Analysis 1

1. (a) Find $\lim _{n \rightarrow \infty} \sqrt[n]{n!}$.
(b) Find $\lim _{n \rightarrow \infty} \frac{1}{n} \sqrt[n]{n!}$.
2. (a) Use power series to find

$$
\sum_{n=1}^{\infty} \frac{k}{3^{k-1}}, \quad \sum_{n=1}^{\infty} \frac{k}{(k+1)!}
$$

(b) Find the power series representation of arctan at 0 and show that

$$
\frac{\pi}{4}=\sum_{k=0}^{\infty} \frac{(-)^{k}}{2 k+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \pm \cdots
$$

3. Find the Taylor series of
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\left(x^{2}-3 x+1\right)(x-2)$ at $p=2$,
(b) $g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x)=\sin (x) \quad$ at $p=\frac{\pi}{2}$
and determine the radius of convergence.
4. Show that the following function is arbitrarily often differentiable and find its Taylor series at 0 . What is its radius of convergence? Where is the Taylor series equal to φ ?

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}, \quad \varphi(x)= \begin{cases}\exp \left(-x^{-2}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

