Análisis Taller 3

Números complejos; espacios métricos.

Fecha de entrega: 01 de septiembre de 2023

1. (a) Muestre que para todo $z \in \mathbb{C} \setminus \{0\}$ existen exactamente dos números $\zeta_1, \zeta_2 \in \mathbb{C}$ tal que $\zeta_1^2 = \zeta_2^2 = z$.

(b) Sean $a,b,c\in\mathbb{C},\,a\neq0.$ Muestre que existe por lo menos un $z\in\mathbb{C}$ tal que

$$az^2 + bz + c = 0.$$

- 2. Sea $(X,d), X \neq \emptyset$, un espacio métrico y $M \subseteq X$. Muestre que lo siguiente es equivalente:
 - (i) M es acotado.
 - (ii) $\exists x \in X \ \exists r > 0 : M \subseteq B_r(x)$.
 - (iii) $\forall x \in X \ \exists r > 0 : M \subseteq B_r(x)$.
- 3. (a) Sea $(X,d), X \neq \emptyset$, un espacio métrico y sean $(x_n)_{n \in \mathbb{N}}$ y $(y_n)_{n \in \mathbb{N}}$ sucesiones en X. Muestre: Si existe $a \in X$ tal que

$$\lim_{n \to \infty} x_n = a = \lim_{n \to \infty} y_n,$$

entonces

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

¿Se tiene el otro sentido (prueba o contraejemplo)?

- (b) Sea (X, d) un espacion métrico y $\varrho : \mathbb{N} \to \mathbb{N}$ una biyección. Muestre: Si $(x_n)_{n \in \mathbb{N}} \subseteq X$ converge, luego $(x_{\varrho(n)})_{n \in \mathbb{N}} \subseteq X$ converge y tiene el mismo límite.
 - ¿Las siguientes afirmaciones son verdaderas o falsas?
 - (i) Si todo reordenamiento de una sucesión converge, la sucesión misma converge.
 - (ii) Si un reordenamiento de una sucesión converge, la sucesión misma converge.
- 4. (a) Sea $x_n = \sqrt{1 + n^{-1}}$, $n \in \mathbb{N}$. Muestre que $(x_n)_{n \in \mathbb{N}}$ es una sucesión de Cauchy en \mathbb{R}^{1}
 - (b) Convergen los siguientes sucesiones en \mathbb{R} ? En el caso de convergencia, halle el límite. Pruebe sus afirmaciones.
 - (i) $(a_n)_{n\in\mathbb{N}}$ donde $a_n = \frac{2^n}{n!}$, $n \in \mathbb{N}$,
 - (ii) $(b_n)_{n\in\mathbb{N}}$ donde $b_n = \sqrt{1 + n^{-1} + n^{-2}}, n \in \mathbb{N},$
 - (iii) $(d_n)_{n\in\mathbb{N}}$ donde $d_n = \sqrt{n^2 + n + 1} n$, $n \in \mathbb{N}$,
- 5. En un párrafo, escriba un resumen de lo visto en la Semana 1. Por favor, revise las instrucciones en Bloque Neón.

¹ Una sucesión $(x_n)_{n \in \mathbb{N}}$ se llama sucesión de Cauchy si para todo $\varepsilon > 0$ existe $M \in \mathbb{N}$ tal que para todo n, m > M se tiene que $d(x_n, x_m) < \varepsilon$. (Veremos este concepto in la clase del martes.)