Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 1

Sets; induction; binomial coefficients.

Hand in: August 13, 2009

- 1. For sets A, B and C show at least two of the following statements:
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$
 - (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
 - (c) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C),$
 - (d) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$
- 2. (a) Find a bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ (proof!).
 - (b) Show that \mathbb{Q} is countable.
- 3. Show the following formulae:

(a)
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2, \quad n \in \mathbb{N},$$

(b) $\sum_{k=1}^{2n} (-1)^{k+1} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{n+k}, \quad n \in \mathbb{N}.$

4. For $n \in \mathbb{N}_0$ and $m \in \mathbb{N}$ let

$$a(m,n) := \#\{(x_1, \dots, x_m) \in \mathbb{N}_0^m : \sum_{j=1}^m x_j \le n\},\$$

$$b(m,n) := \#\{(x_1, \dots, x_m) \in \mathbb{N}_0^m : \sum_{j=1}^m x_j = n\}.$$

- (a) Show that a(m,n) = b(m+1,n) for all $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$.
- (b) Show that $a(m,n) = \binom{n+m}{m}$ for all $m \in \mathbb{N}$ and $n \in \mathbb{N}_0$.

Hint: Show a(m, n-1) + a(m-1, n) = a(m, n) and use induction on n + m.