Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 8

Continuity and uniform continuity.

Hand in: October 9, 2009

1. Prove Theorem 5.26 and Theorem 5.27:

Let I = (a, b) a nonempty real interval and $f : I \to \mathbb{R}$ a function.

- (a) Assume that f is continuous. Then f is injective if and only if f is strictly monotonic.
- (b) If f is strictly monotonically increasing or decreasing, then it is invertible and its inverse $f^{-1}: f(I) \to \mathbb{R}$ is continuous.
- 2. Show that $f:[0,\infty)\to\mathbb{R},\ x\mapsto\sqrt{x}$, is uniformly continuous but not Lipschitz continuous.
- 3. Do the following sequences of functions converge pointwise? Do they converge uniformely? If they converge, find the limit function.

(a)
$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{n}, \\ 2n - n^2 x, & \frac{1}{n} < x \le \frac{2}{n}, \\ 0, & \text{else.} \end{cases}$$

(b) $f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{nx}{1 + nx^2},$

(c)
$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{nx}{1 + n^2 x^2}$$

(d) $f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{n^2 x}{1 + nx}.$

- 4. Let $\mathcal{D} \subseteq \mathbb{R}$, $f : \mathcal{D} \to \mathbb{R}$ a function and $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \setminus \{0\}$ a sequence that converges to 0. Define $f_n : \mathcal{D} \to \mathbb{R}$ by $f_n(x) = a_n f(x), x \in \mathcal{D}$.
 - (a) $(f_n)_{n \in \mathbb{N}}$ converges pointwise to $g : \mathcal{D} \to \mathbb{R}, g(x) = 0.$
 - (b) $(f_n)_{n \in \mathbb{N}}$ converges uniformely if and only if f is bounded on \mathcal{D} .