## Analysis 1

## 1. The Euler number e.

For $n \in \mathbb{N}$ let $a_{n}:=\left(1+\frac{1}{n}\right)^{n}$ and $s_{n}:=\sum_{k=0}^{\infty} \frac{1}{k!}$.
(a) Show that $2^{k}<k$ ! for all $k \geq 4$ and that

$$
1 \leq\left(1+\frac{1}{n}\right)^{n} \leq \sum_{k=0}^{n} \frac{1}{k!}<3, \quad n \in \mathbb{N}
$$

(b) Show that the sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(s_{n}\right)_{n \in \mathbb{N}}$ converge.
(c) Show that

$$
\mathrm{e}:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{\infty} \frac{1}{k!}, \quad n \in \mathbb{N} .
$$

2. Cauchy's condensation test.
(a) For a monotonically decreasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}_{+}^{0}$ show

$$
\sum_{n \in \mathbb{N}} a_{n} \text { converges } \Longleftrightarrow \sum_{n \in \mathbb{N}} 2^{n} a_{2^{n}} \text { converges. }
$$

(b) Does the series $\sum_{n=1}^{\infty}\left(n \log _{2} n\right)^{-1}$ converge? Prove your answer.
(Use what you know from the calculus courses about the logarithm.)
3. Find the 5 -adic and 7 -adic fraction of $\frac{1}{5}$. Prove your assertion.
4. Do the following series converge? Prove your answer.
(a) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$,
(b) $\sum_{n=2}^{\infty} b_{m}$, where $b_{2 m}:=\frac{1}{(2 m)^{2}}, b_{2 m+1}=-\frac{1}{2 m}$,
(c) $\sum_{n=1}^{\infty}\left(a+\frac{1}{n}\right)^{n} \quad$ where $a \in \mathbb{R}$.

