## Analysis 1

1. (a) Show that for every $z \in \mathbb{C} \backslash\{0\}$ there exist exactly two numbers $\zeta_{1}, \zeta_{2} \in \mathbb{C}$ such that $\zeta_{1}^{2}=\zeta_{2}^{2}=z$.
(b) Let $a, b, c \in \mathbb{C}, a \neq 0$. Show that there exists at least one $z \in \mathbb{C}$ such that

$$
a z^{2}+b z+c=0
$$

2. (a) Let $(X, d), X \neq \emptyset$, be a metric space and $M \subseteq X$. Show that the following are equivalent:
(i) $M$ is bounded.
(ii) $\exists x \in X \exists r>0: M \subseteq B_{r}(x)$.
(iii) $\forall x \in X \exists r>0: M \subseteq B_{r}(x)$.
(b) For $M \subseteq \mathbb{R}$ show that $M$ is bounded as subset of the ordered field $(\mathbb{R},>)$ if and only if $M$ is bounded as subset of the metric space $(\mathbb{R}, d)$ where $d(x, y)=|x-y|$.
3. (a) Let $(X, d), X \neq \emptyset$, be a metric space and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences in $X$. Show: If there exists an $a \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=a=\lim _{n \rightarrow \infty} y_{n}
$$

then

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

Is the converse also true (proof or counter example)?
(b) Let $(X, d)$ be a metric space and $\varrho: \mathbb{N} \rightarrow \mathbb{N}$ a bijection. Show: If $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ converges, then $\left(x_{\varrho(n)}\right)_{n \in \mathbb{N}} \subseteq X$ converges and has the same limit.
4. (a) Let $x_{n}=\sqrt{1+n^{-1}}, n \in \mathbb{N}$. Show that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathbb{R}$.
(b) Do the following sequences in $\mathbb{R}$ converge? If so, find the limit. Prove your assertions.
(i) $\quad\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n}=\frac{2^{n}}{n!}, \quad n \in \mathbb{N}$,
(ii) $\quad\left(b_{n}\right)_{n \in \mathbb{N}}$ with $b_{n}=\sqrt{1+n^{-1}+n^{-2}}, \quad n \in \mathbb{N}$,
(iii) $\quad\left(d_{n}\right)_{n \in \mathbb{N}}$ with $d_{n}=\sqrt{n^{2}+n+1}-n, \quad n \in \mathbb{N}$,

