Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 10

Differentiation; exponential functions.

Hand in: October 23, 2009

1. For $k \in \mathbb{N}$ let $f_k : \mathbb{R} \to \mathbb{R}$ defined by

$$f_k(x) := \begin{cases} x^k \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

For which k is f_k differentiable? For which k is f_k continuously differentiable?

- 2. Let $f : [a, b] \to [a, b]$ be continuous and differentiable in (a, b) with $f'(x) \neq 1$, $x \in (a, b)$. Show that there exists exactly one $p \in [a, b]$ such that f(p) = p.
- 3. (a) Darboux's Theorem. Let $f : \mathcal{D} \to \mathbb{R}$ be a differentiable function of the nonempty interval $\mathcal{D} = (a, b) \subseteq \mathbb{R}$. Show that for every $q \in \mathbb{R}$ with

$$\inf\{f'(x): x \in \mathcal{D}\} < q < \sup\{f'(x): x \in \mathcal{D}\}.$$

there exists a $c \in (a, b)$ such that f'(c) = q.

- (b) Let $\mathcal{D} = (a, b)$ a nonempty interval and $f : \mathcal{D} \to \mathbb{R}$ a differentiable function with an isolated global minimum at $x_0 \in \mathcal{D}$. Is the following statement true: There exist $c, d \in (a, b)$ such that $c < x_0 < d$ and $f'(x) \leq 0, x \in (c, x_0)$ and $f'(x) \geq 0, x \in (x_0, d)$.
- 4. Exponential functions. For fixed $a \in \mathbb{R}^+ = (0, \infty)$ define the function

$$p_a: \mathbb{C} \to \mathbb{C}, \qquad p_a(z) = \exp(z \ln(a)).$$

(a) For $a \in \mathbb{R}^+$ and $q \in \mathbb{Q}$ show

$$p_a(q) = a^q. \tag{(*)}$$

(b) Show that p_a is differentiable and find its derivative.

Recall. For $a \in \mathbb{R}^+$ and $n \in \mathbb{N}$ we have defined

$$a^n := \prod_{n=1}^n a,$$
 $a^0 := 1,$ $a^{\frac{1}{n}} :=$ unique positive solution of $x^n = a.$

Therefore $a^q := \left((a^\sigma)^{\frac{1}{m}} \right)^n$ is defined for all $q = \frac{\sigma n}{m} \in \mathbb{Q}$ with $m \in \mathbb{N}, n \in \mathbb{N}_0, \sigma \in \{\pm 1\}$.

Remark. Because of the identity (*) one defines

a

$$z^{z} := \exp(z \ln(a)), \qquad a \in \mathbb{R}^{+}, \ z \in \mathbb{C}.$$