## Analysis 1

1. (a) Find $\lim _{n \rightarrow \infty} \sqrt[n]{n!}$.
(b) Find $\lim _{n \rightarrow \infty} \frac{1}{n} \sqrt[n]{n!}$.
2. For $n \in \mathbb{N}$ define

$$
f_{n}:(0, \infty) \rightarrow \mathbb{R}, \quad f_{n}(x)=2 n(\sqrt[n]{2 x}-1)
$$

(a) Find the pointwise limit of $\left(f_{n}\right)_{n \in \mathbb{N}}$.
(b) Show that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly on every compact interval in $(0, \infty)$.
(c) Does $\left(f_{n}\right)_{n \in \mathbb{N}}$ converge uniformly in $(0, \infty)$ ?

Hint. Write $f_{n}$ as an integral.
3. (a) Use power series to find

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n-1}}, \quad \quad \sum_{n=1}^{\infty} \frac{n}{(n+1)!}
$$

(b) Find the power series representation of arctan at 0 and show that

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \pm \cdots
$$

4. Recall that $\left(C([0,1]),\|\cdot\|_{\infty}\right)$ is a Banach space. Show that

$$
T: C([0,1]) \rightarrow \mathbb{C}, \quad f \mapsto \int_{0}^{1} f \mathrm{~d} x
$$

is a bounded linear map and find $\|T\|$. Show that $T$ is continuous. Is it differentiable? If so, find its derivative.

