Analysis 1

1. (a) Find all local and global extrema of

$$
f:[0, \infty) \rightarrow \mathbb{R}, \quad f(x)=\frac{2 \sin x}{2-\cos ^{2} x}
$$

(b) Let $\mathcal{D}=(a, b)$ a nonempty interval and $f: \mathcal{D} \rightarrow \mathbb{R}$ a differentiable function with an isolated global minimum at $x_{0} \in \mathcal{D}$. Is the following statement true:
There exist $c, d \in(a, b)$ such that $c<x_{0}<d$ and $f^{\prime}(x) \leq 0, x \in\left(c, x_{0}\right)$ and $f^{\prime}(x) \geq 0, x \in\left(x_{0}, d\right)$.

2. Darboux's Theorem

Let $\mathcal{D}=(a, b) \subseteq \mathbb{R}$ a nonempty interval, $f: \mathcal{D} \rightarrow \mathbb{R}$ a differentiable function and $q \in \mathbb{R}$ such that

$$
\inf \left\{f^{\prime}(x): x \in \mathcal{D}\right\}<q<\sup \left\{f^{\prime}(x): x \in \mathcal{D}\right\}
$$

Show that there exists a $c \in(a, b)$ such that $f^{\prime}(c)=q$.
3. Find the following limits, if they exist:
(a) $\lim _{x \rightarrow \infty}\left(x-\sqrt[3]{x^{3}-x^{2}+1}\right)$,
(b) $\lim _{a \rightarrow \infty}\left(1+\frac{x}{a}\right)^{a}$.
4. Exponential function.

For fixed $a \in \mathbb{R}^{+}=(0, \infty)$ define the function

$$
p_{a}: \mathbb{C} \rightarrow \mathbb{C}, \quad p_{a}(z)=\exp (z \log (a))
$$

(a) For $a \in \mathbb{R}^{+}$and $q \in \mathbb{Q}$ show

$$
\begin{equation*}
p_{a}(q)=a^{q} . \tag{*}
\end{equation*}
$$

(b) Show that p_{a} is differentiable and find its derivative.

Recall. For $a \in \mathbb{R}^{+}$and $n \in \mathbb{N}$ we have defined

$$
a^{n}:=\prod_{n=1}^{n} a, \quad a^{0}:=1, \quad a^{\frac{1}{n}}:=\text { unique positive solution of } x^{n}=a
$$

Therefore $a^{q}:=\left(\left(a^{\sigma}\right)^{\frac{1}{m}}\right)^{n}$ is defined for all $q=\frac{\sigma n}{m} \in \mathbb{Q}$ with $m \in \mathbb{N}, n \in \mathbb{N}_{0}, \sigma \in\{ \pm 1\}$.
Remark. Because of the identity (*) one defines

$$
a^{z}:=\exp (z \log (a)), \quad a \in \mathbb{R}^{+}, z \in \mathbb{C}
$$

