test is not applicable. In general, whenever the ratio
test shows convergence, so does the root criterion. Indeed, if there is an 0 < a < 1 such that
‖xn+1‖ ≤ a‖xn‖ for all n ∈ N, then ‖xn‖ ≤ an‖x0‖ for all n ∈ N. Therefore n

√
‖xn‖ ≤ an n

√
‖x0‖

for all n ∈ N. Since n
√
‖x0‖ → 1 for n→ ∞, the root test also shows convergence.

Rearrangement of series

Definition 4.65. Let (V, ‖ · ‖) be a normed space, (xn)n∈N ⊆ V and σ : N → N a permutation.

Then

∞∑

n=1

xσ(n) is a rearrangement of

∞∑

n=1

xn.

Definition 4.66. Let (V, ‖ · ‖) be a normed space and (xn)n∈N ⊆ V . The series is called uncon-

ditionally convergent if for every permutation σ : N → N the series

∞∑

n=1

xσ(n) converges and has

the same limit as

∞∑

n=1

xn. The series is called conditionally convergent if it converges but is not

unconditionally convergent.

Theorem 4.67 (Rearrangement theorem). Let (V, ‖ · ‖) be a normed space, (xn)n∈N ⊆ V such
that

∑∞
n=1 is absolutely convergent. Then every rearrangement converges absolutely and has the

same limit.
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Proof. Let σ : N → N be a permutation and let ε > 0. Then there exists an N ∈ N such that
∞∑

k=n

‖xk‖ < ε for all n ≥ N . Since σ is a permutation, there exists an K ∈ N such that σ(k) ≥ N

for all k ≥ K. Obviously, K ≥ N . Define the sequences (an)n∈N and (bn)n∈N by

an :=

n∑

k=0

xk, bn :=

n∑

k=0

xσ(k), n ∈ N0.

For n ∈ N, n ≥ K, is follows that

‖an − bn‖ =
∥∥∥

n∑

k=0

xk −
n∑

k=0

xσ(k)

∥∥∥ =
∥∥∥

n∑

k=N+1

xk −
∑

k=0,...,n
σ(k)>N

xσ(k)

∥∥∥

≤
∑

k=N+1,...,n
σ(k)>N

∥∥∥xσ(k)
∥∥∥ ≤

∞∑

k=N

‖xk‖ < ε.

This shows that the sequence (bn)n∈N converges and has the same limit as (an)n∈N.
The absolute convergence of the rearranged series follows when the above proof is applied to the
series

∑n
k=0 ‖xk‖.

Theorem 4.68. Let (V, ‖ · ‖) be a complete normed space, xkl ∈ V , k, l ∈ N0, such that

M := sup
{ n∑

k=0

n∑

l=0

‖xkl‖ : n ∈ N
}
<∞. (4.11)

Then the series

∞∑

k=0

( ∞∑

l=0

xkl

)
,

∞∑

l=0

( ∞∑

k=0

xkl

)
,

∞∑

n=0

( ∑

k,l=0
k+l=n

xkl

)

converge absolutely and have the same limits.

Remark. In this case the notation

∞∑

k,l=0

xkl is used.

Proof. For each k ∈ N0 the series sk :=
∑∞

l=0 xkl converges absolutely by theorem 4.51 because
(‖xkl‖)l∈N0

⊂ R, ‖xkl‖ ≥ 0, and the corresponding sequence of the partial sums
∑m

l=0 ‖xkl‖ is
bounded by assumption (4.11).
Analogously it follows that for all l, n ∈ N0 the series tl :=

∑∞
k=0 xkl and vn :=

∑
k,l=0
k+l=n

xkl are

absolutely convergent. Therefore, for any N ∈ N, the partial sums

N∑

k=0

sk,
N∑

l=0

tl, and
N∑

n=0

vn (4.12)

are well-defined. We show that the series
∑∞

k=0 sk is absolutely convergent: For arbitrary K,L ∈ N0

we have by the triangle inequality and by assumption (4.11)

K∑

k=0

∥∥∥
L∑

l=0

xkl

∥∥∥ ≤
K∑

k=0

L∑

l=0

‖xkl‖ ≤M <∞.
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By Corollary 4.32 this inequality remains true in the limit L→ ∞:

K∑

k=0

‖sk‖ =
K∑

k=0

∥∥∥
∞∑

l=0

xkl

∥∥∥ ≤M <∞.

The assertion follows again from Theorem 4.51. Analogously it can be shown that the series
∑∞

l=0 tl
and

∑∞
n=0 vn are absolutely convergent. Let S :=

∑∞
k=0 sk and V :=

∑∞
n=0 vn. It remains to be

shown that S = V . For arbitrary ε > 0 there exist σ ∈ N and ν ∈ N such that
∑∞

k=σ ‖sk‖ < ε
4 ,∑∞

n=ν ‖vn‖ < ε
4 and σ > ν. Moreover, there exists L ∈ N such that L > ν and

∑∞
l=L ‖xkl‖ < 1

4σε ,
k = 0, . . . , σ − 1. Let

Z :={(k, l) ∈ N2 : k ≤ σ − 1, l ≤ L− 1, } \ {(k, l) ∈ N2 : k + l ≤ σ − 1}
⊂ {(k, l) ∈ N2 : k + l ≥ σ}.

It follows that

|V − S| =
∣∣∣V −

σ−1∑

k=0

sk −
∞∑

k=σ

sk

∣∣∣ ≤
∞∑

k=σ

‖sk‖+
∣∣∣V −

σ−1∑

k=0

sk

∣∣∣

≤ ε

4
+
∣∣∣V −

σ−1∑

k=0

(L−1∑

l=0

xkl +
∞∑

l=L

xkl

)∣∣∣

≤ ε

4
+
∣∣∣
σ−1∑

k=0

∞∑

l=L

xkl

∣∣∣+
∣∣∣V −

σ−1∑

k=0

L−1∑

l=0

xkl

∣∣∣

≤ ε

4
+

σ−1∑

k=0

∞∑

l=L

‖xkl‖+
∣∣∣

∞∑

n=ν

vn

∣∣∣+
∣∣∣
ν−1∑

n=0

vn −
σ−1∑

k=0

L−1∑

l=0

xkl

∣∣∣

≤ ε

4
+
ε

4
+
ε

4
+
∣∣∣
ν−1∑

n=0

vn −
σ−1∑

k=0

L−1∑

l=0

xkl

∣∣∣

=
3ε

4
+
∣∣∣
∑

(k,l)∈Z

xkl

∣∣∣ ≤ 3ε

4
+

∑

(k,l)∈Z

‖xkl‖

≤ 3ε

4
+
∣∣∣
∑

k+l≥ν

xkl

∣∣∣ ≤ 3ε

4
+
ε

4
= ε,

Analogously
∑∞

l=0 tl =
∑∞

n=0 vn is shown.

Theorem 4.69 (Cauchy product). Let F be a field ‖·‖ a norm on F and (xk)k∈N0
, (yl)l∈N0

⊂ F.
If the series

∑∞
k=0 xk,

∑∞
l=0 yl are absolute convergent, then so is their Cauchy product

∞∑

n=0

zn :=

∞∑

n=0

n∑

k=0

xkyn−k

and

( ∞∑

k=0

xk

)
·
( ∞∑

l=0

yl

)
=

∞∑

n=0

zn =
∞∑

n=0

( n∑

k=0

xkyn−k

)
.
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Proof. Let xkl := xk · yl, k, l ∈ N0. Then

n∑

k,l=0

‖xkl‖ =
n∑

k,l=0

‖xk‖ · ‖yl‖ =
( n∑

k=0

‖xk‖
)( n∑

l=0

‖yl‖
)

≤
( ∞∑

k=0

‖xk‖
)( ∞∑

l=0

‖yl‖
)

︸ ︷︷ ︸
=:M

<∞.

and the assertion follows from Theorem 4.68.

The following theorem shows that the assumption of absolute convergence in Theorem 4.67 is
necessary.

Theorem 4.70 (Riemann rearrangement theorem). Let (xn)n∈N ⊆ R such that
∑∞

n=1 xn is
convergent but not absolutely convergent and let x ∈ R. Then there exists a permutation σ : N → N
such that

∞∑

n=1

xσ(n) = x.

Proof. There are infinitely many positive and negative terms sequence (xn)n∈N because otherwise
the series

∑∞
n=1 xn would be absolutely convergent, in contradiction to the assumption that the

series is conditionally convergent. Let (an)n∈N be the sequence of all non-negative terms and
(bn)n∈N be the sequence of all negative terms. These sequences can be chosen by induction: Let
n1 = min{n ∈ N : xn ≥ 0} and set a1 := xn1

. Assume that n1 < n1 < . . . nk are already chosen.
Let nk+1 := min{n ∈ N : n > nk ∧ xn ≥ 0} and set ak+1 := xnk+1

. Since
∑∞

n=1 xn is conditionally
convergent, we have

lim
n→∞

an = 0, lim
n→∞

bn = 0, (4.13)

∞∑

n=1

an = ∞,

∞∑

n=1

bn = −∞. (4.14)

Next we define the permutation σ : N → N by induction. Assume that σ(1), . . . , σ(k) are already
defined. As xσ(k+1) we chose the next not yet chosen term in the sequence

{
(an)n∈N if

∑k
j=1 xσ(j) ≤ x,

(bn)n∈N if
∑k

j=1 xσ(j) > x.

Note that in the first case there exists a n ∈ N, n ≥ k such that
∑n

j=1 xσ(j) > x by (4.14);
analogously in the second case.
Now we prove that the rearranged sum converges to x. The idea is the same as in the proof of the
Leibniz criterion (Theorem 4.54).
Let ε > 0. Then there exists an N ∈ N such that |xσ(n)| < ε, n ≥ N . Without restriction assume∑N

j=1 xσ(j) ≤ x. Choose K ∈ N such that
∑N+K

j=1 xσ(j) > x. Then

∣∣∣
n∑

j=1

xσ(j) − x
∣∣∣ ≤ ε, n ≥ N +K.

Remark. Theorem 4.67 shows that every absolutely convergent series is conditionally convergent.
The Riemann rearrangement theorem (Theorem 4.70) shows that in R a series is absolutely con-
vergent if and only if it is unconditionally convergent.
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For instance, take the space of bounded sequences V =
{
(xn)n∈N ⊆ C : sup{|xn| : n ∈ N} < ∞

}
.

Then ‖x‖∞ := sup{|xn| : n ∈ N} <∞
}
defines a norm on V (see Definition 5.38 and Theorem 5.39).

We consider the sequence (en)n∈N ⊆ V where en = (δkn)k∈N ∈ V is the sequence whose nth term is
1 and all other terms are 0. It is not hard to see that

∑
n∈N

eσ(n) =
∑
n∈N

en = (1, 12 ,
1
3 ,

1
4 , . . . ) for every

bijection σ : N → N. However,
∑

n∈N
‖ en ‖ =

∑

n∈N

1 = ∞.

Euler’s number e

Theorem 4.71. The sequence (xn)n∈N ⊂ R defined by

xn :=
(
1 +

1

n

)n
, n ∈ N,

converges and

e := lim
n→∞

(
1 +

1

n

)n
=

∞∑

n=0

1

n!
(4.15)

is called Euler’s number (e = 2,71828182...).

Proof. Exercise 4.12. We show the assertion in several steps:

(i) 2 ≤
(
1 +

1

n

)n
≤

n∑

k=0

1

k!
≤ 3, n ≥ 4.

(ii) The sequences (xn)n∈N and (sn)n∈N where sn :=
∑∞

k=0
1
k! converge.

(iii) Finally we show (4.15).

(i) Let us show the second in equality in (4.15). For all n ∈ N we have

(
1 +

1

n

)n
=

n∑

k=0

(
n

k

)
1

nk
=

n∑

k=0

n!

nk(n− k)!︸ ︷︷ ︸
≤1

1

k!
≤

n∑

k=0

1

k!
.

To show the last inequality in (4.15) let n ≥ 4. Then, using 2k < k! for all k ≥ 4, which can be
shown easily by induction, we find

n∑

k=0

1

k!
=

4∑

k=0

1

k!
︸ ︷︷ ︸
=16

+
n∑

k=4

1

k!
︸︷︷︸
≤2−k

≤ 16

6
+

n∑

k=4

2−k =
16

6
+ 2−4

n∑

k=0

2−k

≤ 16

6
+ 2−4

∞∑

k=0

2−k =
16

6
+

2−4

1− 1
2

=
16

6
+

1

23
=

16

6
+ 2−3 =

67

24
< 3.

The first inequality holds since (xN )n∈N is monotonically increasing as is shown below and (1+ 1
2 )

2 =
2.25 > 2.

(ii) Since the sequence (sn)n∈N is monotonically increasing and bounded from above by (i), it
converges.
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60 4.6. Cantor’s construction of R

To show that the sequence (sn)n∈N converges, it suffices to show that is monotonically increasing
because it is bounded from above by (i). Since an ≥ 1 > 0, n ∈ N, the monotonicity follows from

an+1

an
=

(
1 + 1

n+1

1 + 1
n

)n(
1 +

1

n+ 1

)
=

(
n(n+ 1) + n

n(n+ 1) + n+ 1

)n(
1 +

1

n+ 1

)

=

(
1− 1

n2 + 2n+ 1

)n(
1 +

1

n+ 1

)
≤
(
1− n

(n+ 1)2

)(
1 +

1

n+ 1

)

=
n3 + 3n2 + 3n+ 2

n3 + 3n2 + 3n+ 1
< 1,

where in the second line we used the Bernoulli inequality (3.2).

(iii) It follows from part (i) that

lim
n→∞

xn ≤ lim
n→∞

sn =

∞∑

k=0

1

k!
.

To show the converse inequality, we show that for each n ∈ N there exists an m ∈ N such that
xm ≥ sn. For fixed n ∈ N and m > n it follows that

xm − sn =
(
1 +

1

m

)m
−

n∑

k=0

1

k!
=

m∑

k=0

(
m

k

)
1

mk
−

n∑

k=0

1

k!

=

m∑

k=0

m!

(m− k)!mk

1

k!
−

n∑

k=0

1

k!

=

n∑

k=0

1

k!
︸︷︷︸
≤1

( m!

(m− k)!mk
− 1

︸ ︷︷ ︸
≤0

)
+

m∑

k=n+1

m!

(m− k)!k!

1

mk

︸ ︷︷ ︸
≥ 1

mn+1

≥
n∑

k=0

( m!

(m− k)!mk
− 1
)
+

1

nn+1

Using that m−j
m ≤ 1, 0 ≤ j ≤ m, we can estimate

1 >
m!

(m− k)!mk
=
m

m
· · · · m− k + 1

mk
≥ m

m
· · · · m− n+ 1

mn
≥ (m− n+ 1)n

mn
.

Since (m−n+1)n

mn =
(
1 − n−1

m

)n
tends to 1 for m → ∞, we can find an M ∈ N such that 0 <

1−
(
1− n−1

m

)n
< 1

nn+1(n+1) , m ≥M . Hence for all m ≥M

xm − sn ≥
n∑

k=0

((
1− n− 1

m

)n
− 1
)
+

1

nn+1
≥ − n+ 1

nn+1(n+ 1)
+

1

nn+1
> 0.

4.6 Cantor’s construction of R

There are several methods to introduce the real numbers. For the method using Dedekind cuts see
for instance [Rud76, Appendix to Chapter 1]. Cantor’s construction of R uses Cauchy sequences
on Q.
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For a sequence (qn)n∈N we say that Q − limn→∞ qn = 0 if and only if for every ǫ ∈ Q with ǫ > 0
there exists N ∈ N such that |qn| < ǫ for every n ≥ N .2

Definition 4.72. A relation ∼ on a set X is called equivalence relation it is reflexive, symmetric
and transitive.

Let CQ be the set of all Cauchy sequences in Q. On CQ we define the relation

(xn)n∈N ∼ (yn)n∈N ⇐⇒ Q− lim
n→∞

|xn − yn| = 0.

It is easy to see that ∼ is an equivalence relation on CQ. We define

R := CQ/∼ = {[(xn)n∈N] : (xn)n∈N ∈ CQ}.

Note that each q ∈ Q is identified with the equivalence class [(q)n∈N] ∈ R.

Together with the operations + and ·

[(xn)n∈N] + [(yn)n∈N] := [(xn + yn)n∈N],

[(xn)n∈N] · [(yn)n∈N] := [(xn · yn)n∈N],
[(xn)n∈N], [(yn)n∈N] ∈ R,

R is a field. We define an order on R by

[(xn)n∈N] > 0 :⇐⇒ ∃ r ∈ Q+ ∃N0 ∈ N ∀n ≥ N0 xn ≥ r.

It can be shown that +, ·, < are well-defined (i. e., if (xn)n∈N and (yn)n∈N are Cauchy sequences
in Q, then so are (xn + yn)n∈N and (xn · yn)n∈N, and the definitions above do not depend on the
sequence chosen to represent the equivalence classes) and that R indeed is an ordered field.

It remains to be shown that R has the least upper bound property.
First we note that in Q the Archimedean property (Theorem 3.16) holds. Indeed, let x, y > 0 in
Q. Then there exist p, q, r, s ∈ N such that x = p

q , y = r
s . Then 2(qr)x = 2pr > r ≥ r

s = y. Since
every Cauchy sequence in Q is bounded in Q, also R has the Archimedean property.
Using the Archimedean property the following proposition is proved (see Exercise 3.3).

Proposition 4.73. For all every pair of real numbers a < b there exists an x ∈ Q such that
a < x < b.

Theorem 4.74. R has the least upper bound property.

Proof. Let M ⊆ R such that M 6= ∅ and M is bounded from above. Since M is bounded there
exists an upper bound b ∈ R of M . Since M 6= ∅, there exists an element a ∈ R that is not an
upper bound of M (take for example a = α − 1 for an arbitrary element α ∈ M . We construct a
sequence of intervals R

[a, b] =: [a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] . . .

as follows: If c := b−a
2 is an upper bound of M , then we set [a1, b1] = [a1, c], otherwise [a1, b1] =

[c, b1], and so on. For each n ∈ N, bn is an upper bound ofM , but an is not. Moreover, bn−an = b−a
2n ,

n ∈ N. By the proposition above, we can choose in each interval [an, bn] some cn ∈ Q such that
an < cn < n < bn. Obviously, (cn)n∈N is Cauchy sequence in Q because

|cm − cn| ≤ 2−m, n ≥ m,

2Note that we cannot use the definition of limit from Section 4.2 since it is based on a metric and R is already
used in the defintion of a metric. A way around that would be to define a Q-metric on a set X as a function
dQ : X ×X → Q which satisfies the conditions in Defintion 4.1 and then us dQ to define convergence. Note that all
theorems proved in this chapter which do not involve R explicitly remain valid.
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therefore (cn)n∈N represents an element c = [(cn)n∈N] in R.
Finally, we show that c is the least upper bound of M in R. Let α ∈ M . Since for all n ∈ N we
have that α < bn, it follows that α ≤ limn→∞ bn = c, hence c is an upper bound of M . Let d be
an arbitrary upper bound of M . Then d > an, n ∈ N. Therefore we have d ≥ limn→∞ an = c,
therefore c is the least upper bound of M .
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Chapter 5

Continuous functions

5.1 Continuity

Definition 5.1. Let (X, dX) and (Y, dY ) be metric spaces, D ⊆ X and x0 ∈ D. A function
f : D → Y is called continuous in x0

:⇐⇒ ∀ε > 0 ∃δ > 0 ∀x ∈ D :
(
dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε

)
.

The function f is called continuous (in D) if it is continuous in every x0 ∈ D. If f is called
discontinuous in x0 ∈ D if it is not continuous in x0 ∈ D.

In other words: f is continuous in x0 ∈ D

⇐⇒ ∀ε > 0 ∃δ > 0 f(Bδ(x0) ∩ D) ⊆ Bε(f(x0)). (5.1)

In the special case X = Y = R or C with the usual metric, a function f : R ⊃ D → R is continuous
in x0 ∈ D if

∀ε > 0 ∃δ > 0 ∀x ∈ D :
(
|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

)
.

Geometric Interpretation. If f is continuous in x0, then for every strip Sε at f(x0) there exists
an interval Iδ at x0 such that the graph of f over Iδ lies in the strip Sε.

In other words, when x is changed sufficiently little about x0, then the function value remains as
close as we want to the function value f(x0).

Examples 5.2.

(i) Let a ∈ R and f : R → R, f(x) = a. Obviously, f is continuous.

(ii) id : R → R, id(x) = x, is continuous in R.

Proof. Let x0 ∈ R and ε > 0. Then for all x ∈ R such that |x − x0| < δ := ε it follows that
| id(x)− id(x0) | = |x− x0| < ε.

(iii) Analogously, for arbitrary metric spaces (X, dX), (Y, dY ), a ∈ Y the functions f : X →
Y, f(x) = a, and idX : X → X, id(x) = x, are continuous.
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︸
︷︷
︸

Sε

Gf

x0 x︸︷︷︸
Iδ x0 + δx0 − δ

f(x0)

f(x0) + ε

f(x0)− ε

Figure 5.1: For every strip Sε centred at f(x0) there exists an interval Iδ such that the graph Gf of f
above Iδ lies in Sε.

(iv) Let (X, dX) be a metric space. For a ∈ X let Then fa : X → R, f(x) = d(a, x), is continuous
in X.

More generally, let (Y, dY ) be a metric space and define a metric on X × Y by

d((x1, y1), (x2, y2)) :=
√
d(x1, x2)2 + d(y1, y2)2, (x1, y1), (x2, y2),∈ X × Y.

For (a, b) ∈ X × Y the function f : X × Y → R, f(x, y) = dX×Y ((x, y), (a, b)) is continuous in
X × Y .

(v) Let (X, ‖ · ‖) be a normed space. Then f : X → R, f(x) = ‖x‖, is continuous in X. (This is a
special case of (iv) with a = 0.)

Proof. Let x0 ∈ X and ε > 0. Then for all x ∈ X we have the implication

‖x− x0‖ < δ =⇒ |f(x)− f(x0)| = | ‖x‖ − ‖x0‖ | ≤ ‖x− x0‖ < ε.

(vi) f : R → R, f(x) = x2, is continuous in R.

Proof. Let x0 ∈ R and ε > 0. Let δ := min{1, ε
1+2x0

}. Then for x ∈ R with ‖x− x0‖ < δ it follows
that

|f(x)− f(x0)| = |x2 − x0|2 = |x− x0| |x+ x0| ≤ |x− x0|︸ ︷︷ ︸
< δ ≤ ε

1+2|x0|

(
|x− x0|︸ ︷︷ ︸
<δ≤1

+2|x0|
)
< ε.

(vii) The Heaviside function

f : R → R, f(x) =

{
1, x ≥ 0,

0, x < 0,

is not continuous in x = 0.

Proof. Assume that there exists a δ > 0 such that |f(x)− f(0)| < 1
2 for all x ∈ R with |x− 0| < 1

2 .
This contradicts |f(− 1

2 )− f(0)| = 1 > 1
2 .
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x

f(x)

Example 5.2 (v): f(x) = |x|

x

f(x)

Example 5.2 (vi): f(x) = x2

x

1

Example 5.2 (vii): Heaviside function

x

h(x)

h(x) = sin(x−1) (Exercise 6.2)

Figure 5.2: The functions in the first row are continuous, the functions in the second row are not.

(viii) The Dirichlet function

f : R → R, f(x) =

{
1, x ∈ Q,

0, x ∈ R \Q,

is nowhere continuous in R.

Proof. Exercise 5.4.

Definition 5.3. Let (X, dX), (Y, dY ) be metric spaces. A function f : X ⊇ D → Y is called
Lipschitz continuous with Lipschitz constant L if

x, y ∈ D =⇒ dY (f(x), f(y)) ≤ LdX(x, y).

Lipschitz continuity is stronger than continuity.

Theorem 5.4. Every Lipschitz continuous functions is continuous.

Proof. Let (X, dX), (Y, dY ) be metric spaces and f : X ⊇ D → Y Lipschitz continuous with
Lipschitz constant L > 0. Let x0 ∈ D and ε > 0. Then for all x ∈ D with dX(x, x0) <

ε
L it follows
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66 5.1. Continuity

that

dY (f(x), f(x0)) ≤ LdX(x, y) < ε.

The next theorem gives a criterion for continuity of a function in a point in terms of sequences.

Theorem 5.5. Let (X, dX), (Y, dY ) be metric spaces, D ⊆ X, f : X ⊇ D → Y , x0 ∈ D. Then f is
continuous in x0 if and only if for every sequence (xn)n∈N ⊆ D which converges to x0 the sequence
(f(xn))n∈N ⊆ Y converges to f(x0).

Proof. “=⇒” Let f be continuous in x0 ∈ D and (xn)n∈N ⊆ D with xn → x0, n→ ∞. Let ε > 0.
Then there exists a δ > 0 such that f(Bδ(x0) ∩ D) ⊆ Bε(f(x0)). Since xn → x0, n → ∞, there
exists an N ∈ N such that xn ∈ Bδ(x0), n ≥ N . Therefore dY (f(xn), f(x0)) < ε, n ≥ N which
implies that f(xn) → f(x0), n→ ∞.

“⇐=” Assume that f is not continuous in x0. Then there exists an ε > 0 such that

∀δ > 0 ∃x ∈ D : dX(x, x0) < δ ∧ dY (f(x), f(x0)) ≥ ε.

In particular, we find a sequence (xn)n∈N such that

∀n ∈ N ∃xn ∈ D : dX(xn, x0) <
1

n
∧ dY (f(xn), f(x0)) ≥ ε.

Hence xn → x0 but f(xn) 6→ f(x0), in contradiction to the assumption.

The previous theorem states that continuous functions and limits commute:

lim
x→x0

f(x) = f( lim
x→x0

x).

Next we show that continuity is compatible with algebraic operations.

Definition 5.6. Let X be a set, Y a vector space over a field F, Df ,Dg ⊆ X, and f : Df → Y ,
g : Dg → Y , λ ∈ F. Let Dλf+g := Df ∩ Dg. Using the algebraic structure on Y we define and sum
of two functions and the product with a scalar by

λf + g : Dλf+g → Y, (λf + g)(x) := λf(x) + g(x).

If Y is a field we set Dfg := Df ∩ Dg, D f
g
:= {x ∈ X : x ∈ Df ∩ Dg, g(x) 6= 0} and

fg : Dfg → Y, (fg)(x) := f(x)g(x),

f

g
: D f

g
→ Y,

f

g
(x) :=

f(x)

g(x)
.

Theorem 5.7. Let (X, dX) be a metric space, (Y, ‖ · ‖) a normed space over a field F and f : X ⊇
Df → Y , g : X ⊇ Dg → Y functions and λ ∈ F. Let x0 ∈ Df ∩Dg such that f and g are continuous
in x0. Then

(i) λf + g is continuous in x0.

If Y is a field, then

(ii) fg is continuous in x0.

(iii) f
g is continuous in x0 if g(x0) 6= 0.

Proof. Exercise 5.1.
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Corollary 5.8. Let (X, dX) be a metric space and (Y, ‖ · ‖) a normed space. Then the set

C(X,Y ) := {f : X → Y continuous }

is a linear subspace of the vector space Y X = {f : X → Y }.
If Y = R or Y = C, then often the notation C(X) is used instead of C(X,R) or C(X,C).

Example. Since the functions f : R → R, f(x) = 1, and id : R → R are continuous, Theorem 5.7
implies that all polynomials

P : R → R, x 7→
m∑

n=0

anx
n

are continuous in R.

Example. Let F be a field, m,n ∈ N. For the multi-index α = (α1, . . . , αn) ∈ Nn we define
|α| =∑n

k=1 αk and xα = xα1
1 · · ·xαn

n for x = (x1, . . . , xn) ∈ Fn.

A polynomial of degree m with coefficients in F is a function

P : Fn → F, P (x) =
∑

|α|≤m

cαx
α,

such that there exists at least one α ∈ Nn such that |α| = m and cα 6= 0.

A function R : DR ⊆ Fn → F is called a rational function if there exist polynomials P,Q : Fn → F
such that

R =
P

Q
, DR = {x ∈ Fn : Q(x) 6= 0}.

If F is equipped with a norm, in particular, when F = R or F = C, then all polynomials and all
rational functions on Fn are continuous by Theorem 5.7 and the fact that the maps

F× F → F, (x, y) 7→ x+ y, F× F → F, (x, y) 7→ xy

are continuous with the norm on F× F defined by ‖(x, y)‖ =
√

‖x‖2 + ‖y‖2.

Theorem 5.9. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces and f : X ⊇ Df → Y , g : Y ⊇ Dg →
Z functions such that R(f) ⊆ Dg. Let x0 ∈ Df . If f is continuous in x0 and g is continuous in
f(x0) then g ◦ f is continuous in x0.

Proof. We will use the criterion of Theorem 5.5 to prove the continuity of g◦f in x0. Let (xn)n∈N ⊂
Df such that xn → x0 for n → ∞. Then f(xn) → f(x0) because f is continuous in x0. Since g is
continuous in f(x0) it follows that

lim
n→∞

(g ◦ f)(xn) = lim
n→∞

g(f(xn)) = g( lim
n→∞

f(xn)) = g(f(x0)) = (g ◦ f)(x0).

Therefore, by Theorem 5.5, g ◦ f is continuous in x0.

Remark. The continuity of g ◦ f does imply neither the continuity of f nor of g.

• f Heaviside function, g : R → R, g ≡ 0. Then g ◦ f and g are continuous, but f is not
continuous in 0.

• f : R → R, f(x) = x2, g Heaviside function. Then g ◦ f and f are continuous, but g is not
continuous in 0.
If, however, R(f) = Dg, then continuity of g ◦ f and f implies that g is continuous.
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68 5.1. Continuity

• If we choose f = g = Heaviside function, or f = g = Dirichlet function, then neither f nor g
is continuous but their composition is.

Definition 5.10. Let (X, dX) be a metric space andM ⊆ X. A point x0 ∈ X is called a limit point
(or cluster point) of M if there exists a sequence (xn)n∈N ⊆ M \ {x0} such that limn→∞ xn = x0.
In other words:

∀ε > 0 ∃xε ∈M : 0 < dX(x, xε) < ε.

Remark. • A limit point of M does not necessarily belong to M , for example, 1 is a cluster
point of the interval (0, 1) ⊆ R but 0 /∈ (0, 1).

• Not every point x ∈M is a limit point of M . For example, if |M | <∞ then M contains non
limit point.

• Let (xn)n∈N be a sequence in a metric space X and M := {xn n ∈ N}. Then each limit point
ofM is a cluster value of xn, but the converse is not true. For example, consider the sequence
(xn)n∈N ⊆ R defined by xn = 1, n ∈ N. Then 1 is a cluster value of the sequence, but it is
not a limit point of the corresponding set M .

Definition 5.11. Let (X, dX), (Y, dY ) metric spaces, f : X ⊇ Df → Y a function and x0 a limit
point of Df . A point a ∈ Y is called limit of f in x0 if

∀ε > 0 ∃ δ > 0 ∀x ∈ Df :
(
0 < dX(x, x0) < δ =⇒ dY (f(x), a) < ε

)
.

Theorem 5.12 shows that the limit is uniquely determined and we write

lim
x→x0

f(x) = a.

Remark. The existence of the limit of f in x0 does not imply that f is defined in x0.

The next theorem gives a criterion for the existence of the limit of a function in terms of sequences.

Theorem 5.12. Let (X, dX), (Y, dY ) metric spaces, f : X ⊇ D → Y a function and x0 a limit
point of D. Then limx→x0

f(x) = a if and only if for every sequence (xn)n∈N ⊆ D \ {x0} which
converges to x0 the sequence (f(xn))n∈N ⊆ Y converges to a.

Proof. “=⇒” Assume that limx→x0
f(x) = a exists. Let (xn)n∈N ⊆ D \ {x0} such that xn → x0

for n→ ∞ and let ε > 0. By assumption there exists a δ > 0 such that

x ∈ D ∧ 0 < dX(x, x0) < δ =⇒ dY (f(x), a) < ε.

Since (xn)n∈N converges to x0, there exists an N ∈ N such that 0 < dX(xn, x0) < δ, n ≥ N, hence
dY (f(xn), a) < ε, n ≥ N . Therefore f(xn) converges to a.

“⇐=” Assume limn→∞ f(xn) = a for each sequence (xn)n∈N ⊆ D \ {x0} with limn→∞ xn = x0.
Assume limx→x0

f(x) 6= a. Then there exists an ε > 0 such that for every n ∈ N there exists an
xn ∈ D such that

0 < dX(xn, x0) <
1

n
and dY (f(xn), a) ≥ ε.

Since by construction the sequence (xn)n∈N ⊆ D \ {x0} converges to x0, this is a contradiction to
the assumption.
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Chapter 5. Continuous functions 69

Theorem 5.13. Let (X, dX), (Y, dY ) metric spaces, f : X ⊇ D → Y a function and x0 a limit point
of D. Then f is continuous in x0 if and only if the limit of f in x0 exists and limx→x0

f(x) = f(x0).

Proof. This follows immediately from Theorem 5.5 and Theorem 5.12.

Note that the existence of the limit in x0 is not sufficient for continuity of f in x0. For example,
for the function

f : R → R, f(x) =

{
0, x 6= 0,

1, x = 0

the limit of f in x0 exists and is equal to 0 but f is not continuous in x0.

Theorem 5.14. Let (X, dX), (Y, dY ) metric spaces, f : X ⊇ D → Y a function and x0 /∈ D a limit

point of D. If the limit of f in x0 exists, then f has a unique continuous extension f̂ : D∪{x0} → Y .

Proof. By Theorem 5.5 the function

f̂ : D ∪ {x0} → Y, f̂(x) =

{
f(x), x ∈ D
limx→x0

f(x), x = x0

is a continuous extension of f . For any continuous extension f̃ of f to D ∪ {x0} it follows that

f̂(x) = f(x) = f̃(x) for all x ∈ D and by continuity of f̂ and f̃

f̂(x0) = lim
x→x0

f̂(x) = lim
x→x0

f̃(x) = f̃(x0),

therefore the continuous extension of f is unique.

Theorem 5.15 (Cauchy criterion). Let (X, dX), (Y, dY ) be metric spaces, Y a complete metric
space, f : X ⊇ D → Y a function and x0 a limit point of D. Then f has a limit in x0 if and only if

∀ ε > 0 ∃ δ > 0 ∀ x, y ∈ Df :
(
0 < dX(x, x0) < δ ∧ 0 < dX(y, x0) < δ =⇒ dY

(
f(x), f(y)

)
< ε
)
. (5.2)

Proof. Exercise 5.2.

If X is R or any other ordered field with a norm, also one-sided limits are defined.

Definition 5.16. Let (Y, dY ) be a metric space, (a, b) ⊆ R an interval and f : (a, b) → Y a
function. For a ≤ x0 < b we define

f(x0+) := lim
xցx0

f(x) = y ∈ Y

if limn→∞ f(xn) = y for every sequence (xn)n∈N ⊆ (x0, b) such that xn → x0 for n → ∞. Analo-
gously

f(x0−) := lim
xրx0

f(x) = y ∈ Y

for a < x0 ≤ b if limn→∞ f(xn) = y for every sequence (xn)n∈N ⊆ (a, x0) such that xn → x0 for
n→ ∞.

The function f is called
{
right continuous at x0 if f(x0+) = f(x0),

left continuous at x0 if f(x0−) = f(x0).
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Proposition 5.17. Let (Y, dY ) be a metric space, (a, b) ⊆ R and x0 ∈ (a, b). For a function
f : (a, b) → Y the following is equivalent:

(i) f is continuous in x0.

(ii) f is left and right continuous in x0, that is, f(x0+) = f(x0−) = f(x0).

Example. Let f : R → R, f(x) := [x] := max{k ∈ Z : k ≤ x}. The function f is continuous in
R \ Z, it is right continuous in Z but not left continuous in Z.

Proof. Let x0 ∈ Z. Then

lim
xցx0

f(x) = x0 = f(x0), lim
xրx0

f(x) = x0 − 1 = f(x0)− 1 6= f(x0).

Definition 5.18. Let D ⊆ R. A function f : D → R is called

(i) monotonically increasing ⇐⇒ f(x) ≥ f(y) if x ≥ y,

(ii) strictly monotonically increasing ⇐⇒ f(x) > f(y) if x > y,

(iii) (strictly) monotonically decreasing, if −f is (strictly) monotonically increasing.

(iv) (strictly) monotonic, if it is either (strictly) monotonically increasing or (strictly) monotoni-
cally decreasing.

Examples. The functions f : R → R, f(x) = x, g : R → R, g(x) = [x], h : R+ → R, h(x) =
√
x,

are monotonically increasing.

Definition 5.19. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X ⊇ D → Y is called
bounded if R(f) is bounded in Y .

Theorem 5.20. Let (a, b) ⊆ R and f : (a, b) → R monotonic. Then f has one-sided limits in
every x0 ∈ D.

Proof. Without restriction we assume that f is monotonically increasing. Let x0 > a and let
s := sup{f(x) : a < x < x0}. We will show that limxրx0

f(x) = s. To this end, let ε > 0. Since s
is the supremum of {f(x) : a < x < x0} there exists an xε ∈ (a, x0) such that s − ε < f(xε) ≤ s.
Since f is monotonically increasing it follows that s − ε < f(x) ≤ s for all x ∈ (xε, x0). This
shows that f the left limit in x0 exists. Analogously it is shown that the right limit in x0 exists for
a ≤ x0 < b.

Theorem 5.21. If f : (a, b) → R is monotonic then it has at most countably many discontinuities.

Proof. Without restriction we assume that f is monotonically increasing. Let x0 ∈ (a, b) be a
discontinuity of f . Since f is monotonic, we have that the one-sided limits of f in x0 exist and,
again by the monotonicity of f , that f(x0−) < f(x0+). By Proposition 3.19 there exists an q0 ∈ Q
such that f(x0−) < q0 < f(x0+). Since Q is countable and for each q ∈ Q there is at most one
x ∈ (a, b) such that f(x−) < q < f(x+), f can have at most countably many discontinuities.

Definition 5.22. Let (Y, dY ) be a metric space and D ⊆ R an unbounded set. If D is unbounded
from above, then a function f : D → Y as the limit a := limx→∞ f(x) at ∞ if

∀ ε > 0 ∃R ∈ R : ∀x ∈ D
(
x ≥ R =⇒ dY (f(x), a) < ε

)
.

If D is unbounded from below, then the limit of f at −∞ is defined analogously.
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Of course, f does not need to have limits a ±∞, as for example the function f : R → R, f(x) =
(x− [x])(1− (x− [x])) shows.

Definition 5.23. Let (X, dX) be a metric space, D ⊆ X and x0 a limit point of D. Then f : D → R
has the limit ∞ at x0, denoted by limx→x0

f(x) = ∞, if

∀R ∈ R ∃ δ > 0 : ∀x ∈ D
(
dX(x, x0) < δ =⇒ f(x) > R

)
.

−∞ is the limit of f at x0, denoted by limx→x0
f(x) = −∞, if ∞ is the limit of −f at x0.

5.2 Properties of continuous functions

In this section some important properties are discussed, for example the intermediate value theorem
which basically says that real intervals have no holes.

Theorem 5.24 (Intermediate value theorem). Let a < b ∈ R and f : [a, b] → R a continuous
function. Without restriction we assume f(a) ≤ f(b). Then for each γ ∈ [f(a), f(b)] there exists
an c ∈ [a, b] such that f(c) = γ.

In other words: The image of an interval under a continuous real function is convex in R, that is,
it is an interval.

Proof. Let c := sup{x ∈ [a, b] : f(x) ≤ γ}. In particular, f(x) > γ for all x ∈ (c, b]. We will show
that f(c) = γ. Assume that f(c) < γ. Then ε := γ−f(c) > 0. Since f is continuous in c, there exists
a δ > 0 such that |f(x) − f(c)| < ε for all x ∈ [a, b] such that |x − c| < δ. Without restriction we
can choose δ small enough that c+δ/2 ∈ [a, b]. Then f(c+ δ

2 ) ≤ f(c)+ |f(x)−f(c)| < f(c)+ε < γ.
This contradicts the definition of c.
Analogously, if f(c) > γ, then ε := f(c) − γ > 0. Since f is continuous in c, there exists a δ > 0
such that |f(x)−f(c)| < ε for all x ∈ [a, b] such that |x−c| < δ. Then f(x) ≥ f(c)−|f(x)−f(c)| ≥
f(c)− ε > γ for all x ∈ (c− δ, c] which also contradicts the definition of c.

The intermediate value theorem implies that the image of a continuous function defined on an
interval is again an interval (see also Theorem 8.41).

Theorem 5.25. Every polynomial in R with odd degree has at least one zero.

Proof. Let P (x) =
∑n

m=0 amx
m such that an 6= 0. Then x0 is a zero of P if and only if x0 is a zero

of the polynomial f = 1
an
P . For x 6= 0 we have that

f(x) = xng(x) with g(x) = 1 +
an−1

an
x−1 + · · ·+ a0

an
x−n.

Since g(x) → 1 for x → ∞ and x → −∞ and limx→∞ xn = ∞, limx→−∞ xn = −∞, there exist
x± ∈ R such that f(x−) < 0 and f(x+) > 0.
Since the polynomial f is continuous, Theorem 5.24 implies that there exists an x0 ∈ (x−, x+) such
that f(x0) = 0.

Theorem 5.26. Let I ⊆ R a interval and f : I → R continuous. Then

f injective ⇐⇒ f strictly monotonic.

Proof. Exercise 5.5 “⇐=” clear.
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I

I

Ap1

p2

“=⇒” Let f : I → R continuous and injective. We define the set

A := {(x, y) ∈ I × I : x < y}.

Note that A is convex, that is

p1, p2 ∈ A =⇒ {p1 + t(p2 − p1) : 0 ≤ t ≤ 1} ⊆ A.

By assumption, the function

ϕ : A→ R, ϕ(x, y) = f(x)− f(y)

has no zeros. Assume that f is not monotonic. Then there exist p1 = (x1, y1) and p2 = (x2, y2) in
A such that ϕ(p1) < 0 and ϕ(p2) > 0. Since the function

ψ : [0, 1] → R, ψ(t) = ϕ(p1 + t(p2 − p1))

is continuous and ψ(0) < 0 and ψ(1) > 0, then intermediate value theorem (Theorem 5.24) implies
that there exists an t0 ∈ (0, 1) such that

0 = ψ(t0) = ϕ(p1 + t0(p1 − p2)),

in contradiction to the assumption that ϕ 6= 0 on A.

Theorem 5.27. Let I ⊆ R be an interval, f : I → R a strictly monotonic function. Then f is
invertible in the sence that there exists a (unique) function f−1 : R(f) → I such that f ◦f−1 = idRf

and f−1 ◦ f = idI . The function f−1 is strictly monotonic and continuous.

Proof. Existence, uniqueness and monotonicity of f−1 are clear. It remains to be shown that f−1

is continuous. To this end, let p ∈ I such that p is not boundary point and let ε > 0. Since I is an
interval, we can assume without restriction that ε is so small that (p− ε, p+ ε) ⊆ I. Monotonicity
of f implies that there exists a δ > 0 such that

f(p− ε) < f(p)− δ < f(p) < f(p) + δ < f(p+ ε).

By monotonicity of f−1 we obtain for all y ∈ D(f−1) = R(f):

|y − f(p)| < δ =⇒ p− ε < f−1(y) < p+ ε.

The proof for p being a boundary point of I is analogous.
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Definition 5.28. Let (X, dX) be a metric space. A subset K ⊆ X is called compact if and only if
every sequence (xn)n∈N ⊆ K contains a subsequence which converges in K.

Proposition 5.29. An interval I ⊆ R is compact if and only if there exist a ≤ b ∈ R such that
I = [a, b].

Proof. “⇐=” Let a ≤ b ∈ R and I = [a, b]. By the theorem of Bolzano-Weierstraß every sequence
(xn)n∈N in I contains a convergent subsequence (xnk

)k∈N. Since a ≤ xnk
≤ b for all k ∈ N, it

follows that a ≤ limk→∞ xnk
≤ b.

“=⇒” Assume for example that I = (a, b]. Then the sequence (a+ b−a
2n )n∈N does not converge in

I.

Theorem 5.30. Let (X, dX) be a metric space, K ⊆ X compact and f : K → R a continuous
function. Then f attains its infimum and supremum, that is,

∃ p, q ∈ K : ∀x ∈ K f(p) ≤ f(x) ≤ f(q).

Proof. We show that f attains its supremum. Let s := sup{f(x) : x ∈ K}. Then there exists a
sequence (xn)n∈N such that f(xn) → s. Since K is compact, there exists a subsequence (xnk

)k∈N

and a q ∈ K such that xnk
→ q for k → ∞. It follows that

f(q) = f( lim
k→∞

xnk
) = lim

k→∞
f(xnk

) = s,

in particular s <∞.
Applying the above to the function −f it follows that f attains its infimum.

x
Ia b

min f(I)

max f(I)

f(I)

f(x)

Figure 5.3: Intermediate value theorem (Theorem 5.24) and theorem of the minumum and maximum
(Theorem 5.30): The continuous function f attains a minimum and a maximum on the closed interval
I = [a, b]. The image of the interval I is again an interval: [min f(I),max f(I)].

Corollary 5.31. Let K be compact, f : K → R such that f(x) > 0 for all x ∈ K. Then
inf{f(x) : x ∈ K} > 0.
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Definition 5.32. Let (X, dX) and (Y, dY ) be metric spaces and D ⊆ X. A function f : D → Y is
called uniformly continuous if

∀ε > 0 ∃ δ > 0 ∀x, y ∈ D :
(
dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε

)
.

Obviously, every uniformly continuous function is continuous.

If f is continuous in D then the δ in the definition of continuity may depend both on ε and the
point x0 at which the function is considered. If f is uniformly continuous, then the same δ is good
enough for all x0 in D.

Examples. • Every Lipschitz continuous function is uniformly continuous.

• f : [0, 1] → R, f(x) =
√
x is uniformly continuous but not Lipschitz continuous (see Exer-

cise 5.6).

• f : (0, 1] → R, f(x) = 1
x is not uniformly continuous.

Theorem 5.33. A continuous function on a compactum is uniformly continuous.

Proof. Let (Y, dY ) be a metric space, K a compact subset of a metric space (X, dX) and f : K → Y
a continuous function. We will show that f is uniformly continuous. Assume that f is not uniformly
continuous. Then there exists an ε > 0 such that

∀n ∈ N ∃xn, yn ∈ K : dX(xn, yn) <
1

n
∧ dY (f(xn), f(yn)) ≥ ε.

Since K is compact, the sequence (xn)n∈N contains a convergent subsequence (xnk
)k∈N that con-

verges to some p ∈ K. Since d(xnk
, ynk

) < 1
nk

for all k ∈ N it follows that also the subsequence

(ynk
)k∈N converges to p. The continuity of f implies

lim
k→∞

f(xnk
) = f(p) = lim

k→∞
f(ynk

),

in contradiction to the assumption f(xnk
)− f(xnk

) ≥ ε for all k ∈ N.

5.3 Sequences and series of functions

In this section we consider sequences and series of functions. We will consider two types of conver-
gence of sequences of functions: pointwise convergence and uniform convergence.

Definition 5.34. Let X be a set, (Y, dY ) a metric space and (fn)n∈N ⊆ Y X a sequence of functions
fn : X → Y . The sequence converges pointwise to the function f : X → Y if limn→∞ fn(x) = f(x)
for every x ∈ X, i. e.,

∀ε > 0 ∀x ∈ X ∃N ∈ N ∀n ≥ N : d(fn(x), f(x)) < ε.

The following example shows that a pointwise convergent function is not necessarily as “close” to
the limit function as might be expected.

Example 5.35. Let
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fn : R → R, fn(x) =





n2x, 0 ≤ x ≤ 1
n ,

2n− n2x, 1
n < x ≤ 2

n ,

0, x > 2
n

fn

1

n

n

fm

1

m

m

Obviously, fn(x)
n→∞−−−−→ 0 for all x ∈ R, hence fn → 0 pointwise (see 5.7).

The following example shows that the limit function of a pointwise convergent sequence of contin-
uous functions is not necessarily continuous.

Example 5.36. Let fn : R → R, fn(x) =
nx

1+|nx| .

Obviously, every fn is continuous in R and for all x ∈ R we have fn : R → R, fn(x) → sign(x)
for n→ ∞, hence the pointwise limit function is not continuous.

f1
f3

x

Figure 5.4: The pointwise limit of the sequence (fn)n∈N with the continuous functions fn(x) = nx(1 +
|nx|)−1 is the non-continuous function sign(·), see Example 5.36.

We need a stronger notion of convergence that guarantees that the limit of continuous functions is
again continuous.

Definition 5.37. Let X be a set and (Y, dY ) be a metric space. A sequence (fn)n∈N of functions
fn : X → Y is called uniformly convergent to a function f : X → Y if

∀ε > 0 ∃N ∈ N ∀x ∈ X ∀n ≥ N : d(fn(x), f(x)) < ε.

In contrast to the definition of pointwise convergence, the N depends only on ε, not on x.

Definition 5.38. For a set X and a normed space (Y, ‖ · ‖) we set

B(X,Y ) = {f : X → Y bounded}.

The supremum norm of a function f ∈ B(X,Y ) is

‖f‖∞ := sup{‖f(x)‖ : x ∈ X}.
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︸
︷︷

︸
︸

︷︷
︸

ε

ε

f

fn

x

Figure 5.5: Uniform convergence (Definition 5.37): For every ε > 0 there exists an N ∈ N such that the
graphs of all fn with n ≥ N lie in an ε-tube about the graph of the limit function f .

If f : X → Y is unbounded, we set ‖f‖∞ := ∞.

Remark.

• fn → f uniformly =⇒ fn → f pointwise.

• fn → f pointwise ⇐⇒ fn(x) → f(x), x ∈ X.

• fn → f uniformly ⇐⇒ ‖fn − f‖∞ → 0.

Theorem 5.39. (i) (B(X,Y ), ‖ · ‖∞) is a normed space over K when Y is a normed space over
K.

(ii) If Y is a complete normed space, then (B(X,Y ), ‖ · ‖∞) a complete normed space, i. e. a
Banach space.

Proof. (i) Clearly, ‖f‖∞ ∈ R0
+ and ‖λf‖∞ = |λ| ‖f‖∞ for all f ∈ B(X,Y ) and λ ∈ K. Let

f, g ∈ B(X,Y ) and x ∈ X. Then

‖(f + g)(x)‖ = ‖f(x) + g(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖.

Taking the supremum over all x ∈ X yields the triangle inequality in B(X,Y ): ‖f + g‖∞ ≤
‖f‖∞ + ‖g‖∞.

(ii) Let (fn)n∈N be a Cauchy sequence in B(X,Y ). We have to show that it converges to some
f ∈ B(X,Y ). Let ε > 0. By assumption, there exists an N ∈ N such that ‖fn − fm‖∞ < ε

2 for
all m,n ≥ N . In particular, for each x ∈ X, the sequence (fn(x))n∈N is a Cauchy sequence in Y ,
hence convergent because Y is a Banach space. Therefore, the function

f : X → Y, f(x) := lim
n→∞

fn(x)

is well defined. We will show that (fn)n∈N converges uniformly to f . For m,n ≥ N and x ∈ X we
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have

‖fn(x)− f(x)‖ ≤ ‖fn(x)− fm(x)‖+ ‖fm(x)− f(x)‖
≤ ‖fn − fm‖∞ + ‖fm(x)− f(x)‖ < ε

2
+ ‖fm(x)− f(x)‖.

Taking the limit m→ ∞ yields that ‖fm(x)− f(x)‖ ≤ ε
2 . Therefore for n ≥ N

∀x ∈ X ‖fn(x)− f(x)‖ ≤ ε. (5.3)

Taking the supremum over all x ∈ X finally yields ‖fn − f‖∞ ≤ ε
2 < ε for all n ≥ N . In particular,

f is bounded because

|f(x)| ≤ |fN (x)|+ |f(x)− fN (x)| ≤ ‖fN‖∞ +
ε

2
<∞,

and (fn)n∈N converges uniformly to f by (5.3).

Theorem 5.40. Let (X, dX) be a metric space, (Y, ‖·‖) a normed space and fn : X → Y continuous

and f : X → Y . If fn
n→∞−−−−→
unif.

f , then f is continuous.

In other words: The uniform limit of continuous functions is continuous.

Proof. Let x0 ∈ X and ε > 0. Then there exists an N ∈ N such that ‖fN − f‖∞ < ε
3 . Since fN is

continuous, there exists a δ > 0 such that ‖fN (x)− fN (x0)‖ < ε
3 for all x ∈ X with dX(x, x0) < δ.

Hence we obtain for all x ∈ X with dX(x, x0) < δ

‖f(x)− f(x0)‖ ≤ ‖f(x)− fN (x)‖+ ‖fN (x)− fN (x0)‖+ ‖fN (x0)− f(x0)‖
≤ ‖f − fN‖∞ + ‖fN (x)− fN (x0)‖+ ‖fN − f‖∞ < ε.

The above theorem shows that for a uniformly convergent sequence of continuous functions the
limits commute:

lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

lim
n→∞

fn(x).

If the sequence (fn)n∈N converges only pointwise, then, in general, the limits cannot be commuted,
as Example 5.35 shows.

Theorem 5.39 and Theorem 5.40 show that the set of all bounded continuous functions on a metric
space X together with the supremum norm are a Banach space. Since every continuous function
on a compact metric space is bounded, we obtain

Theorem 5.41. Let (X, dX) be a compact metric space and (Y, ‖ · ‖) a normed space. Then
(C(X,Y ), ‖ · ‖∞) is a Banach space.

Since series are special case of sequences, we have the notion on pointwise and uniform convergence
also for series of functions:

∞∑

n=1

fn converges pointwise ⇐⇒ ∀x ∈ X

∞∑

n=1

fn(x) converges in Y,

∞∑

n=1

fn converges uniformly ⇐⇒ the sequence of the partial sums

( n∑

k=1

fk

)
n∈N

converges uniformly.

Since (B(X,Y ), ‖ · ‖∞) is a Banach space, we obtain the following criterion for convergence of a
series of functions.
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Theorem 5.42 (Weierstraß criterion). Let X be a set, (Y, ‖ · ‖) be a complete normed space
and (fn)n∈N ⊆ B(X,Y ). If

∑∞
n=1 ‖fn‖∞ < ∞, then the series

∑∞
n=1 fn converges uniformly to a

function f ∈ B(X,Y ) and for each x ∈ X the series
∑∞

n=1 fn(x) converges absolutely in Y .

Proof. Let ε > 0. Then there exists an N ∈ N such that
∑n

k=m ‖fk‖∞ < ε for all m,n ≥ N . The
triangle inequality yields

∥∥∥
n∑

k=m

fn

∥∥∥
∞

≤
n∑

k=m

‖fn‖∞ < ε, m, n ≥ N.

The Cauchy criterion (in the complete normed space (B(X,Y ), ‖ · ‖∞) shows that the series of
functions converges absolutely in (B(X,Y ), ‖ · ‖∞) which is equivalent to uniform convergence.
Since for every x ∈ X

n∑

k=1

‖fk(x)‖ ≤
n∑

k=1

‖fk‖∞ < ∞,

also the assertion on pointwise absolute convergence is proved.

5.4 Power series

Definition 5.43. Let a ∈ C and (cn)n∈N ⊆ C. Then

∞∑

n=0

cn(z − a)n (5.4)

is called a power series centred in a (or a power series in (z − a)) with coefficients in cn.
The radius of convergence of the power series (5.4) is

R := sup{t ∈ R : (cnt
n)n∈N is bounded}.

Depending on the coefficients, the series (5.4) converges for all z ∈ C, for no z ∈ C, or for z a subset
of C.

Theorem 5.44. Let R be the radius of convergence of the power series (5.4).

(i) For z ∈ C such that |z − a| > R, the series (5.4) diverges.

(ii) For z ∈ C such that |z − a| < R, the series (5.4) is absolutely convergent.

For 0 < r < R On Br(a) the series converges uniformly to the continuous function

Br(a) → C, z 7→
∞∑

n=0

cn(z − a)n.

Proof. (i) Since by assumption (cn|z− a|n)n∈N is not bounded, the series diverges (Theorem 4.48).
(ii) Let r ∈ R such that r < R. Then there exists a t such that r < t < R. By definition of R there
exists an M such that |cntn| ≤M for all n ∈ N. For each z ∈ C with |z − a| ≤ r < t we obtain

|cn(z − a)n| ≤ |cnrn| ≤ |cntn|
(r
t

)n
≤M

(r
t

)n
.

Therefore, ‖cn(·−a)‖∞ ≤ A
(

r
t

)n
where ‖·‖∞ is the supremum norm of bounded functions on Br(a).

By the Weierstraß criterion (Theorem 5.42) the series of polynomials (5.4) converges uniformly on
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Br(a) and for fixed z the series converges absolutely. Since all polynomials are continuous, the
function

Br(a) → C, z 7→
∞∑

n=0

cn(z − a)n

is continuous (Theorem 5.40).

Theorem 5.45. Let R be the radius of convergence of the power series (5.4). Then

(i) R =
(
lim sup

n

n
√

|cn|
)−1

,

(ii) R = lim
n→∞

|cn|
|cn+1|

if the limit exists

Proof. (i) Let R̃ :=
(
lim sup

n

n
√

|cn|
)−1

. R̃ = R follows immediately from the root test and the

characterisation of R in Theorem 5.44:

lim sup
n

n
√

|cn(z − a)n| = |z − a| lim sup
n

n
√
|cn| = |z − a|R̃

{
< 1 if |z − a| < R̃−1,

> 1 if |z − a| > R̃−1

with the convention that R̃−1 = 0 if R̃ = ∞0 and R̃−1 = ∞ if R̃ = 0.
(ii) follows analogously with the ratio test.

The following theorem follows immediately from Theorem 4.48 and Theorem 4.69 (Cauchy product).

Theorem 5.46. Let

∞∑

n=0

bn(z − a)n and

∞∑

n=0

cn(z − a)n

complex power series in (z−a) with radii of convergence Rb and Rc respectively. Then for all z ∈ C
with |z − a| < min{Rc, Rd}

( ∞∑

n=0

bn(z − a)n
)
+
( ∞∑

n=0

cn(z − a)n
)
=

∞∑

n=0

(bn + cn)(z − a)n,

( ∞∑

n=0

bn(z − a)n
)
·
( ∞∑

n=0

cn(z − a)n
)
=

∞∑

n=0

( n∑

k=0

ckdn−k

)
(z − a)n.

Let R be the radius of convergence of (5.4). We know that for |z − a| < R the series is absolutely
convergent and that for |z−a| > R it is divergent. For |z−a| = R the series can diverge or converge.

Examples 5.47. Even when the function represented by a power series is continuous in the limit
points of the interval of convergence, the series does not need to converge.

(i)

∞∑

n=0

zn. The radius of convergence is R = 1. The series diverges for z = ±1.

Note that
∑

n=1 z
n = 1

1+z for |z| < 1 and 1
1−(−1) =

1
2 .

(ii)

∞∑

n=0

z2n. The radius of convergence is R = 1. The series diverges for z = ±1 and
∑

n=1 z
2n =

1
1−z2 for |z| < 1 and 1

1+(±1)2 = 1
2 .
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(iii)

∞∑

n=0

zn

n
. The radius of convergence is R = 1. The series diverges for z = 1 and is condition-

ally convergent for z = −1.

From Theorem 5.44 we already know that a power series defines a continuous function on the the
open ball of convergence. Next we will show that f is continuous in that points z with |z − a| = R
for which the power series converges.
To this end we use

Remark (Summation by parts). Let (an)n∈N0
and (bn)n∈N0

be sequences in C and define

A−1 := 0, An :=
n∑

k=1

ak, n ∈ N.

Then obviously we have an = An − An=1 =: ∆An. The following rules can be verified straighfor-
wardly:

(i) Product rule: ∆(AB)k︸ ︷︷ ︸
:=AkBk−Ak−1Bk−1

= (∆Ak)Bk +Ak−1∆Bk,

(ii)

n∑

k=0

∆Ak ·Bk = AnBn −
n∑

k=0

Ak−1∆Bk,

(iii)

n∑

k=0

ak ·Bk = AnBn +

n−1∑

k=0

Ak∆Bk+1,

(iv) Then for 0 ≤ m ≤ n it follows that

n∑

k=m

akbk =

n−1∑

k=m

Ak(bk − bk+1) +Anbn −Am−1bm.

Theorem 5.48 (Abel’s theorem). Let (cn)n∈N ⊆ R and assume that the power series

∞∑

n=0

cn(x− a)n (5.5)

converges in I := [a − R, a + R]. Then the series converges uniformely in I and its limit is a
continuous function.

Proof. It suffices to prove the uniform convergence because all partial sums are polynomials, hence
continuous, and by Theorem 5.40 the uniform limit of continuous functions is continuous. Obviously,
it suffices to show uniform convergence on [a, a+R] and [a−R, a]. Let us apply the transformation
of the variable x

ξ :=
x− a

R

Then, obviously, the series in (5.5) converges uniformly on [a, a+R] if and only if

∞∑

n=0

cnξ
n

converges uniformly on [0, 1]. Let us show uniform convergence on [0, 1]. To this end fix ε > 0 and
choose m ∈ N such that for all n ≥ m

∣∣∣∣∣

n∑

k=m

ck

∣∣∣∣∣ < ε.
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Such m exists because the series
∑n

k=0 ck =
∑n

k=0 1
kck converges by assumption. Now define

ak :=

{
0, k < m,

ck, k ≥ m.

Then

∞∑

k=0

ckξ
k −

m−1∑

k=0

ckξ
k

∞∑

k=0

akξ
k.

Summation by parts applied to Ak =
∑k

n=1 ak, Bk = ξk for ξ ∈ [0, 1] yields

n∑

k=0

ak︸︷︷︸
=∆Ak

ξk︸︷︷︸
Bk

= AnBn −
n−1∑

k=0

Ak(ξ
k − ξk+1) = Anξ

n −
n−1∑

k=0

Ak(ξ
k − ξk+1)

= Anξ
n − (1− ξ)

n−1∑

k=0

Akξ
k.

Using that |Ak| < ε by assumption we obtain for 0 ≤ ξ < 1

∣∣∣∣∣

n∑

k=0

akξ
k

∣∣∣∣∣ ≤ |An|ξn + (1− ξ)

n−1∑

k=0

|Ak|ξk ≤ εξn + (1− ξ)
ε

1− ξ
= 2ε.

Obviously, the inequality is also true in the case ξ = 1. In summary, we showed that the series
converges uniformly on [0, 1], hence the series in (5.5) converges uniformly on [a, a+ R]. To show
that it converges uniformly on [a−R, a], we apply the substitution

ξ := −x− a

R
.

The exponential function is defined as a power series.

Definition 5.49. The exponential function is defined by

exp : C → C, z 7→
∞∑

n=0

zn

n!
,

and the sine and cosine functions are defined by

sin : C → C, z 7→
∞∑

n=0

(−)nz2n+1

(2n+ 1)!
, cos : C → C, z 7→

∞∑

n=0

(−)nz2n

(2n)!
.

These functions are well-defined by Theorem 5.45 and continuous in C by Theorem 5.44.

Theorem 5.50 (Properties of exp). For the function exp : C → C, exp(z) :=
∞∑

n=0

zn

n! and the

Euler’s number e defined in Theorem 4.71 gilt:

(i) exp(z̄) = exp(z), z ∈ C,

(ii) exp(z + w) = exp(z) exp(w), z, w ∈ C,

(iii) exp(n) = en, n ∈ Z,
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(iv) exp(z) 6= 0, z ∈ C,

(v) | exp(ix)| = 1, x ∈ R.

Proof. Exercise 5.11.

Theorem 5.51 (Euler’s formula).

exp(iz) = cos(z) + i sin(z), z ∈ C, (5.6)

consequently

cos(z) =
1

2

(
exp(iz) + exp(−iz)

)
, sin(z) =

1

2i

(
exp(iz)− exp(−iz)

)
. (5.7)

In particular, it follows for all x ∈ R that exp(x) =
(
exp(x/2)

)2 ≥ 0. Directly from the defintion
of exp we obtain that it is monotonically increasing in [0,∞). Using the fact that exp(−x) =(
exp(x)

)−1
and that exp is positive, it follos that exp is monotonically increasing in R.

Proof. Let z ∈ C. Since exp, sin and cos are absolutely convergent on C, we have

exp(iz) = lim
n→∞

2n∑

k=0

(iz)k

k!
= lim

n→∞

( n∑

k=0

(iz)2k

(2k)!
+

n−1∑

k=0

(iz)2k+1

(2k + 1)!

)

= lim
n→∞

( n∑

k=0

(−1)kz2k

(2k)!
+

n−1∑

k=0

(−1)kz2k+1

(2k + 1)!

)

= lim
n→∞

( n∑

k=0

(−1)kz2k

(2k)!

)
+ i lim

n→∞

(n−1∑

k=0

(−1)kz2k+1

(2k + 1)!

)
= cos(z) + i sin(z),

Formulae (5.7) follow because sin(z) = sin(−z) and cos(−z) = cos(z) which follows directly from
the definition.

Definition 5.52. The function R → R, x 7→ exp(x) is continuous and by Theorem 5.50 monoton-
ically increasing with range R(exp) = R+, hence by Theorem 5.26 it is invertible and the inverse is
continuous. The inverse function is called the (natural) logarithm denoted by

ln : (0,∞) → R.

Remark. Sometimes the logarithm is denoted by log instead of ln.

Uniqueness of the power series representation

For the proof of the uniqueness of the power series representation of a function we need the following
technical lemma.

Lemma 5.53. Let
∑∞

n=0 cn(z−a)n be a comples power series with radius of convergence R. Then
for every m ∈ N0 and every r ∈ (0, R) there exists an M > 0 such that for all z ∈ C with |z−a| ≤ r:

∣∣∣
∞∑

n=m

cn(z − a)n
∣∣∣ ≤M |z − a|m.
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Proof. Let m ∈ N. Then the series
∑∞

n=m cn(z−a)n and
∑∞

n=m cn(z−a)n+m have the same radius
of convergence. For |z − a| ≤ r Lemma 4.60 implies

∣∣∣
∞∑

n=m

cn(z − a)n
∣∣∣ ≤ |z − a|m

∞∑

n=m

|cn||z − a|︸ ︷︷ ︸
≤r

n−m ≤ |z − a|m
∞∑

n=m

|cn|rn−m

= |z − a|m
∞∑

n=0

|cn+m|rn

︸ ︷︷ ︸
=:M<∞, since r<R

.

Theorem 5.54. Let
∑∞

n=0 bn(z − a)n and
∑∞

n=0 cn(z − a)n be complex power series with radii of
convergence Rb and Rc respectively. If

∞∑

n=0

bn(z − a)n =

∞∑

n=0

cn(z − a)n, |z − a| ≤ r,

for some 0 < r ≤ min{Rb, Rc}, then an = bn, n ∈ N0.

Proof. Without restriction we assume a = 0. By Theorem 5.44 it suffices to show that
∑∞

n=0 bnz
n =

0 for all |z| ≤ r implies bn = 0, n ∈ N0. Let N := min{n ∈ N : cn 6= 0}. Then, by the proof of
Theorem 5.44, there exists an M > 0 such that for all z ∈ C with |z| ≤ r

bNz
N =

∣∣∣
∞∑

n=0

bnz
n

︸ ︷︷ ︸
=0

−bNzN
∣∣∣ =

∣∣∣
∞∑

n=N+1

bnz
n
∣∣∣ ≤ zN+1M,

in particular |z| ≥ bN
M for all 0 < |z| ≤ r. Since |z| can be chosen arbitrarily small, this implies

bN = 0.

Another proof for the uniqueness of the power series representations follows from the Taylor expan-
sion.
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Chapter 6

Integration and Differentiation in

R

6.1 Differentiable functions

Continuity of a function f in a point x0 implies that the function values f(x) do not deviate too
much from f(x0) if x is close to x0.

In this section we investigate the local behaviour of functions further. We will consider mainly
functions f : D ⊇ R → R. A function is called differentiable in a point x0 if it can be approximated
by an affine function. More generally, a function is n times differentiable if it can be approximated
locally by a polynomial of degree n. This is the main assertion of Taylor’s theorem.

x

f(x)

f(x0)

︸
︷︷

︸

|f(x0)− f(x)|

x x0

︸ ︷︷ ︸
|x0 − x|

f(x)

Figure 6.1: Geometric interpretation of the difference quotient in the case F = Y = R: The difference

quotient
f(x)− f(x0)

x− x0

is the slope of the secant of the graph of f through the points (x0, f(x0)) and

(x, f(x)). For x → x0 the secant becomes the tangent of the graph of f in the point (x0, f(x0)); f
′(x0) is

the slope of the tangent.

Definition 6.1. Let F = R or C, (Y, ‖ · ‖) a normed space over F and x0 ∈ D a limit point of the
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86 6.1. Differentiable functions

set D ⊆ F. A function f : D → Y is called differentiable in x0 if there exists a function Φ : D → Y
continuous in x0 such that

f(x)− f(x0) = Φ(x)(x− x0), x ∈ D. (6.1)

Then Φ(x0) =: f ′(x0) is called the derivative of f at x0. The function is called differentiable if
every point of D is a limit point of D and f is differentiable in every point x0 ∈ D. In this case,
the function

f ′ : D → Y, x 7→ f ′(x)

is called the derivative of f .

Note that the function Φ depends on f and x0.

Theorem 6.2. Let F = R or C and (Y, ‖ · ‖) a normed space over F. Let x0 ∈ D ⊆ F such that x0
is a limit point of D and let f : D → Y . Then the following is equivalent:

(i) f is differentiable in x0.

(ii) There exists an a ∈ Y and a function ϕ : D → Y which is continuous in x0 with ϕ(x0) = 0
and

f(x) = f(x0) + a(x− x0) + ϕ(x)(x− x0), x ∈ D. (6.2)

(iii) The following limit exists:

b := lim
x→x0

f(x)− f(x0)

x− x0
(6.3)

If f is differentiable in x0, then f
′(x0) = a = b.

Proof. “(i) =⇒ (ii)” Let a := f ′(x0) and ϕ : D → Y, ϕ(x) = Φ(x)−f ′(x0). Then ϕ is continuous
in x0 and ϕ(x0) = Φ(x0)− f ′(x0) = 0 by definition of f ′(x0) and obviously ϕ satisfies (6.2).

“(ii) =⇒ (iii)” By assumption

a = lim
x→x0

ϕ(x) + a = lim
x→x0

f(x)− f(x0)

x− x0
= b.

“(iii) =⇒ (i)” Since the limit in (6.3) exists, the function

Φ : D → Y, Φ(x) :=

{
f(x)−f(x0)

x−x0
, if x 6= x0,

b, if x = x0

is continuous in x0. Obviously it satisfies (6.1) and f ′(x0) = Φ(x0) = b.

The characterisation of differentiability in Definition 6.1 is useful for proofs and can be extended
to functions f between normed spaces. The characterisation (ii) of Theorem 6.2 gives a geomet-
ric interpretation of the derivative (see Remark 6.4) and (iii) is useful to calculate derivatives of
functions.

Corollary 6.3. If f is differentiable in x0 then f is continuous in x0.

Proof. This follows immediately from (6.1) because

lim
x→x0

(f(x)− f(x0)) =
(
lim

x→x0

Φ(x)
)(

lim
x→x0

(x− x0)
)
= 0.
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Chapter 6. Integration and Differentiation in R 87

Note that the converse is not true, for example the absolute value function on R is continuous in 0
but not differentiable. There exist functions that are continuous on R but nowhere differentiable,

for example the Weierstraß function f(x) =
∑∞

n=0
cos(15kπx)

2k
, x ∈ R.

Notation. Other notations for f ′(x0) and f ′ are d
dxf(x0),

df
dx (x0), Df(x0) and d

dxf ,
df
dx , Df ,

respectively.

Remark 6.4. Theorem 6.2 shows that f is differentiable in x0 if and only if it can be approximated
by a linear function at x0, that is, there exists a linear function

L : F → Y, L(x) = f(x0) + a(x− x0)

such that f(x)− L(x) tends to 0 faster than x− x0 for x→ x0. The constant a is then f ′(x0).

Remark 6.5. The space of all linear functions from F to Y is denoted by L(F, Y ). Note that every
a ∈ Y induces the linear map F → Y, x 7→ ax.

Let f : F ⊇ D → Y be differentiable. The differential df of f is the map

df : D → L(F,F), x 7→ dxf : F → F, h 7→ f ′(x)h.

Since the differential dx of the function F → F, x 7→ x is the identity, it follows that df = f ′dx.

Examples 6.6. • f : R → R, f(x) = xn for n ∈ N0 is differentiable in R with f ′(x) = 0 if
n = 0 and

f ′(x) = nxn−1, n ≥ 1.

Proof. For n = 0 the assertion is clear. Now let n ≥ 1 and fix x0 ∈ R. For x ∈ R \ {0, x0} it
follows from the formula for the geometric sum (4.5) that

f(x)− f(x0)

x− x0
=
xn − xn0
x− x0

=
xn

x

1− (x0

x )n

1− x0

x

= xn−1
n−1∑

j=0

(x0
x

)j
.

For x→ x0 this tends to nxn−1
0 .

• f : [0,∞) → R, f(x) =
√
x is differentiable in (0,∞) with

f ′(x) =
1

2

1√
x
.

It is not differentiable in 0 (see Exercise 6.1).

• f : R → R, f(x) = |x| is not differentiable in 0.

Proof. lim
xց0

|x| − 0

x− 0
= 1 6= −1 = lim

xր0

|x| − 0

x− 0
.

Example 6.7. The exponential function C → C, z 7→ exp(z) is differentiable with derivative
exp′ = exp.
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88 6.1. Differentiable functions

Proof. First we show that exp is differentiable in z = 0. For z 6= 0

exp(z)− exp(0)

z − 0
=

exp(z)− 1

z
=

1

z

( ∞∑

k=0

zk

k!
− 1
)
=

1

z

∞∑

k=1

zk

k!
=

∞∑

k=0

zk

(k + 1)!
.

It is easy to see that radius of convergence of the last series is ∞, therefore it is uniformly convergent
which implies

exp′(0) = lim
z→0

∞∑

k=0

zk

(k + 1)!
=

∞∑

k=0

lim
z→0

zk

(k + 1)!
= 1.

Now let z0 ∈ C arbitrary. It follows that

exp′(z0) =
exp(z)− exp(z0)

z − z0
= exp(z0)

exp(z − z0)− 1

z − z0
z→z0−−−→ exp(z0) exp

′(0) = exp(z0).

Theorem 6.8. Let F = R or C and (Y, ‖ · ‖Y ) a normed space over F. Let x0 ∈ D ⊆ F such that
x0 is a limit point of D and assume that f, g : D → Y are differentiable in x0. Then

(i) For all α ∈ F the linear combination αf + g is differentiable in x0 with

(αf + g)′(x0) = αf ′(x0) + g′(x0). (6.4)

(ii) If Y = F then the product fg is differentiable in x0 with

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0). (6.5)

(iii) If g(x0) 6= 0 then the function f
g is differentiable in x0 with

(f
g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

(g(x0))2
. (6.6)

Proof. Let Φf and Φg as in (6.2), that is, Φf and Φg are continuous in x0 and

f(x)− f(x0) = Φf (x)(x− x0), x ∈ D,
g(x)− g(x0) = Φg(x)(x− x0), x ∈ D.

(i) follows from

(αf + g)(x)− (αf + g)(x0) = α(f(x)− f(x0)) + g(x)− g(x0)

=
[
αΦf (x) + Φg(x)︸ ︷︷ ︸

:=Φαf+g(x)

]
(x− x0).

Since Φαf+g is continuous in x0 and tends to αf ′(x0) + g′(x0) for x → x0, the function αf + g is
differentiable in x0 by (6.2) and (6.4) holds.

(ii) follows similarly:

(fg)(x)− (fg)(x0) = f(x)g(x)− f(x0)g(x0)

=
(
f(x)− f(x0)

)
g(x) + f(x0)

(
g(x)− g(x0)

)

=
[
Φf (x)g(x) + f(x0)Φg(x)︸ ︷︷ ︸

:=Φfg

]
(x− x0).
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Chapter 6. Integration and Differentiation in R 89

Since Φfg is continuous at x0 and it tends to f ′(x0)g(x0)+ f(x0)g′(x0) for x→ x0, the function fg
is differentiable in x0 and (6.5) holds.

(iii) by (ii) it suffices to show that
(
1
g

)′
(x0) = − g′(x0)

(g(x0))2
. This follows from

1

g(x)
− 1

g(x0)
=
g(x0)− g(x)

g(x)g(x0)
=

Φg(x)

g(x)g(x0)
(x− x0)

because
Φg(x)

g(x)g(x0)
→ g′(x0)

g(x0)2
for x→ x0.

Corollary 6.9. Polynomials and rational functions are differentiable.

Theorem 6.10 (Chain rule). Let F = R or C and f : F ⊇ Df → F, g : F ⊇ Dg → Y functions
such that f(Df ) ⊆ Dg. Let x0 ∈ Df be a limit point of D and f(x0) be a limit point of Dg. If f is
differentiable in x0 and g is differentiable in f(x0) then g ◦ f is differentiable in x0 with derivative

(g ◦ f)′(x0) = g′(f(x0))f
′(x0).

Proof. By assumption on f and g there exist functions Φf : Df → F continuous in x0 and Φg :
Dg → R continuous in f(x0) such that

f(x)− f(x0) = Φf (x)(x− x0), Φf (x0) = f ′(x0),

g(x)− g(x0) = Φg(x)(x− x0), Φg(x0) = g′(x0).

Therefore

(g ◦ f)(x)− (g ◦ f)(x0) = g(f(x))− g(f(x0)) = Φg(f(x))
(
f(x)− f(x0)

)

= Φg(Φf (x))Φf (x)︸ ︷︷ ︸
:=Φg◦f(x)

(x− x0).

Since Φg◦f is continuous in x0 and tends to g′(f(x0))f ′(x0) for x→ x0, the assertion is proved.

Examples.

• f : R+ → R, f(x) =
√
x3 + 42x+ 7.

The function f is a composition of differentiable functions, therefore it is differentiable. Using
chain rule we obtain

f ′(x) =
1

2

1√
x3 + 42x+ 7

(
3x2 + 42

)
.

• f : R+ → R, f(x) =
√
x
3
+
√
42x+ 7.

As a composition of differentiable functions, f is differentiable. Chain rule yields

f ′(x) = 3
√
x
2 · 1

2

1√
x
+

1

2

1√
42x

42 =
3

2

√
x+

√
42

2
√
x
.

For functions defined on intervals in R we can define one-sided differentiability.

Definition 6.11. Let (Y, ‖ · ‖) be a normed space over R and D ⊆ R, x0 ∈ D such that x0
is a limit point of D ∩ [x0,∞). Then f is called differentiable from the right if there exists a
function Φ : D ∩ [x0,∞) → R, continuous in x0 such that f(x) − f(x0) = Φ(x)(x − x0) for all
x ∈ D ∩ [x0,∞). In this case, f ′+(x0) := Φ(x0) is called the derivative from the right of f in x0. f
is called differentiable from the right if it is so in every point x ∈ D. The derivative from the left is
defined similarly.
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90 6.1. Differentiable functions

Definition 6.12. Let F = R or C, (Y, ‖ · ‖) a normed space over F and x0 ∈ D ⊆ F such that x0 is
a limit point of D. We define f [0](x0) = f(x0). If f is differentiable in x0 we set f [1](x0) = f ′(x0).
Inductively, higher order derivatives are defined: Assume that f [0], f [1], . . . , f [n−2] are differentiable
in D and that f [n−1] is differentiable in x0, then f is called n-times differentiable in x0 and

f [n](x0) :=
dn

dxn
f(x0) :=

(
f [n−1]

)′
(x0)

is the nth derivative of f at x0. The function f is called n-times differentiable if it is n-times
differentiable in every x ∈ D. In this case, the function

f [n] : D → Y, x 7→ f [n](x)

is the nth derivative of f .

If the nth derivative of f is continuous, then f is called n-times continuously differentiable.

The following vector spaces of functions are defined:

Cn(D) := Cn(D,Y ) := {f : D → Y : f is n-times continuously differentiable},

C∞(D) :=

∞⋂

n=0

Cn(D,Y ).

Remark. Obviously C∞ ⊆ Cn+1(D) ⊆ Cn(D,Y ) ⊆ C0(D) = C(D), n ∈ N.

Differentiation in Banach spaces

In this section the definition of differentiabilty is generalized to functions f between (subsets of)
normed spaces. All normed spaces in this subsection are assumed to be real or complex vector
spaces.

Definition. Let X and Y be normed spaces over F = R or C. A map T : X → Y is called linear
if for all x, y ∈ X and λ ∈ F

T (x+ λy) = T (x) + λT (y).

The linear map T : X → Y is called bounded if and only if

‖T‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ = 1} <∞.

In this case, ‖T‖ is called the norm of T . The set of all bounded linear maps from X to Y is
denoted by L(X,Y ). It is easy to check that (L(X,Y ), ‖ · ‖) is a normed space over F.

Remark. Let T ∈ L(X,Y ).

(i) ‖Tx‖ ≤ ‖T‖ ‖x‖ for all x ∈ X.

Proof. If x 6= 0, then ‖Tx‖ = ‖T x
‖x‖‖ ‖x‖ ≤ ‖T‖ ‖x‖. The assertion is clear if x = 0.

(ii) If Y is a Banach space, then L(X,Y ) is a Banach space.

Proof. Note that for a linear map T ∈ L(X,Y ) its restriction to the unit ball BX in X is bounded
and that ‖T‖ = ‖T |BX

‖∞ (i. e., the norm of T as a linear map is equal to the supremum norm of
the restriction of T to BX). Let (Tn)n∈N be a Cauchy sequence in L(X,Y ). Then the sequence of
the restrictions to BX are a Cauchy sequence in B(BX , Y ) (the set of all bounded functions from
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Chapter 6. Integration and Differentiation in R 91

BX to Y with the supremum norm). By Theorem 5.39 there exists an T̃ ∈ B(BX , Y ) such that

the restrictions of Tn converge uniformly to T̃ . T̃ can be extended to a linear function T on X by
setting T0 = 0 and Tx = ‖x‖T̃ x

‖x‖ . It is not hard to check that T is well-defined, linear, bounded

and that ‖Tn − T‖ → 0 for n→ ∞.

(iii) If dimX < ∞ then every linear function T : X → Y is bounded because the unit ball BX in
X is compact (by the Heine-Borel theorem, Theorem 8.33).

Now let us assume that X is a vector space over F with an inner product 〈· , ·〉. Then X becomes
a normed space if we set ‖x‖ = 〈x , x〉 for all x ∈ X.

Definition 6.1’. Let X be a Banach space over F and Y be normed space over F, D ⊆ X and
x0 ∈ D a limit point of D. A function f : D → Y is called differentiable in x0 if there exists a
function Φ : D → Y continuous in x0 such that

f(x)− f(x0) = Φ(x)(x− x0). (6.1’)

Then Φ(x0) =: f ′(x0) is called the Fréchet derivative of f at x0. The function is called differentiable
if every point of D is a limit point and f is differentiable in every point x0 ∈ D. In this case, the
function

f ′ : D → L(X,Y ), x 7→ f ′(x)

is called the Fréchet derivative of f .

Note that the function Φ depends on f and x0 and that f ′(x0) ∈ L(X,Y ).

Theorem 6.2’. Let X and Y be normed spaces. Let x0 ∈ D ⊆ X such that x0 is a limit point of
D and let f : D → Y . Then the following is equivalent:

(i) f is differentiable in x0.

(ii) There exists an A ∈ L(X,Y ) and a function ϕ : D → Y which is continuous in x0 with

lim
x→x0

ϕ(x)
‖x−x0‖ = 0 and

f(x) = f(x0) +A(x− x0) + ϕ(x), x ∈ D. (6.2’)

(6.2’)

(iii) There exists a B ∈ L(X,Y ) such that

lim
x→x0

‖f(x)− f(x0)−B(x− x0)‖
‖x− x0‖

= 0. (6.3’)

If f is differentiable in x0, then f
′(x0) = A = B.

Proof. “(i) =⇒ (ii)” Let ϕ : D → Y, ϕ(x) = (Φ(x)− Φ(x0))(x− x0) and A := f ′(x0) = Φ(x0).
Then ϕ is continuous in x0 and

lim
x→x0

‖ϕ(x)‖
‖x− x0‖

= lim
x→x0

‖Φ(x)− Φ(x0)‖ = 0

because Φ is continuous in x0. Moreover, by definition of ϕ,

f(x)− f(x0) = Φ(x)(x− x0) = Φ(x0)(x− x0) + ϕ(x),
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92 6.1. Differentiable functions

so ϕ satisfies (6.2’).

“(ii) =⇒ (i)” Let x ∈ D. By the Hahn-Banach theorem1 there exists a linear functional
ψx : X → F such that ψx(

x−x0

‖x−x0
‖) = 1 and ‖ψx‖ = 1. Let Φ : D → L(X,Y ) be defined by

Φ(x) : X → Y, Φ(x)v =

{
Av + ‖x− x0‖−1ψx(v)ϕ(x), x 6= x0,

Av, x = x0.

Φ is continuous in x0 because

lim
x→x0

‖Φ(x)− Φ(x0)‖ = lim
x→x0

sup{
∥∥ ‖x− x0‖−1ψx(v)ϕ(x)

∥∥ : v ∈ X, ‖v‖ = 1}

≤ lim
x→x0

sup{‖x− x0‖−1‖ψx‖ ‖v‖ ‖ϕ(x)‖ : v ∈ X, ‖v‖ = 1}

= lim
x→x0

‖x− x0‖−1‖ϕ(x)‖ = 0

by assumption on ϕ. Obviously, Φ satisfies (6.1’). Hence f is differentiable in x0 and f
′(x0) = Φ(x0).

“(ii) ⇐⇒ (iii)” The equivalence is obvious with A = B.

If X is an inner product space with scalar product 〈· , ·〉 such that ‖x‖2 = 〈x , x〉, x ∈ X, then the
function Φ in the proof “(ii) =⇒ (i)” is given by

Φ(x) : X → Y, Φ(x)v =

{
Av + ‖x− x0‖−2〈x− x0 , v〉ϕ(x), x 6= x0,

Av, x = x0.

Corollary. The derivative f ′(x0) is uniquely determined.

Proof. Assume that there exist A,B ∈ L(X,Y ) and ϕA, ϕB : D → Y such that

f(x)− f(x0) = A(x− x0) + ϕA(x− x0) = B(x− x0) + ϕB(x− x0)

and lim
x→x0

‖ϕA(x)‖
‖x−x0‖ = lim

x→x0

‖ϕB(x)‖
‖x−x0‖ = 0. it follows that

0 = lim
x→x0

‖ϕA(x)− ϕB(x)‖
‖x− x0‖

= lim
x→x0

‖(A−B)(x− x0)‖
‖x− x0‖

= lim
x→x0

∥∥∥(A−B)
(x− x0)

‖x− x0‖
∥∥∥.

Let v ∈ X with ‖v‖ = 1. For every λ ∈ F there exists an xλ ∈ X such that λv = x0−xλ. Obviously,
‖x−x0‖

|λ| = 1 for all λ 6= 0 and xλ → x0 for λ→ 0. Therefore

‖(A−B)v‖ =
∥∥∥(A−B)

x0 − xλ
λ

∥∥∥ = lim
λ→0

∥∥∥(A−B)
x0 − xλ

λ

∥∥∥ = 0.

This implies that ‖A−B‖ = sup{‖(A−B)v‖ : v ∈ X, ‖v‖ = 1} = 0, therefore A = B.

As for functions defined on a subset of F we have the following corollary.

Corollary 6.3’. If f is differentiable in x0 then f is continuous in x0.

Proof. This follows immediately from (6.2’) because

lim
x→x0

‖f(x)− f(x0)‖ = lim
x→x0

‖ϕ(x)− ϕ(x0)‖ = 0.

Obviously, product and chain rule hold also for functions between Banach spaces (see Theorem 6.8
and Theorem 6.10).

1Let X be a normed space over F, U ⊆ X a subspace of X and u′ : U → F a bounded linear map. Then there
exists a bounded linear extension u : X → F of u′ such that ‖u‖ = ‖u′‖.
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6.2 Local behaviour of differentiable functions

In this section we prove theorems about the local behaviour of real valued functions with domain in
R. In particular, criteria for maxima and minima of functions in terms of the derivative are given.
For the proof, the mean value theorem is used. We start with a special case of the mean value
theorem.

Theorem 6.13 (Rolle’s theorem). Let a < b ∈ R and f : [a, b] → R be a continuous function
such that f is differentiable in (a, b). If f(a) = f(b), then there exists a p ∈ (a, b) such that
f ′(p) = 0.

Proof. If f is constant, the assertion is clear. Now assume that f is not constant. Without
restriction we assume that f(x) < 0 for at least one x ∈ (a, b). Then 0 is not the minimum of f . By
Theorem 5.30 f attains its minimum, hence there exists a p ∈ (a, b) such that f(p) = min{f(x) :
x ∈ D}. Since f is differentiable in p there exists a Φ : [a, b] → R that is continuous in p and that
satisfies

f(x)− f(p) = Φ(x)(x− p), Φ(p) = f ′(p).

Since f(x)− f(p) ≥ 0 for all x ∈ D by definition of p, it follows that

Φ(x) =
f(x)− f(p)

x− p

{
< 0, for x > p,

> 0, for x < p.

This implies that f ′(p) = Φ(p) = 0 because the continuity of Φ in x0 yields

0 ≤ lim
xցp

Φ(x) = Φ(p) = lim
xրp

Φ(x) ≤ 0.

Theorem 6.14 (Mean value theorem). Let a < b ∈ R, f : [a, b] → R continuous and differen-
tiable in (a, b). Then there exists a p ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(p).

Proof. The function

h : [a, b] → R, h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

is continuous in [a, b], differentiable in (a, b) and h(a) = h(b) = 0. By Rolle’s theorem (Theo-
rem 6.13) there exists a p ∈ (a, b) such that

0 = h′(p) = f ′(p)− f(b)− f(a)

b− a
.

Theorem 6.15. Let f : (a, b) → R differentiable. Then

(i) f ′ = 0 ⇐⇒ f is constant.

(ii) f ′ ≥ 0 ⇐⇒ is monotonically increasing.
f ′ ≤ 0 ⇐⇒ is monotonically decreasing.

(iii) f ′ > 0 =⇒ f is strictly monotonically increasing.
f ′ < 0 =⇒ f is strictly monotonically decreasing.

Note that in (iii) the converse implication is not true: f : R → R, x 7→ x3, is strictly increasing but
f ′(0) = 0.
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94 6.2. Local behaviour of differentiable functions

Proof. (i) “⇐=” is clear. To show “=⇒” fix an arbitrary c ∈ (a, b). By the mean value theorem,
for every q ∈ (a, b) \ {c} there exists an pq ∈ (a, b) such that

f(c)− f(q) = f ′(pq)(c− q).

Since f ′ = 0 it follows that f(q) = f(c) for all q ∈ (a, b).

(ii) We prove only the first equivalence.

“⇐=” Let a < x < y < b. Then there exists a p ∈ (x, y) such that f(y)−f(x) = f ′(p)(y−x). Since
f ′(p) ≥ 0 and y − x > 0 it follows that f(y) ≥ f(x).

“=⇒” Since for a < x < y < b every difference quotient f(y)−f(x)
y−x is nonnegative, the same is true

for f ′(x) = limyցx
f(y)−f(x)

y−x .

(iii) is proved as the analogous statement in (ii).

The assertions about (strictly) decreasing functions are proved similarly.

Remark. Let f : (a, b) → R differentiable and assume that f ′(x0) > 0 for some x0 ∈ (a, b). Then
it follows that there exists an δ > 0 such that f(r) < f(x0) < f(s) for all r, s ∈ Bδ(x0) with
r < x0 < s because

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0) > 0.

Hence there exists a δ > 0 such that f(x)−f(x0)
x−x0

> 0 if |x− x0| < δ and the assertion follows. Note
however, that f(r) < f(x0) < f(s) for r < x0 < s in a neighbourhood U of x0 does not imply that
f is locally increasing at x0. A counterexample is

f : R → R, f(x) = x+ 2x2(1 + (sinx−1)2).

The function f is everywhere differentiable with

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 1 > 0

and for x ∈ R \ {0}

f ′(x) = 1 + 4x(1 + (sinx−1)2) + 4 sinx−1 cosx−1

= 1 + 4x(1 + (sinx−1)2) + 2 sin(2x)−1

Since the second term tends to zero for x → 0 and the last term oscillates between −2 and 2,
there is not interval J around 0 such that the restriction of f to J is either strictly positive or
strictly negative. Therefore, by Theorem 6.15, f is not strictly monotonic at 0. Note, however,
that f(x) < f(0) < f(y) for x < 0 < y in a neighbourhood of 0. (See also Exercise 6.9.)

Definition 6.16. Let (X, dX) be a metric space, p ∈ D ⊆ X and f : D → R. Then f(p) is a local
maximum of f if

∃ δ > 0 ∀x ∈ D ∩Bδ(p) f(x) ≤ f(p). (6.7)

f(p) is a global maximum of f if

∀x ∈ D f(x) ≤ f(p). (6.8)

If in (6.7) or (6.8) strict inequality holds for x 6= p, then the maximum is called isolated. The value
f(p) is local or global minimum of f if it is a local or global maximum of −f . f(p) is called a
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Figure 6.2: The function f(x) = x2(1 + (sinx−1)2) in the left picture has a global isolated minimum at
0 but there is no right neighbourhood J of f such that f |J is monotonically increasing.
The function g(x) = x + 2x2(1 + (sinx−1)2) in the right picture has derivative g′(0) = 1 but it is not
monotonic locally at 0.

local extremum if it is a local minimum or maximum, it is called a global extremum if it is a global
minimum or maximum.

If X = R, then we say that f is locally increasing at p ∈ D if there exists an δ > 0 such that
the restriction of f to Bδ(p) ∩D is increasing. The notions strictly locally increasing and (strictly)
decreasing are defined analogously.

If a function is arbitrarily often differentiable and not all derivatives in a point p vanish, then it is
locally at p either monotonic or it has an isolated local extremum as Theorem 6.18 shows.

Lemma 6.17. Let (a, b) ⊆ R and p ∈ (a, b). Let f : (a, b) → R differentiable and assume that
f ′(p) = 0.

(i) If there exists a δ > 0 such that

f ′(x)(x− p) > 0, x ∈ (p− δ, p+ δ) \ {p},

then f has an isolated local minimum at p. In particular this is the case when f ′ is strictly
increasing locally at p.

(ii) If f ′ has an isolated local minimum at p, then f is strictly increasing locally at p.

Proof. (i) By assumption f ′(x) > 0 for x ∈ (p, p + δ) and f ′(x) < 0 for x ∈ (p − δ, p). Therefore
f is strictly increasing in (p, p + δ) and strictly decreasing in (p − δ, p) which implies f(x) > f(p)
for all x ∈ (p− δ, p+ δ) \ {p}.
(ii) By assumption, there exists a δ > 0 such that f ′(x) > 0 for all x ∈ (p− δ, p+ δ) \ {p}, hence
f is strictly increasing in (p− δ, p+ δ).

Theorem 6.18. Let (a, b) ⊆ R, p ∈ (a, b) and n ∈ N, n ≥ 2. If f : (a, b) → R is (n − 1)-times
differentiable and n-times differentiable in p and

f [n](p) 6= 0, f [k](p) = 0, k = 0, . . . , n− 1,

then exactly one of the following statements holds:
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x x

Figure 6.3: If f looks like the function on the left, then its derivative looks like the function on the right
and vice versa.

n even, f [n](p) > 0 =⇒ f has an isolated local minimum at p
n even f [n](p) < 0 =⇒ f has an isolated local maximum at p
n odd f [n](p) > 0 =⇒ f is strictly increasing locally at p
n odd f [n](p) < 0 =⇒ f is strictly decreasing locally at p.

Proof. We show only the case when f [n](p) > 0. By assumption, f [n−2]′′(p) > 0, therefore f [n−2]′ is
strictly increasing locally at p. Lemma 6.17 (i) implies that f [n−2](p) has an isolated local minimum
at p. By Lemma 6.17 (ii) it follows that f [n−3] is strictly increasing locally at p. Inductively we
obtain: f [n−2k] has a an isolated local minimum at p and f [n−2k−1] is strictly increasing locally at
p. Depending on whether n is even or odd, f = f [0] has an isolated local minimum at p or it is
strictly increasing locally at p.

The theorem implies that locally at p the function f behaves like the function

x 7→ f [n](p)(x− p)n.

This will be discussed in more detail in the section about Taylor expansion in Chapter 7.
When all derivatives of f at a point p vanish f does not necessarily behave as described in the
theorem above. An example is the function

f : R → R, f(x) = x2 sin(x−1) for x 6= 0, f(0) = 0.

Corollary 6.19. Let f : (a, b) → R and p ∈ (a, b) such that f is differentiable in p and f ′(p) = 0.

(i) f ′′(p) > 0 =⇒ f has an isolated local minimum in p.

(ii) f ′′(p) < 0 =⇒ f has an isolated local maximum in p.

Proof. The proof is analogously to the proof of Rolle’s theorem. Without restriction we assume

that f has a local minimum at p. By assumption the function D → R, x 7→ f(x)−f(p)
x−p is continuous

in p with value f ′(p). Therefore the claim follows from

0 ≤ lim
xցp

f(x)− f(p)

x− p
= f ′(p) = lim

xրp

f(x)− f(p)

x− p
≤ 0.

Definition 6.20. Let F = R or C, (Y, ‖ · ‖) a normed space over F and let f : F ⊃ D → Y be
differentiable in a point p ∈ D. The p is called a critical point of f if f ′(p) = 0.
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All candidates for local extrema of a function f : [a, b] → R are:

• the critical points of f ,

• points where f is not differentiable,

• the end points of the interval where f is defined.

Theorem 6.21 (Inverse function theorem). Let F = R or C and x0 ∈ D ⊆ F such that x0 is
a limit point of D. Assume that f : D → F is injective and differentiable in x0. Moreover, assume
that f−1 is continuous in y0 := f(x0). Then

f−1 differentiable in y0 ⇐⇒ f ′(x0) 6= 0.

In this case

(f−1)′(y0) =
1

f ′(f−1(y0))
. (6.9)

Proof. “=⇒” If f−1 is differentiable in y0, then chain rule yields

1 =
d

dx
(f−1 ◦ f)(x0) = (f−1)′(f(x0)) f

′(x0) = (f−1)′(y0) f
′(f−1(y0)).

In particular, f ′(x0) 6= 0 and formula (6.9) holds.

“⇐=” First we show that y0 = f(x0) is a limit point of Df−1 = R(f). Since x0 is a limit point of
D there exists a sequence (xn)n∈N ⊆ D \ {x0} that converges to x0. The injectivity and continuity
of f imply that (f(xn)n∈N ⊆ Df−1 \ {y0} and that it converges to y0. Let Φ as in the definition of
continuity of f , i. e., Φ is continuous in x0 and

f(x)− f(x0) = Φ(x)(x− x0), Φ(x0) = f ′(x0) 6= 0. (6.10)

Since f is injective, Φ(x) 6= 0 for all x ∈ D and we obtain from (6.10) (with f(x) = y)

f−1(y)− f−1(y0)︸ ︷︷ ︸
=x−x0

=
1

Φ(f−1(y))
(y − y0).

Since f−1 is continuous in y0 and Φ is continuous in x0 = f−1(y0), the assertion is proved.

Example 6.22. The derivative of ln : (0,∞) → R defined in Definition 5.52 is

ln′(x) =
1

x
, x > 0.

Proof. Since the logarithm is the inverse of the real exponential function and exp′(x) 6= 0 for all
x ∈ R, the theorem of the inverse function(Theorem 6.21) yields

ln′(x) =
1

exp′(ln(x))
=

1

exp(ln(x))
=

1

x
.

Example 6.23 (Inverse functions of trigonometric functions). By Exercise 5.1 the functions
sin and cos are differentiable on R and the tangent tan := sin

cos is differentiable on R\{(k+ 1
2 )π : k ∈ Z}

with derivatives

sin′ = cos, cos′ = − sin, tan′ =
1

cos2
= 1 + tan2 .
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Hence the restrictions

sin : [−π/2, π/2] → R, cos : [0, π] → R, tan : [−π/2, π/2] → R

are strictly monotonic (see definition of π in Exercise 5.11) and therefore invertible with inverse
functions

arcsin : [−1, 1] → R, arccos : [−1, 1] → R, arctan : R → R.

Their derivatives are

arcsin′(x) =
1√

1− x2
, arccos′(x) = − 1√

1− x2
, x ∈ (−1, 1),

arctan′(x) =
1

1 + x2
, x ∈ R.

Note that arcsin and arccos are not differentiable in ±1.

Theorem 6.24 (Generalised mean value theorem). Let f, g : [a, b] → R continuous and
differentiable in (a, b). Then there exists a p ∈ (a, b) such that

(
f(b)− f(a)

)
g′(p) =

(
g(b)− g(a)

)
f ′(p).

If g′(x) 6= 0, x ∈ D, then g(a) 6= g(b) and

f(b)− f(a)

g(b)− g(a)
=
f ′(p)

g′(p)
.

Proof. Let

h(x) =
[
f(x)− f(a)

][
g(b)− g(a)

]
−
[
g(x)− g(a)

][
f(b)− f(a)

]
.

Then h is differentiable in (a, b) and h(a) = h(b) = 0. Therefore, by Rolle’s theorem, there exists
an p ∈ (a, b) such that

0 = h′(p) = f ′(p)
[
g(b)− g(a)

]
− g′(p)

[
f(b)− f(a)

]
.

Note that g(a) 6= g(b) because otherwise, by Rolle’s theorem, there would exist a p ∈ (a, b) such
that g′(p) = 0.

Theorem 6.14 follows from Theorem 6.24 for the special case g = id.

Theorem 6.25 (l’Hospital’s rules). Let −∞ ≤ a < b ≤ ∞ and f, g : (a, b) → R differentiable
functions such that g′(x) 6= 0 for all x ∈ (a, b). Assume that one of the conditions holds:

(i) f(x) → 0, g(x) → 0 for xց a,

(ii) g(x) → ∞ for xց a,

then the existence of lim
xցa

f ′(x)

g′(x)
implies the existence of lim

xցa

f(x)

g(x)
and

lim
xցa

f ′(x)

g′(x)
= lim

xցa

f(x)

g(x)
.

Analogous statements hold for xր b.
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Proof. (i) If a 6= −∞ then f and g can be extended continuously to [a, b) by setting f(a) =
g(a) = 0. Since g′ 6= 0, g is either strictly increasing or decreasing, hence g(x) 6= 0 for all x ∈ (a, b)
(Darboux’s theorem, see Exercise 6.6). The generalised mean mean value theorem (Theorem 6.14)
implies that for every x > 0 there exists an px ∈ (a, x) such that

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(px)

g′(px)
.

For an arbitrary sequence xn ց a, n→ ∞ in (a, b) it follows that pxn
→ a, hence the statement is

proved.
Now let a = −∞. Without restriction we assume b < 0. Then the functions (b−1, 0) → R, t 7→
f(t−1), t 7→ g(t−1). satisfy assumption (i) for xր b (with b = 0). Therefore

lim
x→−∞

f(x)

g(x)
= lim

tր0

f(t−1)

g(t−1)
= lim

tր0

d
dtf(t

−1)
d
dtg(t

−1)
= lim

tր0

f ′(t−1) d
dt t

−1

g′(t−1) d
dt t

−1
= lim

x→−∞
f ′(x)

g′(x)
.

(ii) Again, we first consider the case a 6= −∞. Without loss of generality we can assume g > 0

and g′ < 0 in (a, b), the latter again by Darboux’s theorem (Exercise 6.6). Let C = limxցa
f ′(x)
g′(x)

and fix ε > 0. Then there exists δ′ > 0 such that a+ δ′ ≤ b and

C − ε <
f ′(x)

g′(x)
< C + ε, x ∈ (a, a+ δ′).

The generalised mean value theorem (Theorem 6.14) implies for a < x < p < a+ δ′

C − ε <
f(x)− f(p)

g(x)− g(p)
< C + ε.

A little bit of algebra shows

C − ε+

(
f(p)− g(p)

)(
C − ε

)

g(x)
<

f(x)

g(x)
< C + ε+

(
f(p)− g(p)

)(
C − ε

)

g(x)
.

Since g(x) → ∞ for xց a, there exists a δ0 > 0 such that

C − 2ε <
f(x)

g(x)
< C + 2ε, x ∈ (a, a+ δ).

The case a = −∞ can be treated similarly.

Similarly it can be shown that

lim
xցα

f(x)

g(x)
= ∞

if f, g : (α, β) → R are differentiable functions with g′(x) 6= 0 in (α, β) and lim
xցα

g(x) = lim
xցα

f ′(x)

g′(x)
=

∞ (see Exercise 6.9).

Inequalities

Definition 6.26. Let I ⊆ R a nonempty real interval. A function f : I → R is called convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), x, y ∈ (a, b), λ ∈ [0, 1].

A function f is called concave if −f is convex.
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x yλx + (1 − λ)y

λf(x) + (1 − λ)f(y)

f(λx + (1 − λ)y)

G(f)

Figure 6.4: Convex function: f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x < y in the domain of f :

Note that λx+ (1− λ)y ∈ [x, y] for λ ∈ [0, 1].

Theorem 6.27. Let I ⊆ R be a nonempty open interval and f : I → R twice differentiable. Then

f convex ⇐⇒ f ′′ ≥ 0.

Proof. “⇐=” Note that f ′ is monotonically increasing on I because f ′′ ≥ 0. Let x, y ∈ I, without
restriction x < y. Then for all λ ∈ (0, 1) it follows that

p := λx+ (1− λ)y ∈ (x, y).

By the mean value theorem (Theorem 6.14) there exist px ∈ (x, p) and py ∈ (p, y) such that

f(p)− f(x)

p− x
= f ′(px) ≤ f ′(py) =

f(y)− f(p)

y − p
. (6.11)

Inequality (6.11) yields

(y − x)f(p) ≤ f(x)(y − p) + f(y)(p− x) = λf(x)(y − x) + (1− λ)f(y)(y − x)

since
y − p = y − λx− (1− λ)y = λ(y − x),

p− x = λx+ (1− λ)y − x = (1− λ)(y − x).

“=⇒” Now assume that f is convex. We will show that f ′ is monotonically increasing. Let
x, y ∈ I, without restriction x < y. For λ ∈ (0, 1) let p be defined as above. Since f is convex it
follows that

0 ≤ λf(x) + (1− λ)f(y)− f(p).

Multiplication by y − x gives

0 ≤ λ(y − x)︸ ︷︷ ︸
=y−p

f(x) + (1− λ)(y − x)︸ ︷︷ ︸
=p−x

f(y)− (y − x)︸ ︷︷ ︸
y−p+p−x

f(p)

= (y − p)[f(x)− f(p)] + (p− x)[f(y)− f(p)].
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Hence, for all p ∈ (x, y):

f(p)− f(x)

p− x
≤ f(y)− f(p)

y − p
.

Since f is differentiable in I it is in particular continuous in I and it follows that

f ′(x) = lim
pցx

f(p)− f(x)

p− x
≤ lim

pցx

f(y)− f(p)

y − p
=
f(y)− f(x)

y − x

= lim
pրy

f(p)− f(x)

p− x
≤ lim

pրy

f(y)− f(p)

y − p
= f ′(y).

Examples. exp : R → R is convex since exp′′ = exp > 0.
ln : R+ → R is concave since ln′′(x) = −x−2 < 0, x ∈ R+.

Theorem 6.28 (Young’s inequality). Let p, q ∈ (1,∞) such that

1

p
+

1

q
= 1.

Then for all a, b ≥ 0:

ab ≤ 1

p
ap +

1

q
bq. (6.12)

Proof. If ab = 0, then inequality (6.12) is clear. Now assume ab > 0. Since the logarithm is concave
and 1

p + 1
q = 1 is follows that

ln
(1
p
ap +

1

q
bq
)
≥ 1

p
ln(ap) +

1

q
ln(bq) = ln(a) + ln(b) = ln(ab).

Since exp : R → R is monotonically increasing, application of exp on both sides of the above
inequality proves (6.12).

Theorem 6.29 (Hölder’s inequality). Let F = R or C, p, q ∈ (1,∞) such that 1
p + 1

q = 1. For

x = (xj)
n
j=1 let

‖x‖p :=
( n∑

j=1

|xj |p
) 1

p

. (6.13)

Then for all x = (xj)
n
j=1 , y = (yj)

n
j=1 ∈ Fn the following inequality holds:

n∑

j=1

|xjyj | ≤ ‖x‖p · ‖y‖q.

Proof. If x = 0 or y = 0 then the inequality (6.13) clearly holds.
Now assume x, y 6= 0. The Young inequality (6.12) with

a =
|xj |
‖x‖p

, b =
|yj |
‖y‖q

yields

|xj | |yj |
‖x‖p ‖y‖q

≤ 1

p

|xj |p
‖x‖pp

+
1

q

|yj |q
‖y‖qq

.
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Taking the sum over j = 1, . . . , n gives

1

‖x‖p ‖y‖q

n∑

j=1

|xjyj | ≤ 1

p

1

‖x‖pp

n∑

j=1

|xj |p

︸ ︷︷ ︸
=‖x‖p

p︸ ︷︷ ︸
=1

+
1

q

1

‖y‖qq

n∑

j=1

|yj |q

︸ ︷︷ ︸
=‖y‖q

q︸ ︷︷ ︸
=1

=
1

p
+

1

q
= 1.

In the special case p = q = 2 we obtain the Cauchy-Schwarz inequality.

Corollary 6.30 (Cauchy-Schwarz inequality). Let F = R or C and n ∈ N. For x = (xj)
n
j=1, y =

(yj)
n
j=1 ∈ Fn let

〈x , y〉 :=
n∑

j=1

xjyj .

be the Euclidean inner product on F. Then

|〈x , y〉| ≤ ‖x‖2 ‖y‖2.

Theorem 6.31 (Minkowski inequality). Let F = R or C and p ∈ (1,∞). For all x, y ∈ Fn it
follows that

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (6.14)

Proof. If x+ y = 0 then (6.14) clearly holds.
Now assume x+ y 6= 0. Let q ∈ (1,∞) such that 1

p + 1
q = 1. The Hölder inequality (6.13) yield

‖x+ y‖pp =

n∑

j=1

|xj + yj | · |xj + yj |p−1

≤
n∑

j=1

|xj | |xj + yj︸ ︷︷ ︸
:=ỹj

|p−1 +
n∑

j=1

|yj | |xj + yj |p−1

≤ ‖x‖p
( n∑

j=1

|xj + yj |
=p︷ ︸︸ ︷

(p−1)q
) 1

q

︸ ︷︷ ︸
‖ỹ‖q

+ ‖y‖p
( n∑

j=1

|xj + yj |
p︷ ︸︸ ︷

(p−1)q
)1

q

=
(
‖x‖p + ‖y‖p

)
‖x+ y‖

p
q
p .

Since p− p
q = p

(
1− 1

q

)
= 1 division by ‖x+ y‖

p
q
p proves (6.14).

Note that the Minkowski inequality is the triangle inequality for ‖ · ‖p:

Corollary 6.32. (F6n, ‖ · ‖p) is normed space for p ∈ (1,∞).

6.3 The Riemann-Stieltjes integral in R

A motivation for integration is to determine the area under the graph of a nonnegative function
defined on an interval (a, b) ⊆ R.
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xa b

Gf

Af

Figure 6.5: Geometric interpretation of the Riemann integral.

In the special case that f is piecewise constant, the area is Af =
∑n

j=1 fj(cj − cj−1) if f(x) = cj for
x ∈ (cj − cj−1). In the general case, the integral will be defined as the limit of integrals of piecewise
functions that approximate f in a suitable sense.

In this section we always assume that −∞ < a < b <∞.

Definition 6.33. A partition of [a, b] is a finite set of points P := {x0, . . . , xn} such that

a = x0 < x1 < · · · < xn−1 < xn = b.

If P, P ′ are partitions of [a, b] and P ⊆ P ′, then P ′ is called a refinement of P .

Obviously, if P,Q are partitions of [a, b], then P ∪Q is a common refinement of both P and Q.

In the following we will always assume that α : [a, b] → R is an increasing function. In particular,
α is bounded because

−∞ < α(a) ≤ α(x) ≤ α(b) <∞, x ∈ [a, b].

Definition 6.34. Let [a, b] ⊆ R, f : [a, b] → R a bounded function. Given a partition P =
{x0, x1, . . . , xn} ⊆ [a, b] we define for j = 1, . . . , n:

∆αj := α(xj)− α(xj−1),

mj := inf{f(x) : x ∈ [xj−1, xj ]},
Mj := sup{f(x) : x ∈ [xj−1, xj ]},

we define the sums

s(f, α, P ) :=

n∑

j=1

mj∆αj , S(f, α, P ) :=

n∑

j=1

Mj∆αj

and the numbers

∫ b

∗ a

f dα := sup{s(f, α, P ) : P partition of [a, b]},
∫ ∗ b

a

f dα := inf{S(f, α, P ) : P partition of [a, b]}.

Last Change: Fri 24 Sep 2021 05:45:34 PM -05



104 6.3. The Riemann-Stieltjes integral in R

Note that

n∑

j=1

∆αj = α(b)− α(a).

Remark 6.35. Let m,M ∈ R such that m ≤ f ≤M . Then for a fixed partition P of [a, b]:

m(α(b)− α(a)) ≤ s(f, α, P ) ≤ S(f, α, P ) ≤M(α(b)− α(a)),

hence
∫ b

∗ a

f dα ≥ m(α(b)− α(a)) > −∞,

∫ ∗ b

a

f dα ≤M(α(b)− α(a)) <∞.

Lemma 6.36. Let f : [a, b] → R be a bounded function.

(i) Let P, P ′ be partitions of [a, b] such that P ⊆ P ′. Then

s(f, α, P ) ≤ s(f, α, P ′) ≤ S(f, α, P ′) ≤ S(f, α, P ).

(ii)

∫ b

∗ a

f dα ≤
∫ ∗ b

a

f dα.

Proof. (i) The middle estimate follows from Remark 6.35. Let us show the first estimate. The
last estimate is proved analogously.
Let P = {x0, x1, . . . , xn}. If P = P ′ then the estimate is clear. Now assume P 6= P ′. It suffices to
show the estimate in the case when P \ P ′ = {y}, for the case P \ P ′ = {y1, . . . , yn} follows then
by induction. Let k ∈ {1, . . . , n} such that xk−1 < y < xk. Then

m−
k := inf{f(x) : x ∈ [xk−1, y]} ≥ mk,

m+
k := inf{f(x) : x ∈ [y, xk]} ≥ mk

and it follows that

s(f, α, P ′)− s(f, α, P )

= m−
k (α(y)− α(xk−1)) +m+

k (α(xk)− α(y))−mk(α(xk)− α(xk−1))

= (m−
k −mk︸ ︷︷ ︸
≥0

)(α(y)− α(xk−1)︸ ︷︷ ︸
≥0

) + (m+
k −mk︸ ︷︷ ︸
≥0

)(α(xk)− α(y)︸ ︷︷ ︸
≥0

) ≥ 0.

(ii) For partitions P1, P2 it follows by (i) that

s(f, α, P1) ≤ s(f, α, P1 ∪ P2) ≤ S(f, α, P1 ∪ P2) ≤ S(f, α, P2).

Taking the supremum over all partitions P1 on the left hand side and the infimum over all partitions
P2 on the right side proves the assertion.

Definition 6.37. A bounded function f : [a, b] → R is called Riemann-Stieltjes integrable (or
simply integrable) with respect to α if

∫ b

∗ a

f dα =

∫ ∗ b

a

f dα.
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In this case ∫ b

a

f dα :=

∫ b

∗ a

f dα =

∫ ∗ b

a

f dα

is called the Riemann-Stieltjes integral of f .

Remark 6.38. In the case when α = id, the integral is called the Riemann-integral. For positive
functions f the integral of f is the area between the graph of f and the x-axis. The following
notation is used:

∫ b

a

f dα =:

∫ b

a

f(x) dα(x),

∫ b

a

f dα =:

∫ b

a

f dx =:

∫ b

a

f(x) dx if α = id .

Notation.

R(α) := {f : [a, b] → R : f is Riemann-Stieltjes integrable with respect to α},
R := R([a, b]) := {f : [a, b] → R : f is Riemann integrable},

Remark 6.39. If α is constant, then obviously every bounded function f is Riemann-Stieltjes

integrable with respect to α and

∫ b

a

f dα = 0.

Theorem 6.40 (Riemann criterion). Let f : [a, b] → R a bounded function. Then f ∈ R(α) if
and only if

∀ ε > 0 ∃Pε partition of [a, b] : S(f, α, Pε)− s(f, α, Pε) < ε.

Proof. “⇐=” Let ε > 0 and Pε as above. By Lemma 6.36 (ii) it follows that

0 ≤
∫ ∗ b

a

f dα

︸ ︷︷ ︸
≤S(f,α,Pε)

−
∫ b

∗ a

f dα

︸ ︷︷ ︸
≥s(f,α,Pε)

≤ S(f, α, P )− s(f, α, P ) < ε.

Since ε > 0 is arbitrary, the assertion is proved.

“=⇒” Assume that f is Riemann-Stieltjes integrable with respect to α and let ε > 0. By Defini-
tion 6.34 there exist partitions P1, P2 of [a, b] such that

∫ b

a

f dα− s(f, α, P1) <
ε

2
, S(f, α, P2)−

∫ b

a

f dα <
ε

2
.

Addition of the inequalities gives

ε > S(f, α, P2)− s(f, α, P1) ≥ S(f, α, P1 ∪ P2)− s(f, α, P1 ∪ P2) ≥ 0.

Theorem 6.41. Every continuous function f : [a, b] → R is Riemann-Stieltjes integrable.

Proof. We use the Riemann criterion to show the integrability of f . Let ε > 0. In the case when
α is constant, the assertion follows immediately from Remark 6.39. Now assume that α is not
constant. In particular, it follows that α(a) 6= α(b). Since f is continuous on the compact set [a, b],
it is uniformly continuous (Theorem 5.33), so there exists an δ > 0 such that

∀x, y ∈ [a, b] |x− y| < δ =⇒ |f(x)− f(y)| < ε

α(b)− α(a)
.
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Now choose n large enough such that

b− a

n
≤ δ

and define the partition P = {x0, x1, . . . , xn} by

xj = a+ j
b− a

n
, j = 0, . . . , n.

Then

S(f, α, P )− s(f, α, P ) =

n∑

j=1

(Mj −mj)∆αj <

n∑

j=1

ε

α(b)− α(a)

α(b)− α(a)

n
= ε.

By the Riemann criterion (Theorem 6.40) f is integrable.

Theorem 6.42. If f : [a, b] → R is monotonic and α is increasing and continuous, then f ∈ R(α).

Proof. Let ε > 0 and n ∈ N such that

n−1(α(b)− α(a))|f(b)− f(a)| < ε.

Since α is continuous there exists a partition P = {x0, x1, . . . , xn} of [a, b] such that

∆αj =
α(b)− α(a)

n
, j = 1, . . . , n.

Without restriction we assume that f is increasing. Then

f(xj−1) = mj ≤Mj = f(xj), j = 1, . . . , n,

and therefore

S(f, α, P )− s(f, α, P ) =

n∑

j=1

(Mj −mj)∆αj ≤
n∑

j=1

(
f(xj)− f(xj−1)

)α(b)− α(a)

n

= n−1(f(b)− f(a))(α(b)− α(a)) < ε

by the choice of n. Therefore f is integrable by the Riemann criterion (Theorem 6.40).

Theorem 6.43 (Properties of the Riemann-Stieltjes integral).

(i) Let f : [a, b] → R and let c ∈ (a, b). Set f1 := f |[a,c], f2 := f |[c,b] and α1 := α|[a,c], α2 :=
α|[c,b]. Then f ∈ R(α) if and only if f1 ∈ R(α1) on [a, c] and f2 ∈ R(α2) on [c, b]. In this
case

∫ b

a

f dα =

∫ c

a

f dα+

∫ b

c

f dα.

Now let f, g ∈ R(α) and γ ∈ R.

(ii) f + γg ∈ R(α) and

∫ b

a

f + γg dα =

∫ b

a

f dα+ γ

∫ b

a

g dα.
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(iii) If f ≤ g then

∫ b

a

f dα ≤
∫ b

a

g dα.

(iv) If f ∈ R(α1) and f ∈ R(α2) on [a, b] then f ∈ R(α1 + γα2) on [a, b] then

∫ b

a

f d(α1 + γα2) =

∫ b

a

f dα1 + γ

∫ b

a

f dα2.

Proof. Exercise.

Theorem 6.44. If f : [a, b] → R is bounded and has only finitely many discontinuities and α is
continuous at every point where f is discontinuous, then f is integrable with respect to α.

Proof. By theorem 6.43 (i) we can write the interval [a, b] as union of smaller intervals each of which
contains only one discontinuity of f . We may even assume that the discontinuity of f is at the
boundary of the interval. Without restriction we will assume that f is continuous in (a, b] and that
α is continuous at a. Let ε > 0 and M > sup{|f(x)| : x ∈ [a, b]}. Since α is continuous in a, there
exists 0 < δ < (b − a)/2 such that |α(a) − α(t)| < ε

4M for all t ∈ [a, a + 2δ]. Since f is continuous
in I = [a+ δ, b], it is integrable there. So we can choose a partition P of I such that

S(f |I , α|I , P )− s(f |I , α|I , P ) <
ε

2
.

Then Q := P ∪ {a} is a partition of [a, b] and

S(f, α,Q)− s(f, α,Q) =
(
sup{f(t) : t ∈ [a, a+ δ]} − inf{f(t) : t ∈ [a, a+ δ]}

)
(α(a+ δ)− α(a))

+ S(f |I , α|I , P )− s(f |I , α|I , P )
< 2M

ε

4M
+
ε

2
= ε.

Hence f is integrable on [a, b] by the Riemann criterion (Theorem 6.40).

Theorem 6.42 and Theorem 6.44 and show that every function f : [a, b] → R that is either monotonic
or has only finitely many discontinuities is Riemann integrable.

Theorem 6.45. Let f ∈ R(α) and m,M ∈ R such that R(f) ⊆ [m,M ]. If Φ : [m,M ] → R is
continuous, Then h = Φ ◦ f ∈ R(α).

Proof. Let ε > 0. Since Φ is uniformly continuous on [m,M ] there exists a δ ∈ (0, ε) such that

|x− y| < δ =⇒ |Φ(x)− Φ(y)| < ε, x, y ∈ [a, b] (6.15)

Let Mj ,mj for f as in Definition 6.34 and m′
j ,M

′
j the analogon for h.

Since by assumption f ∈ R(α), there exists a partition P of [a, b] such that

S(f, α, P )− s(f, α, P ) ≤ δ2. (6.16)

Let A := {j :Mj −mj < δ}, B := {j :Mj −mj ≥ δ}. Then

j ∈ A =⇒ M ′
j −m′

j ≤ ε by (6.15)

j ∈ B =⇒ M ′
j −m′

j ≤ 2‖Φ‖∞.
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xq1 q2

b

a = x0 b = xn

f(x)

Figure 6.6: The function f has only finitely many discontinuities. Use [a, b] = [a, p1] ∪ · · · ∪ [qn, b] such
that f restricted to these subintervals has sigularities only at the boundaries of these subintervals.

From (6.16) it follows that

∑

j∈B

∆αj ≤
∑

j∈B

Mj −mj

δ︸ ︷︷ ︸
≤1

∆αj ≤
1

δ

(
S(f, α, P )− s(f, α, P )

) (6.16)
< δ.

Therefore h ∈ R(α) by the Riemann criterion (Theorem 6.40) because

S(h, α, P )− s(h, α, P ) =
∑

j∈A

(M ′
j −m′

j)∆αj +
∑

j∈B

(M ′
j −m′

j)∆αj

≤ ε
(
α(b)− α(a)

)
+ 2‖Φ‖∞δ < ε

(
α(b)− α(a) + 2‖Φ‖∞

)

and ε > 0 was arbitrary.

Theorem 6.46. Let f ∈ R(α). Then also |f | ∈ R(α) and

∣∣∣
∫ b

a

f dα
∣∣∣ ≤

∫ b

a

|f | dα.

Proof. Since | · | : R → R is continuous, |f | ∈ R(α) by Theorem 6.45. Chose c ∈ {±1} such that

c

∫ b

a

f dα ≥ 0.

By Theorem 6.43 (ii) and (iii) it follows that

∣∣∣
∫ b

a

f dα
∣∣∣ = c

∫ b

a

f dα =

∫ b

a

cf︸︷︷︸
≤|f |

dα ≤
∫ b

a

|f | dα.

Theorem 6.47. Let f, g ∈ R(α). Then also f2 and fg ∈ R(α).
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Proof. Since R → R, x 7→ x2 is continuous, Theorem 6.45 implies that f2 ∈ R(α). In order to see
that fg ∈ R(α) note that fg = 1

4 [(f + g)2 − (f − g)2].

Theorem 6.48. Let α : [a, b] → R be increasing and differentiable with α′ ∈ R. If f : [a, b] → R is
bounded, then f ∈ R(α) if and only if fα′ ∈ R. In this case

∫ b

a

f dα =

∫ b

a

fα′ dx. (6.17)

Proof. Let ε > 0. Since α′ ∈ R, there exists a partition Pε = {x0, x1, . . . , xn} of [a, b] such that

S(α′, Pε)− s(α′, Pε) < ε.

By the mean value theorem, for all j = 1, . . . , n there exists tj ∈ [xj−1, xj ] such that ∆αj =
α′(tj)∆xj . For arbitrary sj ∈ [xj−1, xj ] we have

∣∣∣
n∑

j=1

f(sj)∆αj︸︷︷︸
= α′(tj)∆xj

−
n∑

j=1

f(sj)α
′(sj)∆xj

∣∣∣ =
∣∣∣

n∑

j=1

f(sj)
[
α′(tj)− α′(sj)

]
∆xj

∣∣∣

≤ ‖f‖∞
∣∣∣

n∑

j=1

[
α′(tj)− α′(sj)

]
∆xj

∣∣∣ ≤ ‖f‖∞
(
S(α′, Pε)− s(α′, Pε)

)
< ε‖f‖∞.

Since the sj are chosen arbitrarily in [xj−1, xj ], we can chose them such that 0 ≤ S(f, α, Pε) −∑n
j=1 f(sj)∆αj < ε. Then the above inequality implies

S(f, α, Pε) < ε+

n∑

j=1

f(sj)∆αj < ε+ ε‖f‖∞ +

n∑

j=1

f(sj)α
′(sj)∆xj

≤ ε(1 + ‖f‖∞) + S(fα′, Pε). (6.18)

Analogously, if we chose the sj such that 0 ≤ S(fα′, Pε) −
∑n

j=1 f(sj)α
′(sj)∆xj < ε, then the

above inequality implies

S(fα′, Pε) < ε(1 + ‖f‖∞) + S(f, α, Pε). (6.19)

Inequalities (6.18) and (6.19) imply

|S(fα′, Pε)− S(f, α, Pε)| < ε(1 + ‖f‖∞). (6.20)

Analogously

|s(fα′, Pε)− s(f, α, Pε)| < ε(1 + ‖f‖∞) (6.21)

can be shown. From the inequalities (6.20) and (6.21) if follows that f ∈ R(α) if and only if fα′ ∈ R
and in this case, formula (6.17) holds.

Theorem 6.49 (Change of variables). Let [a, b] and [A,B] nonempty intervals in R and ϕ :
[A,B] → [a, b] a monotonically increasing bijection. Suppose that α : [a, b] → R is monotonically
increasing and that f ∈ R(α). Let

β := α ◦ ϕ : [A,B] → R, g := f ◦ ϕ : [A,B] → R.

Then g ∈ R(β) and

∫ B

A

g dβ =

∫ b

a

f dα.
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110 6.4. Riemann integration and differentiation

Proof. Since ϕ is increasing, also β is an increasing function on [A,B]. The bijection ϕ induces a
bijection between the partitions of [A,B] and the partitions of [a, b]:

ϕ∗ : {P : partition of [A,B]} → {P : partition of [a, b]},
{x0, x1, . . . , xn} 7→ {ϕ(x0), ϕ(x1), . . . , ϕ(xn)}.

Since S(g, β, P ) = S(f ◦ ϕ, α ◦ ϕ, P ) = S(g, β, ϕ∗P ) and analogously s(g, α, P ) = s(g, β, ϕ∗P ) for
every partition P of [A,B] it follows that

∫ ∗ b

a

f dα =

∫ ∗ b

a

g dβ,

∫ b

∗ a

f dα =

∫ b

∗ a

g dβ.

Corollary 6.50. In the special case when α = id and β = ϕ is differentiable such that ϕ′ ∈ R, we
obtain the transformation formula

∫ B

A

(f ◦ ϕ)(y)ϕ′(y) dy =

∫ ϕ(B)

ϕ(A)

f(x) dx.

6.4 Riemann integration and differentiation

Theorem 6.51 (Intermediate value theorem of integration). Let f : [a, b] → R continuous
and g : [a, b] → R Riemann integrable with g ≥ 0. Then there exists a p ∈ [a, b] such that

∫ b

a

f(x)g(x) dx = f(p)

∫ b

a

g(x) dx

Proof. Since f is continuous on the compact interval [a, b], there exist m,M ∈ R such that R(f) =
[m,M ] (Theorem 5.24 and Theorem 5.30). It follows that mg ≤ fg ≤ Mg because g ≥ 0. By
Theorem 6.43 we obtain

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤M

∫ b

a

g(x) dx.

Hence there exists an µ ∈ [m,M ] such that

µ

∫ b

a

g(x) dx =

∫ b

a

f(x)g(x) dx.

By the intermediate value theorem (Theorem 5.24) there exists a p ∈ [a, b] such that f(p) = µ.

Notation 6.52. If f : [a, b] → R is Riemann integrable, we set

∫ a

a

f(x) dx := 0,

∫ a

b

f(x) dx := −
∫ b

a

f(x) dx.

Theorem 6.53. Let f : [a, b] → R Riemann integrable. Let

Fa(x) :=

∫ x

a

f(t) dt, t ∈ [a, b].

Then Fa is continuous in [a, b]. If f is continuous in x0 ∈ [a, b], then Fa is differentiable in x0 and

F ′
a(x0) = f(x0).
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Proof. Since f is integrable, it is bounded in [a, b]. Let M ≥ |f | and x < y ∈ [a, b]. Then the
continuity of Fa follows from

|Fa(x)− Fa(y)| =
∣∣∣∣
∫ y

x

f(t) dt

∣∣∣∣ ≤
∫ y

x

|f(t)| dt ≤M |y − x|.

Now assume that f is continuous in x0 ∈ [a, b] and let ε > 0. Then there exists a δ > 0 such that

|x0 − x| < δ =⇒ |f(x0)− f(x)| < ε, x ∈ [a, b].

Theorem 6.46 implies for x ∈ [x0, x0 + δ] ∩ [a, b]:

∣∣∣∣
Fa(x)− Fa(x0)

x− x0
− f(x0)

∣∣∣∣ =
1

x− x0

∣∣∣∣
∫ x

x0

f(x)− f(x0) dx

∣∣∣∣

≤ 1

x− x0

∫ x

x0

|f(x)− f(x0)|︸ ︷︷ ︸
<ε

dx < ε.

Analogously for x ∈ [x0 − δ, x0] ∩ [a, b].

The proof shows that Fa is even Lipschitz continuous.

Definition 6.54. Let f : [a, b] → R Riemann integrable. A differentiable function F : [a, b] → R is
called an antiderivative of f if

F ′(x) = f(x), x ∈ [a, b].

In this case we write

F (x) =

∫
f(x) dx.

Proposition 6.55. Let f : [a, b] → R Riemann integrable and F an antiderivative of f . Then
G : [a, b] → R is an antiderivative of f if and only if F −G = const.

Proof. Assume that F −G ≡ c ∈ R. Then G is differentiable and G′ = F ′ = f .
Now assume that G is an antiderivative of f . Then (F −G)′ = f−f = 0. Therefore F −G = const.
by Theorem 6.15.

Theorem 6.56 (Fundamental theorem of calculus). Let f : [a, b] → R continuous and F :
[a, b] → R an antiderivative of f . Then

∫ b

a

f(t) dt = F (b)− F (a).

Proof. Let Fa be the antiderivative of f defined in Theorem 6.53. By Proposition 6.55 there exists
a constant c such that F = Fa − c, hence

F (b)− F (a) = (F (b)− c)− (F (a)− c) = Fa(b)− Fa(a) =

∫ b

a

f(t) dt.

Corollary 6.57. If F : [a, b] → R is continuously differentiable, then

F (x) = F (a) +

∫ x

a

F ′(t) dt.
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The fundamental theorem implies two methods to find the integral of a given function.

Theorem 6.58 (Substitution rule). Let f : [a, b] → R continuous, ϕ : [A,B] → [a, b] continu-
ously differentiable. Then

∫ B

A

(f ◦ ϕ)(y)ϕ′(y) dy =

∫ b

a

f(x) dx.

Proof. Let F be an antiderivative of f . Then F ◦ϕ is an antiderivative of (f ◦ϕ)ϕ′ because by the
chain rule

(F ◦ ϕ)′(y) = F ′(ϕ(y))ϕ′(y),= f(ϕ(y))ϕ′(y), y ∈ [A,B].

The Fundamental Theorem of Calculus implies

∫ B

A

(f ◦ ϕ)(y)ϕ′(y) dy = (F ◦ ϕ)(B)− (F ◦ ϕ)(A) = F (ϕ(B))− F (ϕ(A))

=

∫ ϕ(B)

ϕ(A)

f(x) dx.

Corollary. Let f : [a, b] → R continuous and c ∈ R. Then

(i)

∫ B+c

A+c

f(x) dx =

∫ B

A

f(x+ c) dx if [A+ c,B + c] ⊆ [a, b],

(ii)

∫ cB

cA

f(x) dx =

∫ B

A

f(cx) dx if [cA, cB] ⊆ [a, b].

Theorem 6.59 (Integration by parts). Let f, g : [a, b] → R be continuously differentiable. Then

∫ b

a

f ′(x)g(x) dx+

∫ b

a

g′(x)f(x) dx = [f(x)g(x)]
b
a .

Proof. The formula follows immediately from the Fundamental Theorem of Calculus because fg is
an antiderivative of f ′g + fg′.

Improper integrals

Until now, we considered integrals of bounded functions on bounded and closed intervals. Next we
want to extend the integral also to functions that are defined on open or halfopen intervals and
possibly unbounded.

Definition 6.60. Let D ⊆ R be an interval. A function f : D → R is called locally Riemann
integrable if for every compact interval [α, β] ⊆ [a, b] the restriction f |[α,β] is Riemann integrable.
For a locally integrable function f its improper integral

∫
D
f dx of f is defined by

(i) if D = (a, b]:

∫

D

f dx = lim
tցa

∫ b

t

f(x) dx if the limit exists,

(ii) if D = [a, b) analogously,

(iii) if D = (a, b): for arbitrary c ∈ (a, b):

∫

D

f dx = lim
tցa

∫ c

t

f(x) dx = lim
tրb

∫ t

c

f(x) dx if both limits exist.
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Remark. (i) If f is Riemann integrable then its Riemann integral and its improper Riemann

integral are equal. Therefore we use the notation
∫ b

a
f(x) dx also for improper integrals.

(ii) The properties of Theorem 6.43 hold also for improper integrals. In particular, the definition
in (iii) does not depend on the chosen c.

Examples 6.61. (i)

∫ ∞

1

1

xs
dx =

{
1

s−1 , s > 1,

diverges to ∞, s ≤ 1.

Proof. For β > 1 and s 6= 1 we have that

∫ β

1

1

xs
dx =

[
1

−s+ 1
x−s+1

]β

1

=
β−s+1 − 1

−s+ 1

β→∞−−−−→
{

1
s−1 , −s+ 1 < 0,

∞, −s+ 1 > 0.

For s = 1 we find

∫ β

1

1

xs
dx = [lnx]

β
1 = lnβ → ∞ for β → ∞.

(ii)

∫ 1

0

1

xs
dx =

{
1

1−s , s < 1,

diverges to ∞, s ≥ 1.

Proof. Analogously as in (i).

(iii)

∫ ∞

−∞

1

1 + x2
dx = π.

Proof. Let c ∈ R arbitrary. For a < c and b > c we have that

∫ b

c

1

1 + x2
dx = arctanx

∣∣b
c
= arctan b− arctan c

b→∞−−−→ π

2
− arctan c,

∫ c

a

1

1 + x2
dx = arctanx

∣∣c
a
= arctan c− arctan a

a→−∞−−−−−→ arctan c− π

2
.

Therefore the improper integral exists and

∫ ∞

−∞

1

1 + x2
dx =

π

2
− arctan c+ arctan c− π

2
= π.

Proposition 6.62. Let −∞ ≤ a < b ≤ ∞ and f : (a, b) → R such that the improper integral∫ b

a

|f(x)| dx converges. Then also

∫ b

a

f(x) dx converges.

Proof. Let c ∈ (a, b). We use apply the Cauchy criterion for convergence of a continuous function
(see Theorem 5.15) to the continuous function F (x) :=

∫ x

c
f(t) dt. For arbitrary α < β ∈ (a, b) it

follows that

∣∣F (β)− F (α)
∣∣ =

∣∣∣
∫ β

α

f(t) dt
∣∣∣ ≤

∫ β

α

|f(t)| dt→ 0 if α, β → a or α, β → b.

Proposition 6.63 (Monotone convergence). Let f : [a, b) → R be a positive Riemann integrable

function. Then
b∫
a

f dt converges if and only if f is bounded.
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114 6.4. Riemann integration and differentiation

Proof. For x ∈ [a, b) let F (x) =
∫ x

a
f dt and set s = sup{F (x) : x ∈ [a, b)}. If s < ∞, then for

every ε > 0 there exists an x0 ∈ [a, b) such that F (x0) > s− ε. Since F is monotonically increasing
it follows that F (x) ∈ (s − ε, s) for all x ≥ x0, hence lim

x→b
F (x) = s. If s = ∞, then it follows

analogously that lim
x→b

F (x) = ∞.

Theorem 6.64 (Integral test for convergence of series). Let f : [0,∞) → R be a monotoni-
cally decreasing function. Then

∞∑

n=1

f(n) converges ⇐⇒
∫ ∞

1

f(x) dx converges.

Proof. Since f is decreasing, it follows that

f(k + 1) ≤
∫ k+1

k

f(t) dt ≤ f(k), k ∈ N.

Summation from 1 to n yields

n+1∑

k=2

f(k) ≤
∫ n+1

1

f(t) dt ≤
n∑

k=1

f(k), k ∈ N.

Therefore the series converges if and only if the integral converges.

Example 6.65. Let s > 1. Since by Theorem 6.64
∫ ∞

1

x−s dx <
∞∑

n=1

n−s < 1 +

∫ ∞

1

x−s dx,

we have the chain of strict inequalities

1

s− 1
<

∞∑

n=1

n−s <
s

s− 1
.

For s > 1 let ζ(s) =
∑∞

n=1 n
−s. ζ is called the Riemann zeta function.

For series we could proof that the convergence of
∑∞

j=1 an implies that an → ∞ for n → ∞. For
improper integrals, however, this is no longer true as the following example show.

Example 6.66 (Fresnel integral).
∫ ∞

0

sin(t2) dt = lim
b→∞

∫ b

0

sin(t2) dt = lim
b→∞

1

2

∫ b

0

sin(u)√
u

du

where we used the substitution u = t2. To see that the integral converges we write b = πn+ s with
n ∈ N and s ∈ [0, π). Then

∫ b

0

sin(u)√
u

du =
n∑

m=1

∫ πm

π(m−1)

sin(u)√
u

du+

∫ πm+s

πm

sin(u)√
u

du.

For n → ∞, the sum sum converges by the Leibniz criterion for alternating series (Theorem 4.54)
while the absolute value of the last integral is smaller than π√

n
. There exist functions that are

unbounded but whose integral is finite:
∫ ∞

0

2t sin(t4) dt =

∫ ∞

0

sin(u2) du <∞,

where we used the same substitution as above.
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xx

sin(t2)

x

2t sin(t4)

Figure 6.7: The function does not tend to zero, yet its integral is finite.

6.5 Differentiation and integration of sequences of functions

Theorem 6.67. For all n ∈ N let fn : [a, b] → R be continuous and assume that (fn)n∈N converges
uniformly. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx. (6.22)

Proof. Let f be the uniform limit of (fn)n∈N. Then f is continuous by Theorem 5.40 and Riemann
integrable by Theorem 6.41. Equation 6.22 follows from

∣∣∣
∫ b

a

fn dx−
∫ b

a

f dx
∣∣∣ =

∫ b

a

∣∣fn − f
∣∣ dx ≤

∫ b

a

∥∥fn − f
∥∥
∞ dx

≤ (b− a)
∥∥fn − f

∥∥
∞.

Example 6.68. In Theorem 6.67 pointwise convergence of the fn is not enough. For n ∈ N let

fn(x) :=





2n2x, 0 ≤ x ≤ 1
2n ,

2n− 2n2x, 1
2n < x ≤ 1

n ,

0, x ≥ 1
2n .

We saw in Example 5.35 and Exercise 5.7 that the sequence of functions converges pointwise to 0.
Obviously

∫ ∞

0

f(x) dx = 0 but

∫ ∞

0

fn(x) dx =
1

2
, n ∈ N.

Remark. Theorem 6.67 implies that the integral is a continuous linear operator from the space of
the continuous functions on [a, b] to R:

∫
: C([a, b],R) → R, f 7→

∫ b

a

f(t) dt.

Theorem 6.69. For all n ∈ N let fn : [a, b] → R be continuously differentiable and assume that
the sequence of the derivatives (f ′n)n∈N converges uniformly and there exists a p ∈ [a, b] such that
(fn(p))n∈N converges. Then the sequence (fn)n∈N converges pointwise to a continuously differen-
tiable function f : [a, b] → R and

f ′(x) =
d

dx
( lim
n→∞

fn)(x) = lim
n→∞

f ′n(x), x ∈ [a, b]. (6.23)
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116 6.5. Differentiation and integration of sequences of functions

Proof. Note that if the fn converge uniformly, then the restrictions fn|D to any subintervalD ⊆ [a, b]
also converges uniformly. For all n ∈ N and x ∈ [a, b] we have that fn(x) =

∫ x

p
f ′n(t) dt, therefore

we can define f as the pointwise limit of the sequence (fn)n∈N by

f(x) := lim
n→∞

fn(p) + lim
n→∞

∫ x

p

fn(t)
′ dt = lim

n→∞
fn(p) +

∫ x

p

lim
n→∞

fn(t)
′ dt

where the last equality follows from Theorem 6.67. Therefore, f is a continuously differentiable
function and satisfies (6.23).

Note that in the preceding theorem all assumptions are necessary. For example, the sequence
(fn)n∈N defined by

fn(x) =
sin(nx)

n
, x ∈ R,

converges uniformly to 0, but the sequence of its derivatives f ′n(x) = cos(nx) does not even converge
pointwise.

Corollary 6.70. Let f be defined by a power series
∑∞

n=0 cn(x − a)n with radius of convergence
R. Then the formal integral and the formal derivative of f

∞∑

n=1

ncn(x− a)n−1 and

∞∑

n=0

cn
n+ 1

(x− a)n+1

have the same radius of convergence R and are power series representations of f ′ and
∫
f dx,

respectively, in BR(a).

Proof. The assertion about the radius of convergence follows easily from Theorem 5.45. All other
assertions follow from Theorem 6.67 and Theorem 6.69.

Example 6.71. The power series representation of ln(1 + x) is

∞∑

n=1

(−)n+1

n
xn, |x| < 1, (6.24)

and

ln(2) = 1− 1

2
+

1

3
− 1

4
+

1

5
∓ · · · (6.25)

The first formula follows because for |x| < 1 we have

ln(1 + x) =

∫ x

1

1

1 + t
dt =

∫ x

1

∞∑

n=0

(−t)n dt =

∞∑

n=0

∫ x

1

(−t)n dt =

∞∑

n=0

(−)n tn+1

n+ 1
.

Since the logarithm is continuous at x+1 = 2 and the series (6.24) converges also for x = 1, formula
(6.25) follows from Abel’s theorem (Theorem 5.48).
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Chapter 7

Taylor series and approximation of

functions

7.1 Taylor series

Assume that the function f has the power series representation

f(x) =

∞∑

n=0

cn(x− a)n (7.1)

with radius R > 0.
We already know that f can be differentiated arbitrarily often on BR(a) (Corollary 6.70). Note
that

d

dxk
cn(x− a)n =

{
0, k > n,

n!
(n−k)! cn(x− a)n−k, k ≤ n.

This implies that

dk

dxk
f(a) =

k!

(k − k)!
ck(x− a)k−k = k! ck.

If we insert the resulting formula for the coefficients ck into the power series representation of f we
obtain

f(x) =
∞∑

n=0

1

n!
f [n](a) (x− a)n. (7.2)

Therefore the coefficients of the power series representation (7.1) of f in a are determined by the
derivatives of f in a. In particular, the power series representation of f in BR(a) is unique.

The questions we address in this chapter are whether every function can be approximated by a
polynomial and whether every C∞ function has a power series representation.

Definition 7.1. Let D ⊆ R an interval, f : D → R n-times differentiable at some p ∈ D. Then
the polynomial

jnp f(t) :=
n∑

k=0

f [k](p]

k!
tk (7.3)

117



118 7.1. Taylor series

is called the nth Taylor polynomial (or the n-jet) of f at p. If f ∈ C∞(D) (i. e., if f is arbitrarily
often differentiable), then the power series

j∞p f(t) := jpf(t) :=

∞∑

k=0

f [k]

k!
tk (7.4)

is the Taylor series (or jet) of f at p. For n ∈ N and x ∈ D we define the remainder term

Rn(x) := f(x)− jnp f(x− p), (7.5)

Remark 7.2. • f(x) = jnp f(x− p) +Rn(x), n ∈ N, x ∈ D,

• f [k](p) =
dk

dtk
jnp f(0), 0 ≤ k ≤ n,

• R[k]
n (p) = 0, 0 ≤ k ≤ n,

Formula (7.5) is only the definition of the remainder term. This representation of f is useful because
|Rn| can be expressed in terms of the (n + 1)th derivative of f (if it exists). Hence, when f (n+1)

can be estimated, then the nth Taylor polynomial is a good approximation of f .

Theorem 7.3 (Taylor’s theorem). Let D ⊆ R and interval and f ∈ C [n+1](D) (i. e., f is
(n+ 1)-times continuously differentiable in D), and let p, x ∈ D. Then

f(x) = jnp f(x− p) +Rn(x)

with

Rn(x) =
1

n!

∫ x

p

(x− t)nf [n+1](t) dt. (7.6)

Proof. We prove formula (7.6) by induction. Since jnp f is a polynomial of degree less or equal to n,

it follows that f [n+1] = R
[n+1]
n . Note that

R[n+1]
n (p) = f [n+1](p) and R[k]

n (p) = 0, 0 ≤ k ≤ n.

Integration by parts yields

∫ x

p

(x− t)nR[n+1]
n (t) dt =

[
(x− t)nR[n]

n (t)
]x
t=p

+ n

∫ x

p

(x− t)n−1R[n]
n (t) dt.

For n ≥ 1 the term in brackets vanishes. Integrating the left hand side n-times by parts we obtain

∫ x

p

(x− t)nR[n+1]
n (t) dt = n!

∫ x

p

R′
n(t) dt = n!(Rn(x)−Rn(p)) = n!Rn(x).

Using the intermediate value theorem of integration (Theorem 6.51) it follows that there exists an
ξ between x and p such that

Rn(x) =
f [n+1](ξ)

n!

∫ x

p

(x− t)n dt =
f [n+1](ξ)

(n+ 1)!
(x− p)n+1.

For real valued functions the formula above is true even if f [n+1] is not continuous as the next
theorem shows.
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Theorem 7.4 (Lagrange form of the remainder term). Let D ⊆ R and interval and f ∈
C [n](D) (i. e., f is n-times continuously differentiable in D), and assume that f [n] is differentiable.
For p and x ∈ D there exists ξ between p and x (excluding p and x) such that

Rn(x) =
f [n+1](ξ)

(n+ 1)!
(x− p)n+1. (7.7)

Proof. Let x ∈ D. For x = p there is nothing to show. Now assume x > p. (The proof for x < p
is analogous.) By assumption Rn (defined in (7.5)) is (n + 1) times differentiable on D. By the
generalised mean value theorem (Theorem 6.24) there exist p < ξn+1 < · · · < ξ1 < x such that

Rn(x)

(x− p)n+1
=

Rn(x)−Rn(p)

(x− p)n+1 − 0n+1
=

1

n+ 1

R′
n(ξ1)

(ξ1 − p)n

=
1

n+ 1

R′
n(ξ1)−R′

n(p)

(ξ1 − p)n − 0n
=

1

(n+ 1)n

R′′
n(ξ2)

(ξ2 − p)n−1

= . . . =
1

(n+ 1)!

R
[n]
n (ξn)

ξn − p

=
1

(n+ 1)!

R
[n]
n (ξn)−R

[n]
n (p)

(ξn − p)− 0
=

1

(n+ 1)!

R
[n+1]
n (ξn+1)

1
=
f [n+1](ξn+1)

(n+ 1)!
.

Setting ξ = ξn+1 shows (7.7).

Remark 7.5. Formula (7.6) is also true for complex functions f , but the Lagrange form (7.7) holds
only for real valued functions f (because the proof uses the generalized mean value theorem).

Definition 7.6. Let X, Y normed vector spaces, D ⊆ X, f, g : D → Y and p limit point of D f
g
.

The Landau symbols O and o are defined by

(i) f(x) = O(g(x)), x→ p, if

∃ δ > 0 ∃ C > 0 ∀x ∈ D : ‖x− p‖ < δ =⇒ ‖f(x)‖ ≤ C‖g(x)‖,

(ii) f(x) = o(g(x)), x→ p, if lim
x→p

‖f(x)‖
‖g(x)‖ = 0.

Using the Landau symbols, Theorem 7.4 says

(f −Rn)(x) = O((x− p)n+1) and (f −Rn)(x) = o((x− p)n) for x→ p,

that is, f −Rn vanishes of order (x− p)n as x→ p.

Remark 7.7. The radius of convergence of the Taylor series of an arbitrarily often differentiable
function can be 0. If the Taylor series converges on an interval, it does not necessarily converge to
f . But if f has a power series representation, then it is its Taylor series.

The Taylor series of the exponential function and sin and cos are the power series given in Defini-
tion 5.49. Another important example is the binomial series .

Definition 7.8. For α ∈ R and k ∈ N the generalised binomial coefficients are defined to be

(
α

k

)
:=

α(α− 1) · · · (α− k + 1)

k!
,

(
α

0

)
:= 1.
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120 7.1. Taylor series

For α ∈ N0 this definition coincide with Definition 2.18. As in the proof of Proposition 2.19 it can
be shown that

(
α− 1

k − 1

)
+

(
α− 1

k

)
=

(
α

k

)
.

Example 7.9. For α ∈ R

(1 + x)α =

∞∑

n=0

(
α

n

)
xn, |x| < 1. (7.8)

Proof. For α ∈ N0, the assertion is already proved in Theorem 2.22. Now assume that α /∈ N0. The
power series in (7.8) has radius of convergence R = 1 because

∣∣∣∣∣

(
α

n

)(
α

n+ 1

)−1
∣∣∣∣∣ =

∣∣∣ n+ 1

α− n

∣∣∣→ 1 for n→ ∞.

Let f(x) =
∑∞

n=0

(
α
n

)
xn, |x| < 1. Then

(1 + x)f ′(x) = (1 + x)
∞∑

n=1

n

(
α

n

)
xn−1 = (1 + x)

∞∑

n=1

α

(
α− 1

n− 1

)
xn−1

= α(1 + x)
(
1 +

∞∑

n=2

(
α− 1

n− 1

)
xn−1

)
= α

(
1 +

∞∑

n=2

((α− 1

n

)
+

(
α− 1

n− 1

))
xn
)

= α
(
1 +

∞∑

n=1

(
α

n

)
xn
)
= α

∞∑

n=0

(
α

n

)
xn = αf(x).

Let ϕ(x) = f(x)
(1+x)α , |x| < 1. By the result above we find that ϕ is constant because

ϕ′(x) =
(1 + x)αf ′(x)− f(x)α(1 + x)α−1

(1 + x)2α
= 0.

Since f(0) = 1 = (1 + 0)α it follows that ϕ = 1, hence f(x) = (1 + x)α, |x| < 1.

Special cases:

(i) α = −1: (1 + x)−1 =

∞∑

k=0

(−1

k

)
xk =

∞∑

k=0

(−)kxk (geometric series),

(ii) α = −2: (1 + x)−2 =

∞∑

k=0

(−2

k

)
xk =

∞∑

k=0

(−)k(k + 1)xk,

(iii) α = 1
2 :

√
1 + x =

∞∑

k=0

(
1/2

k

)
xk = 1 +

1

2
x− 1

2 · 4 x
2 +

1 · 3
2 · 4 · 6 x

3 ∓ · · · ,

(iv) α = − 1
2 :

1√
1 + x

=

∞∑

k=0

(−1/2

k

)
xk = 1− 1

2
x+

1 · 3
2 · 4 x

2 − 1 · 3 · 5
2 · 4 · 6 x

3 ± · · · ,

From (ii), for instance, it follows that

√
2 =

√
1 + 1 = 1 +

1

2
− 1

2 · 4 +
1 · 3

2 · 4 · 6 − 1 · 3 · 5
2 · 4 · 6 · 8 ± · · ·

because the series converges converges also for x = 1 by the Leibniz criterion (Theorem 4.54) and
is equal to

√
2 by Abel’s theorem (Theorem 5.48).
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Calculating with Taylor series

Example 7.10. lim
x→0

1− cosx

x2
=

1

2
.

Proof. Let f(x) = 1− cos(x). Since f(0) = f ′(0) = 0 and f ′′(0) = 1 it follows from equation (7.7)
that f(x) = 1

2x
2 + x3ϕ(x) where ϕ(x) is bounded by 1

4!‖f ′′′‖∞ = 1
4! . Therefore

lim
x→0

1− cosx

x2
= lim

x→0

(1
2
+ xϕ(x)

)
=

1

2
.

Note that the limit can also be found by applying l’Hospital’s rule twice.

Theorem 7.11. Let D ⊆ R be an interval, p ∈ D and f, g : D → R. If f and g are n-times
differentiable in 0 then

jn0 (f + g) = jn0 f + jn0 g, jn0 (fg) = jn0

(
jn0 f · jn0 g

)
. (7.9)

If f, g ∈ C∞(D), then

j0(f + g) = j0f + j0g, j0(fg) = j0f · j0g (Cauchy product).

Proof. The first formula in (7.9) follows immediately from the linearity of the differentiation (The-

orem 6.8). For the second formula, we define f̃ and g̃ by

f = jn0 f + f̃ , g = jn0 g + g̃.

Obviously f̃ [k](0) = 0 and g̃[k](0) = 0 for 0 ≤ k ≤ n. It follows that

f · g = jn0 f · jn0 g + (f̃ g + g̃jn0 f).

Since the derivatives of order 0 ≤ k ≤ n of the terms in brackets are 0, it follows that

jn0 (f · g) = jn0 (j
n
0 f · jn0 g).

Example 7.12. The Taylor series of
ln(1 + x)

1 + x
at 0 is

∞∑

n=1

(−)n+1
( n∑

k=1

1

k

)
xn.

Proof. The Taylor series of ln(1 + x) and (1 + x)−1 at 0 are for |x| < 1

(1 + x)−1 =

∞∑

n=0

(−)nxn, ln(1 + x) =

∫ x

0

(1 + t)−1 dt =

∞∑

n=0

(−)n

n+ 1
xn+1.

Therefore we obtain the desired Taylor series as the Cauchy product of the two series:

( ∞∑

n=0

(−)nxn
)( ∞∑

n=0

(−)nxn+1

n+ 1

)
= −

∞∑

n=1

(n−1∑

k=0

(−)n−k · (−)k+1

k + 1

)
xn

= −
∞∑

n=1

(−)n
( n∑

k=1

1

k

)
xn.

Example 7.13. The function R → R, x 7→ x(1 + x− cosx) has a local minimum at 0.
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122 7.1. Taylor series

Proof. The jets are

j(1 + x− cosx) = x+ . . . =⇒ j(x(1 + x− cosx)) = x2 + . . . ,

so the function behaves locally like x2 and has therefore a local minimum at 0.

Example 7.14. Use the method of undetermined coefficients to find the Taylor series of tan at 0.

Solution. We have to determine coefficients aj , j ∈ N0 such that locally at 0

j0 tanx =

∞∑

n=0

anx
n.

Since tan(0) = 0 it follows that a0 = 0. We know that tan′(x) = 1 + (tan(x))2 and

d

dx

∞∑

n=0

anx
n =

∞∑

n=1

nanx
n−1 =

∞∑

n=0

(n+ 1)an+1x
n,

1 +
( ∞∑

n=0

anx
n
)2

= 1 +
∞∑

n=0

( n∑

k=0

akan−k

)
xn

Comparison of the coefficients yield the recursion formula for the an:

a0 = 0, a1 = 1, nan =
n−2∑

k=1

akan−k−1, n ≥ 2.

In particular, a2n = 0 for all n ∈ N0.

The following theorem generalises the chain rule.

Theorem 7.15. Let Df , Dg ⊆ R be intervals, f : Df → R and g : Dg → R n-times differentiable
functions such that f(Df ) ⊆ Dg. Moreover let p ∈ Df and q := f(p) ∈ Dg. Then

jnp (g ◦ f) = jn0
(
(jnq g) ◦ (jnp f − q)

)
.

If f and g are arbitrarily often differentiable, then

jp(g ◦ f) = j0
(
(jqg) ◦ (jpf − q)

)
.

Proof. Without restriction, we can assume p = q = 0. If g is a polynomial, then the assertion
follows from Theorem 7.11. If g is not a polynomial then we define g̃ by g = jn0 g + g̃. We obtain

jn0 (g ◦ f) = jn0 ((j
n
0 g) ◦ f + g̃ ◦ f) = jn0 ((j

n
0 g) ◦ f) + jn0 (g̃ ◦ f)︸ ︷︷ ︸

= 0 by product and chain rule

= jn0 ((j
n
0 g) ◦ jn0 f).

Example 7.16. The fourth Taylor polynomial of f(x) = cos(1− 1
1+x2 ) is 1− 1

2x
4.

Proof. Using the power series representation of the cosine (Definition 5.49) and the geometric series
to represent 1

1+x2 as a power series, we find

j40 cos(x) = 1− 1

2
x2 +

1

24
x4, j40

(
1− 1

1 + x2
)
= −x2 + x4.
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Therefore we obtain

j40f(x) = j40
(
1− 1

2 (−x2 + x4)2
)
+ 1

24 (−x2 + x4)4
)

= j40
(
1− 1

2 (x
4 + higher order term) + 1

24 (higher order term)
)

= 1− 1

2
x4.

7.2 Construction of differentiable functions

Definition 7.17. Let D ⊆ R an open interval and f : D → R. Then f is called analytic if for
every point p ∈ D there exists a ε > 0 such that f has a convergent power series representation
(centred in p) in Bε(p).

By definition, every analytic function is a C∞ function, but not every C∞ function is analytic as
the following example shows:

Theorem 7.18. The function

ϕ : R → R, ϕ(x) =

{
exp(− 1

x2 ), x 6= 0,

0, x = 0,

lies in C∞(R) and ϕ[n](0) = 0 for all n ∈ N. In particular, the Taylor series of ϕ at 0 converges in
all of R but it is equal to ϕ only in the point 0.

x

1

ϕ

Figure 7.1: The non-analytic C∞ function ϕ (see Theorem 7.18). Although the plot gives another
impression, ϕ has an isolated global minmum at 0.

Proof. Step 1 : For all k ∈ N0 exists a polynomial Pk (of degree n = 3k) such that

ϕ[k](x) = Pk(x
−1) exp(−x−2), x 6= 0.

We prove the assertion by induction on k. It is clearly true for k = 0. Assume now that we know
the assertion already shown for some k ∈ N0. Then we find that

ϕ[k+1](x) =
d

dx

(
Pk(x

−1) exp(−x−2)
)

=
(
−x−2P ′

k(x
−1) + 2x−3Pk(x

−1)︸ ︷︷ ︸
:=Pk+1(x−1)

)
exp(−x−2).
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124 7.2. Construction of differentiable functions

Obviously, Pk+1 is a polynomial in x−1 of degree deg(Pk+1) = deg(Pk) + 3 = 3(k + 1). Step 2 :

lim
x→0

x−k exp(−x−2) = 0 for all k ∈ N0. We show the assertion by induction on k. It clearly holds

for k = 0. For k = 1 it follows by l’Hospital’s rule:

lim
x→0

x−1 e−
1
x2 = lim

x→0

x−1

e
1
x2

= lim
x→0

−x−2

−2x−3 e
1
x2

= lim
x→0

x e−
1
x2 = 0.

Now assume that the assertion holds for all 0 ≤ k ≤ n for some n ∈ N0. Then, again with the help
of l’Hospital’s rule and the induction hypothesis, we obtain

lim
x→0

x−n−1 e−
1
x2 = lim

x→0

x−n−1

e
1
x2

= lim
x→0

−(n+ 1)x−n−2

−2x−3 e
1
x2

=
n+ 1

2
lim
x→0

x−(n−1) e−
1
x2 = 0.

Step 3 : All derivatives of ϕ in 0 exist and ϕ[k](0) = 0 for all k ∈ N0.

Again, the assertion is proved by induction. For k = 0 the assertion follows directly from the
definition of ϕ. If k = 1 then

ϕ[k](0) = ϕ′(0) = lim
x→0

ϕ(x)− ϕ(0)

x− 0
= lim

x→0

ϕ(x)

x
= lim

x→0
x−1 exp(−x−2) = 0.

Assume that the assertion is true for some k ∈ N. Then, by induction hypothesis and the results
of step 1 and step 2,

ϕ[k+1](0) = lim
x→0

ϕ[k](x)− ϕ[k](0)

x− 0
= lim

x→0

ϕ[k](x)

x

= lim
x→0

x−1Pk(x
−1) exp(−x−2) = 0.

It follows that all coefficients of the Taylor series of ϕ in 0 are 0, therefore its radius of convergence
is ∞. Since ϕ(x) = 0 if and only if x = 0 it follows that ϕ(x) = j∞0 ϕ(x) if and only if x = 0.

Theorem 7.19. Let r, ε > 0. Then there exists a function ψ ∈ C∞(R) such that 0 ≤ ψ ≤ 1 and

ψ(x) = 1 ⇐⇒ |x| ≤ r, ψ(x) = 0 ⇐⇒ |x| ≥ r + ε.

Proof. We use the function ϕ from Theorem 7.18 to construct ψ. First we define the function

µ : R → R, µ(x) =

{
e−

1
x2 , x > 0,

0, x ≤ 0,

By the theorem above, µ ∈ C∞(R) (but it is not analytic in 0). Next we define

µε : R → R, µε(x) =
µ(x)

µ(x) + µ(ε− x)
.

The function µε satisfies 0 ≤ µε ≤ 1 and

µε(x) = 0 ⇐⇒ x ≤ 0, µε(x) = 1 ⇐⇒ x ≥ ε.

Finally,

ψ : R → R, ψ(x) = 1− µε(|x| − r)

has the desired properties (note that ψ is differentiable of arbitrary order at 0 because it is locally
constant at 0).
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x

1

µ

x
ε

1

µε

The existence of a function as in Theorem 7.19 implies that if a function is known only locally at
a point, nothing can be deduced about the global behaviour of the function.

For instance, let f, g be arbitrary functions on R and ψ as in Theorem 7.19. Let

h = (1− ψ)f + ψg.

Then h(x) = f(x) for |x| ≥ r + ε and h(x) = g(x) for |x| ≤ r.

The next theorem says that every power series is the Taylor series of a C∞ function. Of course, the
radius of convergence may be 0 and the Taylor series does not need to represent anywhere apart
from the point in which we calculate the Taylor expansion.

Theorem 7.20 (Borel’s theorem). Let (cn)n∈N0
⊆ R. Then there exists a function f ∈ C∞(R)

such that

j0f(x) =
∞∑

n=0

cnx
n.

Proof. Let ψ be the function of Theorem 7.19 with r = ε = 1
2 . For a ≥ 1 define

ξa : R → R, ξa(x) = x · ψ(ax).

Then −a−1 ≤ ξa ≤ a−1 and

ξa(x) = x ⇐⇒ |ax| ≤ 1

2
, ξa(x) = 0 ⇐⇒ |ax| ≥ 1.

Note that ξa(x) = x for |x| sufficiently small. We construct f as the series

f(x) =

∞∑

k=0

ck
(
ξak

(x)
)k
.

We have to show that the ak can be chosen such that for all n ∈ N0 the series of the formal
derivatives is uniformly convergent. Then f is arbitrarily often differentiable at 0 and the formal
nth derivatives of f equal its nth derivative (Theorem 6.69). That the Taylor series of f equals the
given power series is then clear because ξak

(x) = x locally at 0.
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126 7.3. Dirac sequences

Set ξ := ξ1. Since for all k ∈ N0 and all n ∈ N0 the function (ξk)[n] is arbitrarily often differentiable,
it is bounded on the compact interval [−1, 1] (Theorem 5.30). Outside of the interval it is zero,
therefore there exist constants Mnk such that

‖(ξk)[n]‖∞ ≤Mnk.

For a ≥ the chain rule yields

dn

dxn
ξkak

(x) = an−k
k (ξk)[n](akx), k, n ∈ N0,

hence
∥∥∥∥

dn

dxn
ξkak

∥∥∥∥
∞

≤ an−k
k Mnk, k, n ∈ N0,

For fixed k ∈ N0 we can find ak > 1 such that

|ck|an−k
k Mnk < 2−k for all n ≤ k.

Hence, for fixed n ∈ N0, we have that
∥∥∥∥

dn

dxn
ckξ

k
ak

∥∥∥∥
∞
< 2−k for all k ≥ n.

Therefore, the series of the formal derivatives of f converges.

7.3 Dirac sequences

Definition 7.21. A Dirac sequence is a sequence of continuous functions (δn)n∈N on R such that

(D1) δn ≥ 0, n ∈ N.

(D2)

∫ ∞

−∞
δn(x) dx = 1, n ∈ N.

(D3) For all η, ε > 0 there exists an N ∈ N such that
∫ −η

−∞
δn(x) dx+

∫ ∞

η

δn(x) dx < ε, n ≥ N.

Example 7.22. Let δ : R → [0,∞) an arbitrary Riemann integrable function such that
∫∞
−∞ δ(x) dx =

1. Then the sequence of functions (δn)n∈N defined by

δn : R → R, δn(x) = nδ(nx)

is a Dirac sequence.

Proof. Property (D1) is clear. Property (D2) follows with the substitution t = nx:
∫ ∞

−∞
δn(x) dx =

∫ ∞

−∞
n δ(nx) dx =

∫ ∞

−∞
δ(t) dt = 1.

Let η, ε > 0. Since δ is positive and integrable, there exists an R > 0 such that
∫∞
R
δ(x) dx < ε

2 .
Therefore for nη > R:

∫ ∞

η

δn(x) dx =

∫ ∞

η

n δ(nx) dx =

∫ ∞

nη

δ(t) dt <
ε

2
.

Analogously for
∫ −η

−∞ δn(x) dx.
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x

Definition 7.23. Let f, g : R → R be integrable functions. Then the convolution f ∗ g of f and g
is defined by

f ∗ g : R → R, (f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t) dt.

Note that the convolution is commutative since the transformation s = x− t yields

(f ∗ g)(x) = −
∫ −∞

∞
f(x− s)g(s) ds =

∫ ∞

−∞
f(x− s)g(s) ds = (g ∗ f)(x).

Theorem 7.24 (Dirac approximation). Let f : R → R be bounded and locally integrable (i. e.,
for every compact set K ⊆ R the restriction f |K is integrable). Let K ⊆ R a compact interval such
that f |K is continuous in K. Let (δn)n∈N be a Dirac sequence and define

fn(x) := (δn ∗ f)(x) =
∫ ∞

−∞
f(t)δn(x− t) dt =

∫ ∞

−∞
f(x− t)δn(t) dt.

Then fn|K → f |K uniformly.

Proof. For the proof of the uniform convergence we have to estimate

fn(x)− f(x) =

∫ ∞

−∞
f(x− t)δn(t) dt− f(x)

=

∫ ∞

−∞
f(x− t)δn(t) dt−

∫ ∞

−∞
f(x)δn(t) dt

=

∫ ∞

−∞
(f(x− t)− f(x)) δn(t) dt

independently of x for x ∈ K. Let ε > 0. Since f is uniformly continuous on K, there exists a
η > 0 such that

|t| < η, x ∈ D =⇒ |f(x− t)− f(x)| < ε.
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128 7.3. Dirac sequences

(Note that x− t does not necessarily belong to K.) By assumption, f is bounded. Let M ∈ R such
that |f | < M and choose N ∈ N such that

∫ η

−∞
δn(t) dt+

∫ ∞

η

δn(t) dt <
ε

2M
, n ≥ N.

Then

|fn(x)− f(x)| ≤
∫ −η

−∞
+

∫ η

−η

+

∫ ∞

η

|f(x− t)− f(x)|δn(t) dt.

Since |f(x− t)− f(x)| < 2M it follows that

∫ −η

−∞
+

∫ ∞

η

|f(x− t)− f(x)|δn(t) dt < 2M
ε

2M
= ε,

and |f(x− t)− f(x)| < ε for |x− t| < η implies

∫ η

−η

|f(x− t)− f(x)|δn(t) dt < ε.

We have shown that ‖fn|K − f |K‖∞ < ε, n ≥ N . Since ε was arbitrary, the theorem is proved.

In the proof we have used that there exists an η > 0 such that |f(x− t)− f(x)| < ε for all x ∈ K
and |t| < η. Such an η can be found as the minimum of ηD, η+ and η− where ηD is such that
|f(x− t)− f(x)| < ε for all x ∈ K and |t| < η such that x− t ∈ K (uniform continuity of f in K),
and η± are such that |f(x±) − f(y)| < ε/2 for all y ∈ R such that |x − y| < η where x± are the
endpoints of K.

Proposition 7.25. There exists a Dirac sequence (δn)n∈N such that the restrictions δn|[−1,1] are
polynomials.

Proof. Define the sequence (δn)n∈N by δn : R → R with

δn(x) =

{
c−1
n (1− x2)n, |x| ≤ 1,

0, |x| > 1,
where cn :=

∫ 1

−1

(1− x2)n dx.

Obviously, all δn are continuous on R, δn ≥ 0 and

∫ ∞

−∞
δn(x) dx = 1. It remains to show property

(D3) of Dirac sequences. First we estimate the constants cn:

cn = 2

∫ 1

0

(1− x2)n dx = 2

∫ 1

0

(1 + x)n(1− x)n dx ≥ 2

∫ 1

0

(1− x)n dx =
2

n+ 1
.

Now for 0 < η < 1

∫ ∞

η

δn(x) dx =

∫ 1

η

c−1
n (1− x2)n dx ≤ n+ 1

2

∫ 1

η

(1− η2)n dx

=
n+ 1

2
(1− η2)n(1− η),

which tends to 0 for n→ ∞. If η ≥ 1 then
∫∞
η
δn(x) dx = 0 by definition of δn.

Theorem 7.26 (Weierstraß approximation theorem). A continuous function on a compact
interval is the uniform limit of polynomials on the compact interval.
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Proof. First we show the assertion for continuous functions f such that

f : [0, 1] → R, f(0) = f(1) = 0.

We can extend f continuously to R by setting f(x) = 0 for x ∈ R \ [0, 1]. Let (δn)n∈N as in
Proposition 7.25. By Theorem 7.24 the sequence fn := δn ∗ f converges to f uniformly. We have to
show that the restrictions fn|[0,1] polynomials. Since δn|[−1,1] are polynomials of degree 2n, there
exists a representation

δn(x− t) = g0(t) + g1(t)x · · ·+ g2n(t)x
2n, x, t ∈ [0, 1].

Hence for all x ∈ [0, 1]:

fn(x) =

∫ ∞

−∞
f(t)δn(x− t) dt =

∫ 1

0

f(t)δn(x− t) dt

=

∫ 1

0

f(t)
(
g0(t) + g1(t)x · · ·+ g2n(t)x

2n
)
dt = a0 + a1x · · ·+ a2nx

2n

with coefficients aj :=
∫ 1

0
f(t)gj(t) dt.

Now let g : [a, b] → R an arbitrary continuous functions. Let ϕ : [0, 1] → R, ϕ(y) = a + y(b − a),
and define

f : [0, 1] → R, f(x) = (g ◦ ϕ)(x)− (g(a)− x(g(a)− g(b)).

By what we have prove so far, there exists a sequence (Pn)n∈N of polynomials that converges
uniformly to f . For n ∈ N and x ∈ [a, b] define Qn(x) := Pn(ϕ

−1(x))+ (g(a)−ϕ−1(x)(g(a)− g(b)).
Then (Qn)n∈N converges uniformly to g on [a, b].

The theorem can be generalised to the so-called Stone-Weierstraß theorem, see Theorem 8.38. (See
[Rud76, Theorem 7.32]).
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Chapter 8

Basic Topology

8.1 Topological spaces

Recall that a metric space (X, d) is a set X together with a function

d : X ×X → [0,∞),

such that d(x, y) = d(y, x), d(x, y) = 0 ⇐⇒ x = y and d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈ X.
For arbitrary r > 0 and a ∈ X we defined

Br(a) := {x ∈ X : d(a, x) < r} =: open ball with centre at a and radius r,

Kr(a) := {x ∈ X : d(a, x) ≤ r} =: closed ball with centre at a and radius r.

If Y ⊆ X, then (Y, dY ) with dY = d|Y×Y is also a metric space. dY is called the induced metric.

A sequence (xn)n∈N is called convergent if there exists an p ∈ X such that

∀ε > 0 ∃N ∈ N : n ≥ N =⇒ xn ∈ Bε(p).

A sequence (xn)n∈N is called a Cauchy sequence if for every ε > 0 there exists an N ∈ N such that

m,n ≥ N =⇒ d(xm, xn) < ε.

We showed that every convergent sequence sequence is a Cauchy sequence, but not every Cauchy
sequence converges. A metric space in which every Cauchy sequence converges is called a complete
metric space.

Metric spaces are special cases of the more abstract concept of topological spaces.

X

Y

Figure 8.1: Examples for balls in the met-
ric space X . . .

X

Y

Figure 8.2: . . . and the induced balls in
the subspace Y . (The right lower X-ball in
the left picture does not induce a ball in Y

because its centre does not belong to Y .)
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132 8.1. Topological spaces

Definition 8.1. A topological space (X,O) is a set X together with a subset O ⊆ P(X) of the
power set of X such that

(i) X, ∅ ∈ O.

(ii) U1, . . . , Un ∈ O =⇒ U1 ∩ · · · ∩ Un ∈ O.

(iii) Uλ ∈ O, λ ∈ Λ =⇒ ⋃
λ∈Λ Uλ ∈ O.

O is called the topology of X and its members are called open sets of X.

By definition, X and ∅ are open, the finite intersection of open sets is open, the arbitrary union of
open sets is open.

Definition 8.2. Let (X,O) be a topological space and let p ∈ X. A set V is called a neighbourhood
of p if there exists an open set U such that p ∈ U ⊆ V .

Lemma 8.3. Let (X,O) be a topological space and U ⊆ X.

(i) U is open if and only if for each p ∈ U there exists an open set V such that p ∈ V ⊆ U .

(ii) U is open if and only if it is a neighbourhood of each p ∈ U .

Proof. (i) Assume that U is open and let p ∈ U . Then we can choose V = U .

Now assume that for each p ∈ U there exists an open Vp such that p ∈ Vp ⊆ U . Then U =
⋃

p∈U Vp,
hence U is open as union of open sets.

(ii) Follows immediately from (i).

Definition 8.4. Let (X,O) be a topological space and Y ⊆ X. Then X induces subspace topology
on Y by

U ⊆ Y is open in Y ⇐⇒ ∃V ∈ O : U = V ∩ Y.

It is not hard to see that Y with the induced topology is indeed a topological space.

Definition 8.5. A topological space (X,O) is called a Hausdorff space (or T2 space) if for all
x, y ∈ X with x 6= y there exist neighbourhoods Vx of x and Vy of y such that Vx ∩ Vy = ∅.

Examples 8.6. (i) Let X be an arbitrary set and define O = {∅, X}. Then (X,O) is a topo-
logical space. It is Hausdorff if and only if |X| ≤ 1.

(ii) Let X be an arbitrary set and define O = P(X). Then (X,O) is a Hausdorff space.

(iii) Every subspace of a Hausdorff space is again a Hausdorff space.

The topology in example (i) is called the trivial topology, the topology in example (ii) is called the
discrete topology.

Example 8.7 (Topology induced by a metric). Let (X, d) be a metric space. Then d induces
a topology on X: a set U ⊆ X is open if and only if

∀p ∈ U ∃ε > 0 Bε(p) ⊆ U.

It can be shown (Exercise 8.2) that X with the induced topology is indeed a topological space with
the Hausdorff property, that the open balls are open sets and that the closed balls are closed sets
(see Definition 8.8).
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Whenever we speak of a metric space as a topological space, we refer to the topology induced by
the metric. For example, the topology in R is generated by the open intervals. Note, however, that
not every open set is an open interval.

Definition 8.8. Let (X,O) be a topological space and let A ⊆ X. A point p is called a boundary
point of A if for every neighbourhood Up of p

A ∩ Up 6= ∅ and (X \A) ∩ Up 6= ∅.

The set of all boundary points of A is denoted by ∂A.
The interior of A is A◦ := A \ ∂A.
The closure of A is A := A ∪ ∂A.
The set A is called closed if it contains all its boundary points (i. e. ∂A ⊆ A).

Note that a boundary point does not necessarily belong to A. For example, if A is an open set,
then A ∩ ∂A = ∅.

Proposition 8.9. Let (X,O) be a topological space. Then a subset A ⊆ X is closed if and only if
X \A is open.

Proof. Assume that A is closed and let p ∈ X \ A. If every neighbourhood of p would have non-
empty intersection with A, then p ∈ ∂A ⊆ A (note that every neighbourhood of p contains p /∈ A).
Therefore there exists an neighbourhood of p that has empty intersection with A, hence X \ A is
open.
Now assume that X \A is open and let p ∈ X \A. Then there exists a neighbourhood U of p such
that U ∩A = ∅, hence p /∈ ∂A

It follows that X and ∅ are closed, the finite union of closed sets is open, the arbitrary intersection
of closed sets is open.

Remark 8.10. Let X be a topological space and Y ⊆ X. Then a set A ⊆ Y is closed in Y if and
only if there exists B ⊆ X such that B is closed in X and B ∩ Y = A.
Indeed, since A is closed in Y , Y \A is open in Y , hence, by definition, there exists an U ∈ X, such
that U is open in X and U ∩ Y = Y \A. Then B := X \ U is closed in X and B ∩ Y = A.

Lemma 8.11 (de Morgan’s laws). Let X and Λ be sets and Mλ ⊆ X, λ ∈ Λ. Then

X \
⋃

λ∈Λ

Mλ =
⋂

λ∈Λ

(X \Mλ), X \
⋂

λ∈Λ

Mλ =
⋃

λ∈Λ

(X \Mλ).

Proposition 8.12. Let (X,O) be a topological space and A ⊆ X. Then A◦ is the union of all open
sets that are contained in A and A is the intersection of all closed subsets of X that contain A

Corollary 8.13. (i) The interior of a set is open. A is open if and only if A◦ = A.

(ii) The closure of a set is closed. A is closed if and only if A = A.

Proof of Proposition 8.12. Let B be the union of all open subsets of A. Then B is open and we
have to show that B = A◦.
If p ∈ A◦ there exists an open neighbourhood U of p that U ∩ (X \A) = ∅, that is, p ∈ U ⊆ A. In
particular p lies in the union of all open sets contained in A, so we have shown A◦ ⊆ B.
Obviously, B is open and contained in A, therefore, for each p ∈ B there exists an open set U such
that p ∈ U ⊆ B ⊆ A, hence p ∈ A◦ which proves B ⊆ A◦.
The second part of the proposition follows from Proposition 8.9 and de Morgan’s laws.
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134 8.1. Topological spaces

Note that there are sets that are neither closed nor open, for example [0, 1) ⊆ R. Moreover, a
set can be both closed and open, for examples, in a non-empty topological space with the discrete
topology every set is open and closed.

Proposition 8.14. Let (X, d) be a metric space with topology induced by the metric d. Let A ⊆ X.
Then p ∈ A if and only if there exists a sequence (an)n∈N ⊆ A that converges to p.

Proof. Assume that p ∈ A. Then B 1
n
(p) ∩ A 6= ∅ for all n ∈ N. In particular we can choose a

sequence (an)n∈N ⊆ A such that d(an, p) <
1
n .

Now assume that p /∈ A. Since X \ A is open, there exists an ε > 0 such that Bε(p) ∩ A = ∅,
i. e.d(a, x) ≥ ε for all a ∈ A. Therefore there exists no sequence in A that converges to p.

Definition 8.15. Let (X,O) be a topological space and let A ⊆ X. A point p ∈ X is called a
limit point of A if U ∩ (A \ {p}) 6= ∅ for every neighbourhood U of p. A set A is called perfect if it
contains all its limit points.

Definition 8.16. The set A is said to be dense in X if A = X.

For example, Q is dense in R.

Recall that a function f : X → Y between metric spaces is called continuous if and only if for every
ε > 0 and p ∈ X there exists an δ > 0 such that f(Bδ(p)) ⊆ Bε(f(p)), that is, the preimage of a
neighbourhood of f(p) is a neighbourhood of p.

Definition 8.17. A function f : X → Y between topological spaces is called continuous at p ∈ X
if and only if for every neighbourhood U of f(p) the set f−1(U) is a neighbourhood of p. The
function f is called continuous if it is continuous in every p ∈ X.

Proposition 8.18. A function f : X → Y is continuous if and only if preimages of open sets are
open.

Proof. Assume that f is continuous and let V ⊆ Y be open. Let p ∈ f−1(V ). Then V is a
neighbourhood of f(p). Since f is continuous, f−1(V ) is a neighbourhood of p, hence it contains
an open set U such that p ∈ U ⊆ f−1(V ). By Lemma 8.3 (i) f−1(V ) is open.

Now assume that f−1(V ) is open for every open set V ⊆ Y . Let p ∈ X and V a neighbourhood
of f(p). Then V contains an open neighbourhood V ′ of f(p) and f−1(V ′) is open by assumption.
Therefore f−1(V ) contains a neighbourhood of p which implies that f is continuous in p.

If X is a topological space, then id : X → X is continuous. Compositions of continuous functions
are continuous.

Definition 8.19. A homeomorphism between two topological spaces X and Y is an bijective
function f : X → Y such that both f and f−1 are continuous.

Note that in general the continuity of f does not imply the continuity of f−1. For example,
f : N → Q, f(x) = x is continuous, f−1 is not (when N carries the discrete topology and Q the
topology induced by its metric).

Definition 8.20. Let (X,OX) and (Y,OY ) be topological spaces. Then we can define a topology
O on X × Y as follows: A subset W ⊆ X × Y is called open if and only if it is the union of sets of
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the form U × V with U open in X and V open in Y . Obviously, the projections

prX : X × Y → X, (x, y) 7→ x, prY : X × Y → Y, (x, y) 7→ y,

are continuous when X × Y carries the product topology.

8.2 Compact sets

Definition 8.21. Let X be a topological space and A ⊆ X. A family U = (Uλ)λ∈Λ of open sets
in X is called an open cover of A if A ⊆ ⋃λ∈Λ Uλ. The open cover U is called finite if Λ is a finite
set. An open cover U contains an open cover V if every member of V is also a member of U .
A Hausdorff space X is called compact if every open cover of X contains a finite subcover. A subset
A of X is called compact if and only if it is compact in the topology induced by X. Obviously, this
is the case if and only if every cover of A with open sets in X contains a finite subcover.

Examples. (i) The empty set is compact in every topological space.

(ii) Let X be a Hausdorff space and M ⊆ X a finite subset. Then M is compact.

(iii) The set M = (0, 1) is not compact in R with the usual topology.

Proof. For n ∈ N let Un := ( 1n , 1). Then (0, 1) ⊆ ⋃∞
n=2 Un and (Un)n∈N contains no finite

subcover of (0, 1).

Remark 8.22. A Hausdorff space is compact if and only if the following is true: If A = (Aλ)λ∈Λ

is a family of closed sets such that
⋂

λ∈ΛAλ = ∅, then there exists a finite set Γ ⊂ Λ such that⋂
λ∈ΓAλ = ∅.

Next we show that all compact sets are closed, and that closed subsets of compact sets are compact.

Theorem 8.23. Let X be a Hausdorff space and A ⊆ X. Then

(i) X compact, A closed in X =⇒ A is compact.

(ii) A compact =⇒ A is closed.

Proof. (i) Let A = (Aλ)λ∈Λ a family of closed subsets of A such that
⋂

λ∈ΛAλ = ∅. Then every
Aλ is also closed in X (see Remark 8.10), therefore there exists a finite set Γ ⊂ Λ such that⋂

λ∈ΓAλ = ∅. Hence A is compact by Remark 8.22.

(ii) We show that X \A is open. Let p ∈ X \A. Since X is Hausdorff space, for every a ∈ A there
exist open neighbourhoods Ua of a and Va of p such that Ua ∩ Va = ∅. Since A is compact, there
exist a1, . . . , an ∈ A such that A ⊆ ⋃n

j=1 Uaj
. Let V =

⋂n
j=1 Vaj

. Then V is open, p ∈ V and

V ∩A ⊆ V ∩
n⋃

j=1

Uaj
=

n⋃

j=1

V ∩ Uaj
= ∅.

Note that the implication (ii) is not necessarily true ifX is not Hausdorff. For example, ifX = {1, 2}
with the trivial topology. Then X is compact and the subset {1} is compact but not closed.

Definition 8.24. Let (X, d) be a metric space. A set M ⊆ X is called totally bounded if for every
ε > 0 there exist x1, . . . , xn ∈M such that M ⊆ ⋃n

j=1Bε(xj).

If M is totally bounded, then M is bounded. The reverse implication is not necessarily true.
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Proposition 8.25. Let (X, d) be a metric space and A ⊆ X. Then A is totally bounded if and
only if every sequence in A contains a Cauchy subsequence.

Proof. If A = ∅, then the assertion is clear.

Assume that A is totally bounded and let x = (xn)n∈N ⊆ A. Since A is totally bounded there exist
q1, . . . qn ∈ X such that A ⊆ ⋃n

j=1B1(qj). Therefore there exists in j ∈ {1, . . . n} and a subsequence
x1 = (x1,n)n∈N of x such that x1 ⊆ B1(p1) (with p1 = qj). By the same argument, applied to the
sequence x1, there exists a p2 ∈ A and a subsequence x2 of x1 such that x2 ⊆ B 1

2
(p2). We can now

choose inductively a sequence (pj)j∈N ⊆ X and a sequence of subsequences xk = (xk,n)n∈N of x
such that p1 and x1 as chosen above, xk ⊆ B 1

k
(pk) and xk+1 is a subsequence of xk for all k ∈ N.

Then the sequence (xn,n)n∈N is a subsequence of x and, by construction, it is a Cauchy sequence.

Now assume that A is not totally bounded. We will construct a sequence (xn)n∈N ⊆ A that contains

no Cauchy sequence. Since A is not totally bounded there exists an ε > 0 such that A 6⊆ ⋃k
j=1Bε(pj)

for every finite sequence (pj)
k
j=1 ⊆ A. Choose x1 arbitrary in A. By assumption on A, we can

choose xk ∈ A inductively such that xk+1 /∈
⋃k

j=1Bε(xj) and A 6⊆ ⋃k+1
j=1 Bε(xj). By construction

d(xm, xn) ≥ ε for all m,n ∈ N, hence (xn)n∈N does not contain a Cauchy sequence.

Definition 8.26. A topological space X is called sequentially compact if every sequence in X
contains a convergent subsequence.

The following is a generalisation of the Bolzano-Weierstraß theorem (Theorem 4.40). Note that it
is true in an arbitrary topological space (not necessarily a metric space).

Theorem 8.27. Every compact metric space is sequentially compact.

Proof. Let X be a compact metric space and x = (xn)n∈N be a sequence in X. Assume that x does
not contain an convergent subsequence. Then for every ε > 0 and every y ∈ X the open ball Bε(y)
contains only finitely many members of the sequence x. Since X is compact there exist y1, . . . , yn
such that x ⊆ X ⊆ ⋃n

j=1Bε(yj) implying that x has only finitely many members.

Corollary 8.28. Let (X, d) be a metric space and A ⊆ X compact. Then A is closed and totally
bounded.

In a metric space, the reverse of Theorem 8.27 is true.

Theorem 8.29. Let (X, d) be a metric space and A ⊆ X sequentially compact. Then A is compact.

Proof. Since A is sequentially compact, it is totally bounded by Proposition 8.25. Now let U =
(Uλ)λ ∈ Λ be an open cover of A. We have to show that U contains a finite cover of A. First we
show the existence of a δ > 0 such that for every y ∈ X the ball Bδ(y) is contained in a Uλ.

Assume that no such δ exists. Then there exists a sequence y = (yn)n∈N such that there exists no
λ ∈ Λ with B 1

n
(yn) ⊆ Uλ. Since A is sequentially compact, y contains a convergent subsequence;

without restriction we can assume that y itself converges to some y0 ∈ A. Since U is an open cover
of A, we can choose δ > 0 and λ0 ∈ Λ such that y0 ∈ Bδ(y0) ⊆ Uλ0

. Since the sequence y converges
to y0, we can choose n large enough such that d(yn, y) <

δ
2 and 1

n < δ
2 , see Figure 8.3. It follows

that B 1
n
(yn) ⊆ Bδ(y0) ⊆ Uλ0

.

Corollary 8.30. Every interval of the form [a, b] is compact in R since it is sequentially compact
by the Bolzano-Weierstraß theorem (Theorem 4.40).
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X

Uλ0

y0

δ

yn

δ
2

Figure 8.3: A sequentially compact metric space is compact (Theorem 8.29).

For the proof of the Heine-Borel theorem (Theorem 8.33) we use the following two auxiliary lem-
mata.

Lemma 8.31 (Tube lemma). Let K be compact space, X a topological space, p ∈ X, U ⊆ X×K
open in the product topology such that {p} ×K ⊆ U . Then there exists an open set V ⊆ X such
that V ×K ⊆ U .

U

V ×K

p

K

X

Figure 8.4: Tube lemma (Lemma 8.31).

Proof. Let k ∈ K. Then there exist an open neighbourhood Wk of k and an open neighbourhood
Vk of p such that (p, k) ∈ Vk ×Wk ⊆ U . Since K is compact, there are k1, . . . , kn ∈ K such that
K ⊆ ⋃n

j=1Wkj
. Let V =

⋂n
j=1 Vkj

. Then V ×K ⊆ ⋃n
j=1(Vkj

×Wkj
) ⊆ U .

Lemma 8.32. (i) The product of finitely many Hausdorff spaces is again a Hausdorff space.

(ii) The product of finitely many compact spaces is again a compact space.

Proof. It suffices to show the assertion for two topological spaces X and Y .

(i) Assume that X and Y are Hausdorff spaces and let (x1, y1) 6= (x2, y2) ⊆ X × Y . If x1 6= x2
then there are disjoint open neighbourhoods U1 of x1 and U2 of x2. Therefore U1 × Y and U2 × Y
are disjoint neighbourhoods of (x1, y1) and (x2, y2). If x1 = x2, then y1 6= y2 and as before we can
find disjoint neighbourhoods of (x1, y1) and (x2, y2).
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(ii) Let U = (Uλ)λ∈Λ be an open cover of X × Y . Let p ∈ X. Since {p} × Y is compact for every
p ∈ Y , there exist λ1, . . . , λn such that {p} × Y ⊆ ⋃n

j=1 Uλj
. By the tube lemma there exist an

open neighbourhood Vp of p such that Vp × Y ⊆ ⋃n
j=1 Uλj

. Since X is compact, it can be covered
by finitely many such Vp, hence U contains a finite subcover of X × Y .

Theorem 8.33 (Heine-Borel theorem). A subset of Rn is compact if and only if it is bounded
and closed.

Proof. Let A ⊆ R. If A is compact, then it is bounded and closed by Theorem 8.23. Now assume
that A is bounded and closed. Since A is bounded, it lies in a closed cube C = [a1, b1]×· · ·×[an, bn].
By Lemma 8.32, C is compact, hence A is compact by Theorem 8.23.

Note that this equivalence is not true for an arbitrary metric space (X, d) because the bounded
metric d′ := min{1, d} induces the same topology on X. Hence boundedness says nothing about
compactness. For arbitrary metric spaces we have the following characterisation:

Theorem. Let (X, d) be a metric space. A subset A of X is compact if and only if it is complete
and totally bounded.

In the rest of this section we prove theorems for continuous functions on compact sets.

Theorem 8.34. Let X a compact space, Y a topological space and f : K → Y a continuous
function. Then f(X) is compact.

Proof. Let U = (Uλ)λ∈Λ be an open cover of f(X). Then (f−1(Uλ))λ∈Λ is an open cover of X.
Therefore there exist a finite subset Γ ⊆ Λ such that (f−1(Uλ))λ∈Γ is an open cover of X. Hence
(Uλ)λ∈Γ be an open cover of f(X) subordinate to U .

As a corollary we obtain the following theorem.

Theorem 8.35. Let X a compact space, Y a Hausdorff space and f : X → Y a continuous
bijection. Then f−1 is continuous.

Proof. By Theorem 8.34 and Theorem 8.23 (ii) for every closed set A in X the set f(A) is closed
in Y .

Note the we proved this theorem for intervals in Theorem 5.27.

Theorem 8.36. Let X be a non-empty compact metric space and f : X → R a continuous function.
Then f is bounded and has a maximum and a minimum.

Proof. By Theorem 8.34, f(X) is a compact subset in R, hence it is bounded and closed. Let
M := sup{f(x) : x ∈ K}. Then there exists a sequence x = (xn)n∈N ⊆ K such that f(xn) → M
for n → ∞. Since K is compact, x contains a convergent subsequence. Without restriction we
can assume that x converges to a x0 ∈ K. By continuity of f we obtain M = limn→∞ f(xn) =
f(limn→∞(xn)) = f(x0), hence the range of f has a maximum. Analogously we can show that
R(f) has a minimum.

Theorem 8.37. Let X,Y be metric spaces, K ⊆ X compact and f : X → Y continuous in every
point of K. Then f is uniformly continuous on K.
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Proof. Let ε > 0. We have to show the existence of a δ > 0 such that for all x ∈ X and y ∈ K

d(x, y) < δ =⇒ d(f(x), f(y)) < ε.

Continuity of f in K implies that for every y ∈ K there exists a δ(y) > 0 such that

d(x, y) < 2δ(y) =⇒ d(f(x), f(y)) < ε.

Since K is compact, there exist y1, . . . , yn ∈ K such that (Bδ(yj))
n
j=1 is an open cover of K. Let

δ = min{δ(yj) : j = 1, . . . n}. If x ∈ X such that d(x, y) < δ for some y ∈ K, then there
exists a j such that d(x, yj) ≤ d(x, y) + d(y, yj) ≤ 2δj . Therefore d(f(x), f(y)) ≤ d(f(x), f(yj)) +
d(f(yj), f(y)) ≤ 2ε.

Theorem 8.38 (Stone-Weierstraß). Let K be a compact Hausdorff space and C(K) the space
of all real or complex valued functions on K together with the supremum norm ‖ · ‖. Let F ⊆ C(K)
such that

(i) F contains a constant function not equal to 0;

(ii) F separates the points in K, i. e., for all x1, x2 ∈ K exists an f ∈ F such that f(x1) 6= f(x2);

(iii) if f ∈ F, then also f ∈ F (f denotes the complex conjugate of f , defined by f(x) = f(x), x ∈
K).

Then the algebra generated by F is dense in C(K).

8.3 Connected sets

Definition 8.39. A topological space X is called connected if it is not the disjoint union of two
non-empty open sets.

Equivalent formulations are:

(i) A topological space X if it is not the disjoint union of two non-empty closed sets.

(ii) X does not contain a set that is open and closed.

(iii) If A,B ⊆ X are open, A 6= ∅, X = A ∪B, then B = ∅.

Theorem 8.40. Let D ⊆ R, D 6= ∅. Then

D is connected ⇐⇒ D is an interval.

Proof. “=⇒” Assume that D is not an interval. Then there exist a < x < b such that a, b ∈ D
and x /∈ D. Then Da := D ∩ (−∞, x) and Db := D ∩ (x,∞) are open in D and D is the disjoint
union of Da and Db, therefore D is not connected.

“⇐=” Let D be an interval and A,B ⊆ D open in D such that D is the disjoint union of A and
B. Assume that A 6= ∅. We have to show that B is empty. Let

f : D → R, f(x) =

{
1, x ∈ A,

0, x ∈ B.

Obviously, f is continuous. If B 6= ∅, then {0, 1} lies in the range of f . By the intermediate value
theorem (Theorem 5.24) there exists a p ∈ D such that f(p) = 1

2 , in contradiction to the definition
of f .
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Theorem 8.41. Let X,Y be topological spaces and f : X → Y a continuous function. If X is
connected, then f(X) is connected.

Proof. Let U 6= ∅ be subseteq of f(X) such that U is open and closed. We have to show that
U = f(X). By assumption on U there exists an open set V and a closed set A in Y such that
U = f(X) ∩ V and A = f(X) ∩A. By continuity of f it follows that

∅ 6= f−1(U) = f−1(V )︸ ︷︷ ︸
open in X

= f−1(A)︸ ︷︷ ︸
closed in X

.

Since X is connected, it follows that f−1(U) = X, hence U = f(X).

As a corollary we obtain the generalised intermediate value theorem:

Theorem 8.42 (Intermediate value theorem). Let X be a connected topological space and
f : X → R a continuous function. Then f(X) is an interval.

Definition 8.43. A topological space X is called arcwise connected if for all x, y ∈ X there exists
a continuous function f : [0, 1] → X such that f(0) = x, f(1) = y.

Theorem 8.44. An arcwise connected space is connected.

Proof. Let X be a arcwise connected topological space. Assume that X is no connected. Then there
exist U, V non-empty open subsets of X. Let p ∈ U and q ∈ V and choose a continuous function
f : [0, 1] → X such that f(0) = p and f(1) = q. Since f is continuous, the sets U ′ = f−1(U) ⊆ [0, 1]
and V ′ = f−1(V ) ⊆ [0, 1] are open. Define the function

g : [0, 1] → R, g(x) = 0 ⇐⇒ x ∈ U ′, g(x) = 1 ⇐⇒ x ∈ V ′.

Then g is continuous because all preimages under g are open. Since g(0) = 0 and g(1) = 1, the
intermediate value theorem implies that there exists an t ∈ [0, 1] such that g(t) = 1

2 , in contradiction
to the definition of g.

Corollary 8.45. Let (V, ‖ ·‖) be a metric space, Ω ⊆ V a convex set. Then Ω is arcwise connected,
in particular, it is connected.

Note that there are connected spaces that are not arcwise connected.
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Chapter 9

Exercises

Exercises for Chapter 2

1. For sets A, B and C show at least two of the following statements:

(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(c) A \ (B ∪ C) = (A \B) ∩ (A \ C),
(d) A \ (B ∩ C) = (A \B) ∪ (A \ C).

2. (a) Find the power sets of (a) L = ∅, (b) M = {0}, (c) N = {1, 2, 3}.
(b) Let N = {1, 2, 3} and consider the relation ⊆ on PN . Is ⊆ reflexive, transitive, symmetric?

Does ⊆ define a total order on PN?

3. (a) For sets A, B and C show:

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(b) For sets A,B ⊂ X show:

• X \ (A ∪B) = (X \A) ∩ (X \B),

• X \ (A ∩B) = (X \A) ∪ (X \B).

4. Let X, Y and Z be sets and f : X → Y , g : Y → Z functions.

Show:

(a) If g is injective, then

f is injective ⇐⇒ g ◦ f injective.

(b) If f is surjective, then

g surjective ⇐⇒ g ◦ f surjective.

5. (a) Show that the countable subset of a countable set is countable or finite.

(b) Show that the countable union of countable sets is countable.

(c) Show that the direct product of countable sets is countable.

(d) Find a bijection N0 × N0 → N0.
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(e) Show that Q is countable.

6. (a) Show that the power set PN is not countable.

(b) Let A,B be sets. Show or give a counterexample:

(i) P(A ∩B) = PA ∩ PB.

(ii) P(A ∪B) = PA ∪ PB.

7. Show the following formulas:

(a)
n∑

k=1

k3 =
(n(n+ 1)

2

)2
, n ∈ N,

(b)

2n∑

k=1

(−1)k+1 1

k
=

n∑

k=1

1

n+ k
, n ∈ N.

8. For n ∈ N0 y m ∈ N define

a(m,n) := #{(x1, . . . , xm) ∈ Nm
0 :

m∑

j=1

xj ≤ n},

b(m,n) := #{(x1, . . . , xm) ∈ Nm
0 :

m∑

j=1

xj = n}.

(a) Show that a(m,n) = b(m+ 1, n), m ∈ N, n ∈ N0.

(b) Show that a(m,n) =

(
n+m

m

)
, m ∈ N, n ∈ N0.

Hint: Show that a(m,n− 1) + a(m− 1, n) = a(m,n) and use induction on n+m.

Exercises for Chapter 3

1

1. Let (K,+, · , >) be an ordered field and a, x, x′, y, y′ ∈ K. Show the following statements from
Corollary 3.9. Justify every step.

(iii)x < y =⇒ x+ a < y + a,

(iv)x < y ∧ x′ < y′ =⇒ x+ x′ < y + y′,

(v)x < y ∧ a > 0 =⇒ a · x < a · y,
x < y ∧ a < 0 =⇒ a · x > a · y,

(vi)0 ≤ x < y ∧ 0 ≤ x′ < y′ =⇒ 0 ≤ x′ · x < y′ · y,
(ix)x > 0 =⇒ x−1 > 0,

(x)0 < x < y =⇒ 0 < y−1 < x−1,

(xi)x > 0 ∧ y < 0 =⇒ xy < 0.

2. Find the infimum and supremum of the following sets in the ordered field R. Determine if they
have a maximum and a minimum.

(a) {x ∈ R : ∃n ∈ N x = n2},
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(b)

{ |x|
1 + |x| : x ∈ R

}
,

(c)
{
x ∈ R : ∃n ∈ N x =

1

n
+ n

(
1 + (−1)n

)}
,

(d)
{
x ∈ R : x2 ≤ 2

}
∩Q.

3. (a) For every x ∈ R+ there exists an n ∈ N0 with n ≤ x < n+ 1.
(Proposition 3.19).

(b) Every interval in R contains a rational number. (Proposition 3.20).

(c) Q does not have the least upper bound property.

4. (a) Let X ⊂ R, X 6= ∅, and ξ ∈ R an upper bound of X. Show that

ξ = supX ⇐⇒ ∀ε ∈ R+ ∃xε ∈ X ξ − ε < xε ≤ ξ.

What is the analogous statement for infX?

(b) Let X, Y ⊂ R non empty sets such that

∀x ∈ X ∃ y ∈ Y : y < x.

Does that imply inf Y < infX? Proof your assertion.

5. (a) Muestre que para todo z ∈ C \ {0} existen exactamente dos números ζ1, ζ2 ∈ C tal que
ζ21 = ζ22 = z.

(b) Sean a, b, c ∈ C, a 6= 0. Muestre que existe por lo menos un z ∈ C tal que

az2 + bz + c = 0.

Exercises for Chapter 4

1

1. (a) Let (X, d), X 6= ∅, be a metric space and M ⊆ X. Show that the following are equivalent:

(i) M is bounded.

(ii) ∃x ∈ X ∃ r > 0 :M ⊆ Br(x).

(iii) ∀x ∈ X ∃ r > 0 :M ⊆ Br(x).

(b) For M ⊆ R show that M is bounded as subset of the ordered field (R, >) if and only if M
is bounded as subset of the metric space (R, d) where d(x, y) = |x− y|.

2. (a) Let (X, d), X 6= ∅, be a metric space and let (xn)n∈N and (yn)n∈N be sequences in X.
Show: If there exists an a ∈ X such that

lim
n→∞

xn = a = lim
n→∞

yn,

then
lim
n→∞

d(xn, yn) = 0.

Is the converse also true (proof or counterexample)?

(b) Let (X, d) be a metric space and ρ : N → N a bijection. Show: If (xn)n∈N ⊆ X converges,
then (xρ(n))n∈N ⊆ X converges and has the same limit.
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3. (a) Let xn =
√
1 + n−1, n ∈ N. Show that (xn)n∈N is a Cauchy sequence in R.

(b) Do the following sequences in R converge? If so, find the limit. Prove your assertions.

(i) (an)n∈N with an =
n

2n
, n ∈ N,

(ii) (an)n∈N with an =
2n

n!
, n ∈ N,

(iii) (bn)n∈N with bn =
√
1 + n−1 + n−2, n ∈ N,

(iv) (dn)n∈N with dn =
√
n2 + n+ 1− n, n ∈ N,

4. Let q ∈ R+ and xn := n
√
q, yn := n

√
n, n ∈ N. Do the sequences (xn)n∈N and (yn)n∈N converge?

If so, find the limit.

5. Let (an)n∈N ⊂ R be a sequence such that an 6= 0 for all n ∈ N. Show or find a counterexample:

(i)If there exists an N ∈ N and q ∈ R,
q < 1, such that

∣∣∣∣
an+1

an

∣∣∣∣ ≤ q, n ∈ N, n ≥ N,

then limn→∞ an = 0.

(ii)If there exists an N ∈ N and q ∈ R,
q ≤ 1, such that

∣∣∣∣
an+1

an

∣∣∣∣ < q, n ∈ N, n ≥ N,

then limn→∞ an = 0.

6. The Fibonacci sequence (an)n∈N is defined recursively by

a0 = 1, a1 = 1, an+1 = an + an−1, n ∈ N.

Moreover, let σ < τ be the solutions of x2 − x− 1 = 0 and

xn =
an+1

an
, n ∈ N.

(a) Show that (an)n∈N does not converge in R.

(b) an =
1√
5
(τn+1 − σn+1), n ∈ N.

(c) limn→∞xn = σ.

7. If it exists, find the value of

1 +
1

1 +
1

1 +
1

1 + . . .

,

i. e. the limit of the sequence (xn)n∈N with

x1 := 1 and xn+1 := 1 +
1

xn
, n ≥ 1.

8. (a) Let (xn)n∈N ⊆ R and define sequences (yk)k∈N, (zk)k∈N in R ∪ {±∞} by

yk := sup{xn : n ≥ k}, zk := inf{xn : n ≥ k}, k ∈ N.
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Show that (yk)k∈N and (zk)k∈N converge in R ∪ {±∞} and that

lim
k→∞

yk = lim supxn, lim
k→∞

zk = lim inf xn.

(b) Find a sequence (an)n∈N such that

inf{an : n ∈ N} < lim inf{an : n ∈ N} < lim sup{an : n ∈ N} < sup{an : n ∈ N}.

In this case, must the set {an : n ∈ N} have a maximum?

9. Let K be an ordered field with the Archimedean property. Show that K has the least upper
bound property if and only if every Cauchy sequence converges.

10. Let (an)n∈N be a sequence in a normed space and (bn)n∈N be defined by

bn :=
1

n

n∑

k=1

ak.

Show or find a counterexample:

(a) (an)n∈N converges =⇒ (bn)n∈N converges.

(b) (bn)n∈N converges =⇒ (an)n∈N converges.

11. Cauchy’s condensation test.

(a) For a monotonically decreasing sequence (an)n∈N ⊆ R0
+ show

∑

n∈N

an converges ⇐⇒
∑

n∈N

2na2n converges.

(b) Do the series

∞∑

n=1

(n log2 n)
−1 and

∞∑

n=1

√
n+ 1−√

n

n
converge? Prove your answer. (Use

what you know from the calculus courses about the logarithm.)

12. The Euler number e.

For n ∈ N let an :=
(
1 + 1

n

)n
and sn :=

∑∞
k=0

1
k! .

(a) Show that 2k < k! for all k ≥ 4 and that

1 ≤
(
1 +

1

n

)n
≤

n∑

k=0

1

k!
< 3 , n ∈ N.

(b) Show that the sequences (an)n∈N and (sn)n∈N converge.

(c) Show that

e := lim
n→∞

(
1 +

1

n

)n
=

∞∑

k=0

1

k!
, n ∈ N.

13. Find the 5-adic and 7-adic representation of 61
5 . Proof!

That is, find Na, Nb ∈ Z and (an)
∞
n=−Na

⊆ {0, 1, . . . , 4} and (bn)
∞
n=−Nb

⊆ {0, 1, . . . , 6} and
such that

61

5
=

∞∑

n=−Na

an5
−n =

∞∑

n=−Nb

bn7
−n.
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14. Do the following series converge? Proof your answer.

(a)

∞∑

n=1

(n!)2

(2n)!
, (b)

∞∑

n=1

( n

n+ 1

)n2

,

(c)

∞∑

n=2

bn, where b2m := 1
(2m)2 , b2m+1 = − 1

2m ,

(d)

∞∑

n=1

(
a+

1

n

)n
where a ∈ R.

15. (a) For n ∈ N let an := bn := (−1)n√
n+1

and cn :=
∑n

k=0 akbn−k. Show that
∑∞

n=0 an converges,

but
∑∞

n=0 cn diverges.

(b) Let (an)n∈N ⊆ R a monotonically decreasing sequence such that
∑∞

n=1 an converges in R.
Show that

lim
n→∞

nan = 0.

Exercises for Chapter 5

1

1. For j = 1, . . . , n let (Xj , ‖ · ‖j) be normed spaces over F where F = R or C. Recall that
(X1 × · · · ×Xn, ‖ · ‖) with

‖(x1, . . . , xn)‖ := ‖x1‖+ · · ·+ ‖xn‖
is a normed space over F.

(a) Show that for all j = 1, . . . , n the projection prj is continuous where

prj : X1 × · · · ×Xn → Xj , (x1, . . . , xn) 7→ xj .

(b) Let f = (f1, . . . , fn) : V → X1 × · · ·Xn where V is a normed space (that is fj : V → Xj

and f(v) = (f1(v), . . . , fn(v))).

Show that f is continuous if and only if every fj is continuous.

(c) Let X be a normed space, F = R or C, and f : Df → F, g : Dg → F continuous. Let
Dfg = Df ∩ Dg. Then fg : Dfg → F, (fg)(x) = f(x)g(x) is continuous. If g(x) 6= 0,

x ∈ Dfg, then
f
g : Dfg → F, f

g (x) =
f(x)
g(x) is continuous.

2. Proof the Cauchy criterion (Theorem 5.15):

Let (X, dX), (Y, dY ) be metric spaces, Y complete, f : X ⊇ D → Y a function and x0 a limit
point of D. Then f has a limit in x0 if and only if

∀ ε > 0 ∃ δ > 0 ∀ x, y ∈ Df :
(
0 < dX(x, x0) < δ ∧ 0 < dX(y, x0) < δ =⇒ dY

(
f(x), f(y)

)
< ε
)
.

3. Let (X, d) be a metric space and f, g : X → R continuous functions. Show that the following
functions are continuous:

S : X → R, S(x) := min{f(x), g(x)},
T : X → R, T (x) := max{f(x), g(x)}.
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4. Where are the following functions are continuous? Proof your answer.

(a) f : [0,∞) → R, x 7→ √
x,

(b) g : C → R, z 7→ |z + z̄2|,

(c) h : [−1, 1] ∪ {2} → R, x 7→





−√−x, −1 ≤ x ≤ 0,√
x, 0 < x ≤ 1,

x, x = 2.

(d) D : R → R, D(x) :=

{
1, x ∈ Q,

0, x ∈ R \Q,
Hint: Show that R \ Q is dense in R, that is, for every x ∈ R there exists a sequence
(xn)n∈N ⊂ R \Q such that limn→∞xn = x.

5. Prove Theorem 5.26 and Theorem 5.27:

Let I = (a, b) a nonempty real interval and f : I → R a function.

(a) Assume that f is continuous. Then f is injective if and only if f is strictly monotonic.

(b) If f is strictly monotonically increasing or decreasing, then it is invertible and its inverse
f−1 : f(I) → R is continuous.

6. Show that f : [0,∞) → R, x 7→ √
x, is uniformly continuous but not Lipschitz continuous.

7. Do the following sequences of functions converge pointwise? Do they converge uniformely? If
they converge, find the limit function.

(a) fn : R → R, fn(x) =





n2x, 0 ≤ x ≤ 1
n ,

2n− n2x, 1
n < x ≤ 2

n ,

0, else.

(b) fn : R → R, fn(x) =
nx

1 + nx2
,

(c) fn : R → R, fn(x) =
nx

1 + n2x2
,

(d) fn : R → R, fn(x) =
n2x

1 + nx
.

8. Let D ⊆ R, f : D → R a function and (an)n∈N ⊆ R \ {0} a sequence that converges to 0. Define
fn : D → R by fn(x) = anf(x), x ∈ D.

(a) (fn)n∈N converges pointwise to g : D → R, g(x) = 0.

(b) (fn)n∈N converges uniformely if and only if f is bounded on D.

9. Find the radius of convergence of

i)

∞∑

n=1

(−1)n(2z)n

n
, ii)

∞∑

n=1

n!

nn
zn ,

iii)
∞∑

n=1

(
√
n− 1)nzn , iv)

∞∑

n=1

8nz3n

3n
.

Last Change: Mon 01 Aug 2011 03:54:30 PM -05



148

10. Show the following properties of the exponential function (Theorem 5.50):

(a) exp(z̄) = exp(z), z ∈ C,

(b) exp(z + w) = exp(z) exp(w), z, w ∈ C,

(c) exp(n) = en, n ∈ Z,

(d) exp(z) 6= 0, z ∈ C,

(e) | exp(ix)| = 1 ⇐⇒ x ∈ R.

11. (a) Show the following identities for x, y ∈ C:

(i) sin2(x) + cos2(x) = 1.

(ii) sin(x+ y) = cos(x) sin(y) + cos(y) sin(x),

(iii) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

(b) Show that {x ∈ R+ : cosx = 0} 6= ∅.

Let π := 2 · inf{x ∈ R+ : cosx = 0}.

(c) For x ∈ R show:

(i) sinx = 0 ⇐⇒ ∃ k ∈ Z x = kπ.
(ii) cosx = 0 ⇐⇒ ∃ k ∈ Z x = kπ + π

2 .

Hint. Without proof you can use

1− x2

2
≤ cosx ≤ 1− x2

2
+
x4

24
, x ∈ (0, 3].

Exercises for Chapter 6

1

1. Show that the following functions are differentiable and find the derivative. Prove your asser-
tions.

(a) w : R+ → R, x 7→ √
x,

(b) w : R → R, x 7→
√

|x|,
(c) cos : R → R, sin : R → R,

Hint. Prove Euler’s formula (Theorem 5.50): exp(iz) = cos(z) + i sin(z) for z ∈ C.

2. For k ∈ N let fk : R → R defined by

fk(x) :=




xk sin

1

x
, x 6= 0,

0, x = 0.

For which k is fk differentiable? For which k is fk continuously differentiable?

3. Exponential functions. For fixed a ∈ R+ = (0,∞) define the function

pa : C → C, pa(z) = exp(z ln(a)).
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(a) For a ∈ R+ and q ∈ Q show

pa(q) = aq. (∗)

(b) Show that pa is differentiable and find its derivative.

Recall. For a ∈ R+ and n ∈ N we have defined

an :=
n
∏

n=1

a, a0 := 1, a
1
n := unique positive solution of xn = a.

Therefore aq :=
(

(aσ)
1
m
)n

is defined for all q = σn
m

∈ Q with m ∈ N, n ∈ N0, σ ∈ {±1}.

Remark. Because of the identity (∗) one defines

az := exp(z ln(a)), a ∈ R+, z ∈ C.

4. Let f : [a, b] → [a, b] be continuous and differentiable in (a, b) with f ′(x) 6= 1, x ∈ (a, b). Show
that there exists exactly one p ∈ [a, b] such that f(p) = p.

5. Let f : [0,∞) → R be differentiable, f(0) = 1 and f ′(x)f(x) ≥ 0 for all x ∈ [0,∞). Show that
f is increasing.

6. (a) Darboux’s Theorem. Let f : D → R be a differentiable function of the nonempty interval
D = (a, b) ⊆ R. Show that for every q ∈ R with

inf{f ′(x) : x ∈ D} < q < sup{f ′(x) : x ∈ D}.

there exists a c ∈ (a, b) such that f ′(c) = q.

(b) Let D = (a, b) a nonempty interval and f : D → R a differentiable function with an isolated
global minimum at x0 ∈ D. Is the following statement true:
There exist c, d ∈ (a, b) such that c < x0 < d and f ′(x) ≤ 0, x ∈ (c, x0) and f

′(x) ≥ 0, x ∈
(x0, d).

7. Find all local and global extrema of

f : [0,∞) → R, f(x) =
2 sinx

2− cos2 x
.

8. Determine if the following limits exist. If they exist, find their value.

(a) lim
x→∞

(
x− 3

√
x3 − x2 + 1

)
,

(b) lim
a→∞

(
1 +

x

a

)a
with x ∈ R,

(c) lim
x→0

(1 + arctanx)1/x,

(d) lim
x→1

( a

1− xa
− b

1− xb

)
with a, b ∈ R \ {0}.

9. Sean −∞ < α < β < ∞ y f, g : (α, β) → R funciones derivables con g′(x) 6= 0 en (α, β) y

lim
xցα

g(x) = lim
xցα

f ′(x)

g′(x)
= ∞. Muestre que lim

xցα

f(x)

g(x)
= ∞.

10. Let (an)n∈N ⊆ R and suppose that an ≥ 0 for all n ∈ N. Show:

∞∑

k=1

an converges =⇒
∞∑

k=1

√
an
n

converges.
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11. Let a < c < b ∈ R, α : [a, b] → R a monotonic functions and f, g : [a, b] → R bounded functions.

(a) (Theorem 6.43 (i)) Show that f is Riemann-Stieltjes integrable with respect to α if and
only if the restrictions f1 := f |[a,c] and f2 := f |[c,b] are so and that in this case:

∫ b

a

f(x) dα =

∫ c

a

f1(x) dα+

∫ b

c

f2(x) dα .

(b) Suppose there exists a set M = {a1, . . . , an} ⊂ [a, b] such that α is continuous in M and
f(x) = g(x) for all x ∈ [a, b] \M . Then f ∈ R(α) if and only if g ∈ R(α); in this case

∫ b

a

f(x) dα =

∫ b

a

g(x) dα.

12. Let a ∈ R+ and let f : R → R, f = exp. Use Riemann sums s(f, P ) and S(f, P ) to find
a∫

0

exp(x) dx.

13. (a) Does the improper integral

∫ ∞

0

sin t

t
dt exist?

(b) Does

∫ 1

0

D(t) dt exist, where D is the Dirichlet function

D : [0, 1] → R, D(t) =

{
1 if x ∈ Q ∩ [0, 1],

0 if x ∈ [0, 1] \Q.

14. For k,m ∈ N find the integrals
∫ π

−π

sin(kx) cos(mx) dx,

∫ π

−π

sin(kx) sin(mx) dx.

15. (a) Find lim
n→∞

n
√
n!.

(b) Find lim
n→∞

1

n
n
√
n!.

16. For n ∈ N define

fn : (0,∞) → R, fn(x) = 2n(
n
√
2x− 1).

(a) Find the pointwise limit of (fn)n∈N.

(b) Show that (fn)n∈N converges uniformly on every compact interval in (0,∞).

(c) Does (fn)n∈N converge uniformly in (0,∞)?

Hint. Write fn as an integral.

17. Recall that (C([0, 1]), ‖ · ‖∞) is a Banach space. Show that

T : C([0, 1]) → C, f 7→
∫ 1

0

f dx

is a bounded linear map and find ‖T‖. Show that T is continuous. Is it differentiable? If so,
find its derivative.

Last Change: Mon 01 Aug 2011 03:54:30 PM -05



Chapter 9. Exercises 151

Exercises for Chapter 7

1

1. (a) Use power series to find

∞∑

n=1

n

3n−1
,

∞∑

n=1

n

(n+ 1)!
.

(b) Find the power series representation of arctan at 0 and show that

π

4
=

∞∑

n=0

(−)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
± · · ·

2. (a) Sea f :
(
− π

2
,
π

2

)
−→ R, f(x) = − log(cos x). Muestre que

∣∣∣f(x)− x2

2

∣∣∣ ≤ 2

3
|x|3, x ∈

[
− π

4
,
π

4

]
.

3. Let D ⊂ R be an interval, p ∈ D, n ∈ N0 and f ∈ Cn(D,C). Let P be a polynomial of degree
≤ n such that

P [k](p) = f [k](p), k = 0, 1, . . . , n.

Show that P = jnp f where jnp f is the nth Taylor polynomial of f in p.

4. (a) Find the Taylor series at p = 2 and determine its radius of convergence of

f(x) =
1

(x− 3)(x− 5)

(b) Find the limit (without using l’Hospital’s rule)

lim
x→0

x− sinx

ex −1− x− x2/2
.

5. (a) Let f :
(
− π

2
,
π

2

)
−→ R, f(x) = − log(cos x). Show that

∣∣∣f(x)− x2

2

∣∣∣ ≤ 2

3
|x|3, x ∈

[
− π

4
,
π

4

]
.

6. (a) Show that the following function is arbitrarily often differentiable and find its Taylor series
at 0. What is its radius of convergence? Where is the Taylor series equal to ϕ?

ϕ : R → R, ϕ(x) =

{
exp(−x−2), x 6= 0,

0, x = 0.

(b) Show that the following function is arbitrarily often differentiable and find its Taylor series
at 0. What is its radius of convergence?

g : R → R, g(x) =

∞∑

n=0

cos(n2x)

2n
.

7. If f : [−1, 1] → R is continuous, then

lim
t→0

∫ 1

−1

t

t2 + x2
f(x) dx = πf(0).
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Exercises for Chapter 8

1

1. Let (X, d) a metric space and define O ⊆ PX by

U ∈ O :⇐⇒ ∀p ∈ U ∃ε > 0 Bε(p) ⊆ U.

Show that (X,O) is a topological space with the Hausdorff property.

Show that for r > 0 and a ∈ X the open ball Br(a) is open and the closed ball Kr(a) is closed.
Let Sr(a) := {x ∈ X : d(x, a) = r}. Show that

∂Br(a) ⊆ Sr(a) and Br(a) ⊆ Kr(a). (∗)

Is equality in (∗) true?

2. (a) Find the interior and the closure of

M := {(x, sinx−1) : x ∈ R \ {0}} ⊆ R2.

(b) Let (X,O) be topological space and M ⊆ X. Can (∂M)◦ = ∅ be concluded?

3. Show that every open subset of R is the disjoint union of at most countably many open intervals.

4. Let K, A ⊆ Rn such that K is compact and A is closed. Then there are p ∈ K and a ∈ A such
that

|p− a| ≤ |q − x|, q ∈ K, x ∈ A.

5. Let X be a topological space, A,B closed subsets of X such that A∪B and A∩B are connected.
Are A and B connected?

6. Let A be a closed subset of Rn uach that ∂A is connected. Show that A is connected. (Hint:
Use Exercise 8.5).
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inf, 9
limn→∞, 47
lim inf, lim sup, 47
max, 9
min, 9
sup, 9
C, complex field, 29
F+ = {x > 0},F0

+ = {x ≥ 0}, 25
N = {1, 2, . . . }, 13
P(N), 8

Q, 21
R+ = {x > 0},R0

+ = {x ≥ 0}, 25, 29
Z, 21
”07 L(X,Y ), 90
Br(a), 34, 131
B(X,Y ), 75
C(X,Y ), 67
Cn(D,Y ), 90
G(f), graph of f , 10
Kr(a), 34, 131
O(X), 119
R(α), 105
R,R([a, b]), 105
R(f), range of f , 10
Re z, Im z, 30
d(x, y), 33
e, 46, 59
f
∣∣
A
, 10

o(X), 119
cos, see cosine
exp, see exponential function
ln, 82
sign, 25
sin, see sine
tan, 97

absolute value, 25
absolutely conditionally, 53
absolutely convergent, 53
addition, 22
almost all, 35
analytic function, 123
antiderivative, 111
Archimedean property, 27, 61
arcwise connected, 140
axiom, Peano, 13

ball, 34, 131
Banach space, 39
Bernoulli’s inequality, 26
bijective, 10
binomial coefficients, 18, 119
binomial expansion, 19
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bound
lower, upper, 9

boundary, 133
bounded

set, 9
bounded function, 70
bounded sequence, 35
bounded set, 34

Cantor’s construction of R, 60
Cartesian product, 8
Cauchy criterion for series, 49
Cauchy product, 57
Cauchy sequence, 36, 39
Cauchy-Schwarz inequality, 102
chain rule, 89
cluster value of a sequence, 47
compact, 73, 135

sequentially, 136
comparison test, 54
complete metric space, 37
completeness property, 27
complex conjugation, 30
complex number, 29
composition, 10
concave function, 99
connected, 139
continuous, 63

Lipschitz, 65
uniformly, 74

continuously differentiable, 90
convergent, 35, 39, 49

absolutely, 53
conditionally, 55
pointwise, 74
unconditionally, 55
uniformly, 75

convex function, 99
cos, see cosine
cosine, 81, 97
critical point, 96

Dedekind completeness, 27
de Morgan’s laws, 133
diameter of a set, 34
difference quotient, 85
differentiable, 85, 91

from the right, left, 89
differential, 87
Dirac sequence, 126
Dirichlet function, 65
discrete metric, 34

discrete topology, 132
disjoint, 8
distance, 33
distributivity, 22
divergent, 35, 43
domain of a function, 10

e, 46, 59
equivalence relation, 61
Euclidean algorithm, 14
Euclidean metric, 34
Euclidean norm, 40
Euler’s formula, 82
Euler’s number, 46, 59
exp, see exponential function
exponential function, 81, 148
extension of a function, 10

factorial, 17
Fibonacci sequence, 35
field

ordered, 24
Fréchet differentiable, 91
function, 9

analytic, 123
bounded, 70
composition, 10
concave, convex, 99
continuous, 134
extension, 10
inverse, 10
linear, 90
restriction, 10

fundamental theorem of calculus, 111

generalised mean value theorem, 98
geometric series, 50
global extremum, 94
global maximum, minimum, 94
graph, 10
greatest lower bound, 9

Hölder inequality, 101
harmonic series, 50
Hausdorff space, 132
Heaviside function, 64
Heine-Borel theorem, 138
higher order derivatives, 90

image, 10
improper integral, 112
induction principle, 14
inequality

Last Change: Mon 01 Aug 2011 03:54:30 PM -05



Bibliography 157

Bernoulli’s ∼, 26
Cauchy-Schwarz, 102
Hölder, 101
Minkowski, 102
triangle, 26
Young, 101

infimum, 9
injective, 10
inner product, 102
integral

improper, 112
Riemann, 105
Riemann-Stieltjes, 105

integral test for series, 114
integration by parts, 112
Intermediate value theorem, 71, 140
Intermediate value theorem of integration, 110
interval, 28
inverse function, 10
Inverse function theorem, 97
isolated extremum, 94

jet, 118

l’Hospital’s rules, 98, 149
Landau symbols, 119
least upper bound, 9
least-upper-bound-property, 61
Leibniz criterion, 51
lemma

Sandwich, 44
limes inferior, superior, 47
limit, 47

one-sided, 69
limit of a function, 68
linear map, 90
Lipschitz continuous, 65
ln, 82
local extremum, 94
local maximum, minimum, 94
locally Riemann integrable, 112
logarithm, 82

mapping, 9
maximum

of a function, 94
of a set, 9

mean value theorem, 93
metric, 33

discrete, 34
Euclidean, 34

metric space, 33, 37
minimum

of a function, 94
of a set, 9

Minkowski inequality, 102
modulus, 25
multi-index, 67
multiplication, 22

natural number, 13
neighbourhood, 132
norm, 39

Euclidean, 40
supremum, 75

normed space, 39

one-sided limit, 69
one-to-one, 10
open cover, 135
order, 24
order axioms, 24
ordered set, 9

partial sum, 49
partition, 103
Peano axioms, 13
permutation, 17
pointwise convergent, 74
polynomial, 67
power series, 78
power set, 8
preimage, 10
product topology, 134

radius of convergence, 78
range, 10
ratio test, 55
rational function, 67
rearrangement, 55
rearrangement theorem, 55
refinement, 103
relation, 9
restriction of a function, 10
Riemann integral, 105
Riemann rearrangement theorem, 58
Riemann zeta function, 54, 114
Riemann-Stieltjes integral, 105
Rolle’s theorem, 93
root, 28, 45
root test, 54

Sandwich lemma, 44
sequence, 34

bounded, 35
Cauchy, 36, 39
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convergent, 35, 39
Fibonacci, 35

sequentially compact, 136
series, 49

alternating, 51
geometric, 50
harmonic, 50
integral test, 114

set
bounded, 9
ordered ∼, 9

sin, see sine
sine, 81, 97
space

topological, 132
subsequence, 37
subspace topology, 132
successor, 13
supremum, 9
supremum norm, 75
surjective, 10

tan, 97
Taylor polynomial, 118
theorem

Bolzano-Weierstraß, 46
Darboux, 149
fundamental theorem of calculus, 111
generalised mean value, 98
Heine-Borel, 138
intermediate value theorem, 71, 140
mean value, 93
rearrangement, 55
Riemann rearrangement, 58
Rolle, 93
Weierstraß approximation theorem, 128
well-ordering principle, 14

topological space, 132
totally bounded, 135
transformation formula, 110
triangle inequality, 26
trivial topology, 132
tube lemma, 137

uniformly continuous, 74
uniformly convergent, 75

vector space, 38

Weierstraß approximation theorem, 128
Weierstraß criterion, 78
Weierstraß function, 87
well-ordering principle, 14

Young inequality, 101
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Banach, Stefan ∗ 30 March 1892 in Krakau, † 31 August 1945 in Lemberg. Polish mathematician,
regarded as founder of modern functional analysis. 39

Bernoulli, Jakob ∗ 6 January 1655 in Basel; † 16 August 1705 in Basel. Swiss mathematician,
after whom the Bernoulli inequality is named. 26

Bolzano, Bernard ∗ 5 October 1781 in Prague, † 18 December 1848 in Prague. Philosopher,
theologian and mathematician. 46

Cantor, Georg ∗ 3 March 1845 in Saint Petersburg, Russia, † 6 January 1918 in Halle (Saale),
Germany. German mathematician. Cantor made important contributions to modern mathe-
matics; he is regarded as founder of set theory. 53

Cauchy, Augustin Louis ∗ 21 August 1789 in Paris; † 23 May 1857 in Sceaux. French mathe-
matician, pioneer in modern analysis. 36

Dedekind, Richard ∗ 6 October 1831 in Braunschweig, † 12 February 1916 in Braunschweig. Ger-
man mathematician who contributed to the axiomatic introduction of the natural and real
numbers (Dedekind cuts). Moreover he is a pioneer in group theory. 27

Dirac, Paul Adrien Maurice ∗ 8 August 1902 in Bristol, † 20 Oktober 1984 in Tallahassee,
Florida. British theoretical physicist with Swiss roots (his father’s origins are in Saint-
Maurice, Wallis). Dirac is one of the founders of quantum mechanics. His physical work
was motivated by the principals of mathematical beauty: “Physical laws should have mathe-
matical beauty”. 126

Dirichlet, Johann Peter Gustav Lejeune ∗ 13 February 1805 in Düren, † 5 May 1859 in Göttin-
gen. German mathematician, with contributions mainly to analysis and number theory. 64

Euler, Leonhard ∗ 15 April 1707 in Basel, Schweiz; † 18 September 1783 in Sankt Petersburg.
Swiss mathematician. One of the most important and influential mathematicians. 46, 59

Fibonacci, Leonardo Date of birth unknown (about 1180?), † probably after 1241. Also known
as Leonardo of Pisa. He is considered as one of the best mathematicians of the Middle Ages.
Today, he is mostly known for the Fibonacci sequence. 35

Fréchet, Maurice René ∗ 2 September 1878 in Maligny, † 4 Juny 1973 in Paris. 91

Fresnel, August-Jean ∗ 10 May 1788, † 14 July 1827. 114
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Hölder, Otto Ludwig ∗ 22 December 1859 in Stuttgart, † 29 August 1937 in Leipzig. German
mathematician. 101

Hahn, Hans ∗ 27 September 1879 in Wien, † 24 July 1934 in Wien. 91

Hausdorff, Felix ∗ 8 November 1868 in Breslau, † 26 January 1942 in Bonn. German mathemati-
cian, considered as one of the founders of modern topology. He made crucial contributions
to general and descriptive set theory, to measure theory, functional analysis and algebra.
Moreover, using the pseudonym Paul Mongré, he is authored philosophical and literary texts.
132

Heaviside, Oliver ∗ 18 May 1850 in London, † 3 February 1925 in Homefield near Torquay. British
mathematician and physicist. 64

Landau, Edmund Georg Hermann ∗ 14 February 1877 in Berlin, † 19 February 1938 in Berlin.
German mathematician with important contributions to number theory. 119

Leibniz, Gottfried Wilhelm, Freiherr von ∗ 1 July 1646 in Leipzig, † 14 November 1716 in
Hannover. Universal scholar. 51

Lipschitz, Rudolf ∗ 14 May 1832 in Königsberg (Preußen), † 7 October 1903 in Bonn. 65

Minkowski, Hermann ∗ 22 June 1864 in Aleksotas, formerly Russia (now Kaunas/Lithuania),
† 12 January 1909 in Göttingen. 102

Peano, Giuseppe ∗ 27 August 1858 in Spinetta, Piemont, † 20 April 1932 in Turin. Italian mathe-
matician who worked in mathematical logic, axiomatic of the natural numbers and differential
equations of first order. 13

Riemann, Bernhard ∗ 17 September 1826 in Breselenz near Dannenberg (Elbe), † 20 July 1866 in
Selasca at the Lago Maggiore. German mathematician who despite of his short life contributed
crucially to analysis, differential geometry, mathematical physics and analytic number theory.
He is considered as one of the most important mathematicians. 102

Rolle, Michel ∗ 21 April 1652 in Ambert, Basse-Auvergne, † 8 November 1719 in Paris. French
mathematician. 93

Stieltjes, Thomas Jean ∗ 29 December 1856 in Zwolle, The Netherlands, † 31 December 1894 in
Toulouse. Dutch mathematician who worked on the theory of continued fractions, number
theory. He generalized the Riemann integral to the so-called Riemann-Stieltjes integral. 102

Weierstraß, Karl ∗ 31 October 1815 in Ostenfelde near Ennigerloh/Münsterland, † 19 February
1897 in Berlin. German mathematician. 46

Young, William Henry ∗ 20 October 1863 in London, † 7 July 1942 in Lausanne. English math-
ematician. 101
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Greek Alphabet

A table with the hand written greek alphabet can be found at
http://www.greece.org/gr-lessons/gr-english/Gif/script.gif or at
http://www.xanthi.ilsp.gr/filog/ch1/alphabet/alphabet.asp .

α β γ δ ε, ǫ ζ η ϑ, θ

A B Γ ∆ E Z H Θ

alpha beta gamma delta epsilon zeta eta theta

ι κ λ µ ν ξ o π

I K Λ M N Ξ O Π

iota kappa lambda my ny xi omikron pi

ρ σ τ υ ϕ, ϕ χ ψ ω

P Σ T Υ Φ X Ψ Ω

rho sigma tau ypsilon phi chi psi omega
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