Analysis 1

1. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces over a field \mathbb{F} and let $\left(Z,\|\cdot\|_{Z}\right)$ be a normed space.
(a) Show that $X \times Y$ together with

$$
\begin{equation*}
\|(x, y)\|:=\|x\|_{X}+\|y\|_{Y}, \quad(x, y) \in X \times Y \tag{*}
\end{equation*}
$$

is a normed space and that the following functions are continuous:

$$
X \rightarrow X \times X, \quad x \mapsto(x, 0) \quad \text { and } \quad X \rightarrow X \times X, \quad x \mapsto(0, x)
$$

(b) Assume that X is a field with a norm. Show that the functions

$$
\begin{aligned}
& A: X \times X \rightarrow X, \quad(x, y) \rightarrow x+y, \\
& M: X \times X \rightarrow X, \quad(x, y) \rightarrow x \cdot y, \\
& I: X \backslash\{0\} \rightarrow X, \quad x \rightarrow \frac{1}{x},
\end{aligned}
$$

are continuous when $X \times X$ is equipped with the metric (*). (For the continuity of A it suffices that X is a normed space.)
(c) Show: $f, g: X \rightarrow Z$ continuous, then $f+g$ is continuous. In addition, if Z is a field, then $f \cdot g$ is continuous on X and $\frac{f}{g}$ is continuous on $\{x \in X: g(x) \neq 0\}$.
2. Where are the following functions are continuous? Proof your answer.
(a) $w:[0, \infty) \rightarrow \mathbb{R}, \quad x \mapsto \sqrt{x}$,
(b) $g: \mathbb{C} \rightarrow \mathbb{R}, \quad z \mapsto\left|z+\bar{z}^{2}\right|$,
(c) $h:[-1,1] \cup\{2\} \rightarrow \mathbb{R}, \quad x \mapsto \begin{cases}-\sqrt{-x}, & -1 \leq x \leq 0, \\ \sqrt{x}, & 0<x \leq 1, \\ x, & x=2 .\end{cases}$
(d) $D: \mathbb{R} \rightarrow \mathbb{R}, \quad D(x):= \begin{cases}1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q},\end{cases}$

Hint: Show that $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}, that is, for every $x \in \mathbb{R}$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R} \backslash \mathbb{Q}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$.
3. Are the following functions uniformly continuous? Prove your answer.
(a) $f:[0, \infty) \rightarrow \mathbb{R}, \quad f(x)=\frac{x}{1+x^{2}}$,
(b) $f:[0, \infty) \rightarrow \mathbb{R}, \quad f(x)=\frac{1+x^{2}}{1+x}$.
4. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a bounded and continuous function. Show that there exists an p such that $f(p)=p$.

