Analysis 1

Problem Sheet 7

Continuity.

 $\forall \varepsilon$

Hand in: September 24, 2009

1. For j = 1, ..., n let $(X_j, \|\cdot\|_j)$ be normed spaces over \mathbb{F} where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Recall that $(X_1 \times \cdots \times X_n, \|\cdot\|)$ with

$$||(x_1,\ldots,x_n)|| := ||x_1|| + \cdots + ||x_n||$$

is a normed space over \mathbb{F} .

(a) Show that for all j = 1, ..., n the projection pr_j is continuous where

 $\operatorname{pr}_j: X_1 \times \cdots \times X_n \to X_j, \quad (x_1, \dots, x_n) \mapsto x_j.$

- (b) Let $f = (f_1, \ldots, f_n) : V \to X_1 \times \cdots \times X_n$ where V is a normed space (that is $f_j : V \to X_j$ and $f(v) = (f_1(v), \ldots, f_n(v))$). Show that f is continuous if and only if every f_j is continuous.
- (c) Let X be a normed space, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $f : \mathcal{D}_f \to \mathbb{F}$, $g : \mathcal{D}_g \to \mathbb{F}$ continuous. Let $\mathcal{D}_{fg} = \mathcal{D}_f \cap \mathcal{D}_g$. Then $fg : \mathcal{D}_{fg} \to \mathbb{F}$, (fg)(x) = f(x)g(x) is continuous. If $g(x) \neq 0, x \in \mathcal{D}_{fg}$, then $\frac{f}{g} : \mathcal{D}_{fg} \to \mathbb{F}, \frac{f}{g}(x) = \frac{f(x)}{g(x)}$ is continuous.
- 2. Proof the Cauchy criterion (Theorem 5.15):

Let (X, d_X) , (Y, d_Y) be metric spaces, Y complete, $f : X \supseteq \mathcal{D} \to Y$ a function and x_0 a limit point of \mathcal{D} . Then f has a limit in x_0 if and only if

$$> 0 \exists \delta > 0 \forall x, y \in D_f :$$

$$\Big(0 < d_X(x, x_0) < \delta \land 0 < d_X(y, x_0) < \delta \implies d_Y \big(f(x), f(y) \big) < \varepsilon \Big).$$

3. Let (X, d) be a metric space and $f, g : X \to \mathbb{R}$ continuous functions. Show that the following functions are continuous:

$$S: X \to \mathbb{R}, \quad S(x) := \min\{f(x), g(x)\},$$

$$T: X \to \mathbb{R}, \quad T(x) := \max\{f(x), g(x)\}.$$

4. Where are the following functions are continuous? Proof your answer.

(a) $f: [0, \infty) \to \mathbb{R}, \quad x \mapsto \sqrt{x},$ (b) $q: \mathbb{C} \to \mathbb{R}, \quad z \mapsto |z + \overline{z}^2|,$

(c)
$$h: [-1,1] \cup \{2\} \to \mathbb{R}, \quad x \mapsto \begin{cases} -\sqrt{-x}, & -1 \le x \le 0, \\ \sqrt{x}, & 0 < x \le 1, \\ x, & x = 2. \end{cases}$$

(d) $D: \mathbb{R} \to \mathbb{R}, \quad D(x) := \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$

Hint: Show that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} , that is, for every $x \in \mathbb{R}$ there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R} \setminus \mathbb{Q}$ such that $\lim_{n \to \infty} x_n = x$.