Analysis 1

Problem Sheet 9

Hand in: March 26, 2009

Uniform continuity; power series; \sin and \cos ; π .

1. Find the radius of convergence of

$$i) \quad \sum_{n=1}^{\infty} \frac{(-1)^n (2z)^n}{n} \,,$$

$$ii) \quad \sum_{n=1}^{\infty} \frac{n!}{n^n} z^n \,,$$

iii)
$$\sum_{n=1}^{\infty} (\sqrt{n} - 1)^n z^n,$$

$$iv) \quad \sum_{n=1}^{\infty} 8^n z^{3n} .$$

2. Show that the following functions are differentiable and find the derivative.

- (a) $w: \mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x},$
- (b) $\cos : \mathbb{R} \to \mathbb{R}$, $\sin : \mathbb{R} \to \mathbb{R}$.

Hint. Prove Euler's formula:

$$\exp(iz) = \cos(z) + i\sin(z), \qquad z \in \mathbb{C}$$

3. For $k \in \mathbb{N}$ let $f_k : \mathbb{R} \to \mathbb{R}$ defined by

$$f_k(x) := \begin{cases} x^k \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

For which k is f_k differentiable? If f_k is differentiable, is then its derivative $f'_k : \mathbb{R} \to \mathbb{R}$, $x \mapsto f'_k(x)$, continuous?

4. (a) Show that for all $x, y \in \mathbb{C}$ the following identities are true:

- (i) $\sin^2(x) + \cos^2(x) = 1$.
- (ii) $\sin(x+y) = \cos(x)\sin(y) + \cos(y)\sin(x)$,
- (iii) $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y),$

(b) Show that $\{x \in \mathbb{R}_+ : \cos x = 0\} \neq \emptyset$.

Let $\pi := 2 \cdot \inf\{x \in \mathbb{R}_+ : \cos x = 0\}.$

- (c) For $x \in \mathbb{R}$ show:

 - $\begin{array}{lll} \text{(i)} & \sin x = 0 & \iff & \exists \ k \in \mathbb{Z} & x = k\pi. \\ \text{(ii)} & \cos x = 0 & \iff & \exists \ k \in \mathbb{Z} & x = k\pi + \frac{\pi}{2}. \end{array}$

Hint. Without proof you can use

$$1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}, \quad x \in (0, 3].$$