Analysis 1

1. Prove Theorem 5.26 and Theorem 5.27:

Let $I=(a, b)$ a nonempty real interval and $f: I \rightarrow \mathbb{R}$ a function.
(a) Assume that f is continuous. Then f is injective if and only if f is strictly monotonic.
(b) If f is strictly monotonically increasing or decreasing, then it is invertible and its inverse $f^{-1}: f(I) \rightarrow \mathbb{R}$ is continuous.
2. Show that $f:[0, \infty) \rightarrow \mathbb{R}, x \mapsto \sqrt{x}$, is uniformly continuous but not Lipschitz continuous.
3. Do the following sequences of functions converge pointwise? Do they converge uniformely? If they converge, find the limit function.
(a) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{n}(x)= \begin{cases}n^{2} x, & 0 \leq x \leq \frac{1}{n}, \\ 2 n-n^{2} x, & \frac{1}{n}<x \leq \frac{2}{n}, \\ 0, & \text { else. }\end{cases}$
(b) $\quad f_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{n}(x)=\frac{n x}{1+n x^{2}}$,
(c) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$,
(d) $f_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad f_{n}(x)=\frac{n^{2} x}{1+n x}$.
4. Let $\mathcal{D} \subseteq \mathbb{R}, f: \mathcal{D} \rightarrow \mathbb{R}$ a function and $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R} \backslash\{0\}$ a sequence that converges to 0 . Define $f_{n}: \mathcal{D} \rightarrow \mathbb{R}$ by $f_{n}(x)=a_{n} f(x), x \in \mathcal{D}$.
(a) $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to $g: \mathcal{D} \rightarrow \mathbb{R}, g(x)=0$.
(b) $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformely if and only if f is bounded on \mathcal{D}.

