Analysis 1

1. Let $D \subset \mathbb{R}$ be an interval, $p \in D, n \in \mathbb{N}_{0}$ and $f \in C^{n}(D, \mathbb{C})$. Let P be a polynomial of degree $\leq n$ such that

$$
P^{[k]}(p)=f^{[k]}(p), \quad k=0,1, \ldots, n .
$$

Show that $P=j_{p}^{n} f$ where $j_{p}^{n} f$ is the nth Taylor polynomial of f in p.
2. (a) Find the Taylor series at $p=2$ and determine its radius of convergence of

$$
f(x)=\frac{1}{(x-3)(x-5)}
$$

(b) Find the limit (without using l'Hospital's rule)

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{\mathrm{e}^{x}-1-x-x^{2} / 2}
$$

3. (a) Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}, f(x)=-\log (\cos x)$. Show that

$$
\left|f(x)-\frac{x^{2}}{2}\right| \leq \frac{2}{3}|x|^{3}, \quad x \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]
$$

4. (a) Show that the following function is arbitrarily often differentiable and find its Taylor series at 0 . What is its radius of convergence? Where is the Taylor series equal to φ ?

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}, \quad \varphi(x)= \begin{cases}\exp \left(-x^{-2}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

(b) Show that the following function is arbitrarily often differentiable and find its Taylor series at 0 . What is its radius of convergence?

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)=\sum_{n=0}^{\infty} \frac{\cos \left(n^{2} x\right)}{2^{n}}
$$

