Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 10

Differentiable functions; l'Hospital's rules; exponential functions.

Hand in: April 2, 2009

1. (a) Find all local and global extrema of

$$f:[0,\infty)\to\mathbb{R},\quad f(x)=rac{2\sin x}{2-\cos^2 x}.$$

(b) Let $\mathcal{D} = (a, b)$ a nonempty interval and $f : \mathcal{D} \to \mathbb{R}$ a differentiable function with an isolated global minimum at $x_0 \in \mathcal{D}$. Is the following statement true: There exist $c, d \in (a, b)$ such that $c < x_0 < d$ and $f'(x) \leq 0, x \in (c, x_0)$ and $f'(x) \geq 0, x \in (x_0, d)$.

2. Darboux's Theorem

Let $\mathcal{D} = (a, b) \subseteq \mathbb{R}$ a nonempty interval, $f : \mathcal{D} \to \mathbb{R}$ a differentiable function and $q \in \mathbb{R}$ such that

$$\inf\{f'(x): x \in \mathcal{D}\} < q < \sup\{f'(x): x \in \mathcal{D}\}.$$

Show that there exists a $c \in (a, b)$ such that f'(c) = q.

3. Find the following limits, if they exist:

(a)
$$\lim_{x \to \infty} \left(x - \sqrt[3]{x^3 - x^2 + 1} \right)$$
, (b) $\lim_{a \to \infty} \left(1 + \frac{x}{a} \right)^a$.

4. Exponential function.

For fixed $a \in \mathbb{R}^+ = (0, \infty)$ define the function

$$p_a: \mathbb{C} \to \mathbb{C}, \qquad p_a(z) = \exp(z \log(a)).$$

(a) For $a \in \mathbb{R}^+$ and $q \in \mathbb{Q}$ show

$$p_a(q) = a^q. \tag{(*)}$$

(b) Show that p_a is differentiable and find its derivative.

Recall. For $a\in \mathbb{R}^+$ and $n\in \mathbb{N}$ we have defined

$$a^n := \prod_{n=1}^n a,$$
 $a^0 := 1,$ $a^{\frac{1}{n}} :=$ unique positive solution of $x^n = a$.

Therefore $a^q := \left((a^{\sigma})^{\frac{1}{m}} \right)^n$ is defined for all $q = \frac{\sigma n}{m} \in \mathbb{Q}$ with $m \in \mathbb{N}, n \in \mathbb{N}_0, \sigma \in \{\pm 1\}$.

Remark. Because of the identity (*) one defines

$$a^{z} := \exp(z \log(a)), \qquad a \in \mathbb{R}^{+}, \ z \in \mathbb{C}.$$