Analysis 1

Problem Sheet 3

Complex numbers; sequences.

- Hand in: August 27, 2009
- 1. (a) Show that for every $z \in \mathbb{C} \setminus \{0\}$ there exist exactly two numbers $\zeta_1, \zeta_2 \in \mathbb{C}$ such that $\zeta_1^2 = \zeta_2^2 = z$.
 - (b) Let $a, b, c \in \mathbb{C}$, $a \neq 0$. Show that there exists at least one $z \in \mathbb{C}$ such that

$$az^2 + bz + c = 0.$$

- 2. (a) Let $(X, d), X \neq \emptyset$, be a metric space and $M \subseteq X$. Show that the following are equivalent:
 - (i) M is bounded.
 - (ii) $\exists x \in X \exists r > 0 : M \subseteq B_r(x).$
 - (iii) $\forall x \in X \exists r > 0 : M \subseteq B_r(x).$
 - (b) For $M \subseteq \mathbb{R}$ show that M is bounded as subset of the ordered field $(\mathbb{R}, >)$ if and only if M is bounded as subset of the metric space (\mathbb{R}, d) where d(x, y) = |x y|.
- (a) Let (X, d), X ≠ Ø, be a metric space and let (x_n)_{n∈N} and (y_n)_{n∈N} be sequences in X. Show: If there exists an a ∈ X such that

$$\lim_{n \to \infty} x_n = a = \lim_{n \to \infty} y_n,$$

then

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Is the converse also true (proof or counter example)?

- (b) Let (X, d) be a metric space and $\rho : \mathbb{N} \to \mathbb{N}$ a bijection. Show: If $(x_n)_{n \in \mathbb{N}} \subseteq X$ converges, then $(x_{\rho(n)})_{n \in \mathbb{N}} \subseteq X$ converges and has the same limit.
- 4. (a) Let $x_n = \sqrt{1 + n^{-1}}$, $n \in \mathbb{N}$. Show that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} .
 - (b) Do the following sequences in $\mathbb R$ converge? If so, find the limit. Prove your assertions.

(i)
$$(a_n)_{n \in \mathbb{N}}$$
 with $a_n = \frac{2^n}{n!}, n \in \mathbb{N},$

- (ii) $(b_n)_{n \in \mathbb{N}}$ with $b_n = \sqrt{1 + n^{-1} + n^{-2}}, \quad n \in \mathbb{N},$
- (iii) $(d_n)_{n \in \mathbb{N}}$ with $d_n = \sqrt{n^2 + n + 1} n, \quad n \in \mathbb{N},$