Analysis 1

1. Find the radius of convergence of
i) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 z)^{n}}{n}$,
ii) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} z^{n}$,
iii) $\sum_{n=1}^{\infty}(\sqrt{n}-1)^{n} z^{n}$,
iv) $\sum_{n=1}^{\infty} 8^{n} z^{3 n}$.
2. Show that the following functions are differentiable and find the derivative.
(a) $w: \mathbb{R}_{+} \rightarrow \mathbb{R}, x \mapsto \sqrt{x}$,
(b) $\cos : \mathbb{R} \rightarrow \mathbb{R}, \quad \sin : \mathbb{R} \rightarrow \mathbb{R}$.

Hint. Prove Euler's formula:

$$
\exp (\mathrm{i} z)=\cos (z)+\mathrm{i} \sin (z), \quad z \in \mathbb{C}
$$

3. For $k \in \mathbb{N}$ let $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{k}(x):= \begin{cases}x^{k} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

For which k is f_{k} differentiable? If f_{k} is differentiable, is then its derivative $f_{k}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$, $x \mapsto f_{k}^{\prime}(x)$, continuous?
4. (a) Show that for all $x, y \in \mathbb{C}$ the following identities are true:
(i) $\sin ^{2}(x)+\cos ^{2}(x)=1$.
(ii) $\sin (x+y)=\cos (x) \sin (y)+\cos (y) \sin (x)$,
(iii) $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$,
(b) Show that $\left\{x \in \mathbb{R}_{+}: \cos x=0\right\} \neq \emptyset$.

Let $\pi:=2 \cdot \inf \left\{x \in \mathbb{R}_{+}: \cos x=0\right\}$.
(c) For $x \in \mathbb{R}$ show:
$\begin{array}{rll}\text { (i) } \quad \sin x=0 & \Longleftrightarrow \exists k \in \mathbb{Z} & x=k \pi . \\ \text { (ii) } \quad \cos x=0 & \Longleftrightarrow \exists k \in \mathbb{Z} & x=k \pi+\frac{\pi}{2} .\end{array}$

Hint. Without proof you can use

$$
1-\frac{x^{2}}{2} \leq \cos x \leq 1-\frac{x^{2}}{2}+\frac{x^{4}}{24}, \quad x \in(0,3]
$$

