Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 8

Uniform continuity, power series.

- Hand in: March 19, 2009
- 1. Let I = (a, b) a nonempty real interval and $f : I \to \mathbb{R}$ continuous.
 - (a) f is injective if and only if f is strictly monotonic.
 - (b) If f is injective, then its inverse $f^{-1}: f(I) \to \mathbb{R}$ is continuous.
- 2. Show that $f:[0,\infty)\to\mathbb{R}, x\mapsto\sqrt{x}$, is uniformly continuous but not Lipschitz continuous.

3. (a)
$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{n}, \\ 2n - n^2 x, & \frac{1}{n} < x \le \frac{2}{n}, \\ 0, & x > \frac{2}{n}. \end{cases}$$

Show that $(f_n)_{n \in \mathbb{N}}$ is pointwise convergent, but not uniformly convergent.

(b) Is the sequence of functions $(f_n)_{n \in \mathbb{N}}$ with

$$f_n(x): [0,1] \to \mathbb{R}, \qquad f_n(x) = x^n$$

pointwise convergent? Is it uniformly convergent?

4. Properties of the exponential function

Show

- (a) $\exp(\overline{z}) = \overline{\exp(z)}, \quad z \in \mathbb{C},$
- (b) $\exp(z+w) = \exp(z)\exp(w), \quad z, w \in \mathbb{C},$
- (c) $\exp(n) = e^n, \quad n \in \mathbb{Z},$
- (d) $\exp(z) \neq 0, \quad z \in \mathbb{C},$
- (e) $|\exp(\mathbf{i}x)| = 1 \iff x \in \mathbb{R}.$