Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 5

Sequences.

Hand in: February 24, 2009

- 1. Let $q \in \mathbb{R}_+$ and $x_n := \sqrt[n]{q}$, $y_n := \sqrt[n]{n}$, $n \in \mathbb{N}$. Do the sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ converge? If so, find the limit.
- 2. (a) Find a sequence $(a_n)_{n \in \mathbb{N}}$ such that

$$\inf\{a_n : n \in \mathbb{N}\} < \liminf\{a_n : n \in \mathbb{N}\} < \limsup\{a_n : n \in \mathbb{N}\} < \sup\{a_n : n \in \mathbb{N}\}.$$

In this case, must the set $\{a_n : n \in \mathbb{N}\}$ have a maximum?

(b) Let $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ and define sequences $(y_k)_{k\in\mathbb{N}}$, $(z_k)_{k\in\mathbb{N}}$ in $\mathbb{R}\cup\{\pm\infty\}$ by

$$y_k := \sup\{x_n : n \ge k\}, \qquad z_k := \inf\{x_n : n \ge k\}, \qquad k \in \mathbb{N}$$

Show that $(y_k)_{k\in\mathbb{N}}$ and $(z_k)_{k\in\mathbb{N}}$ converge in $\mathbb{R} \cup \{\pm\infty\}$ and that

$$\lim_{k \to \infty} y_k = \limsup x_n, \qquad \lim_{k \to \infty} z_k = \liminf x_n.$$

- 3. Let $(a_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence such that $a_n \neq 0$ for all $n \in \mathbb{N}$. Show or find a counterexample:
 - (i) If there exists an $N \in \mathbb{N}$ and $q \in \mathbb{R}$, q < 1, such that $\begin{vmatrix} a_{n+1} \end{vmatrix} \in \mathbb{R}$ (ii) If there exists an $N \in \mathbb{N}$ and $q \in \mathbb{R}$, $q \leq 1$, such that $\begin{vmatrix} a_{n+1} \end{vmatrix} \in \mathbb{R}$

$$\left|\frac{a_{n+1}}{a_n}\right| \le q, \quad n \in \mathbb{N}, \ n \ge N, \qquad \left|\frac{a_{n+1}}{a_n}\right| < q, \quad n \in \mathbb{N}, \ n \ge N,$$

then $\lim_{n\to\infty} a_n = 0.$

- then $\lim_{n\to\infty} a_n = 0.$
- 4. The Fibonacci sequence $(a_n)_{n \in \mathbb{N}}$ is defined recursively by

$$a_0 = 1, \quad a_1 = 1, \quad a_{n+1} = a_n + a_{n-1}, \qquad n \in \mathbb{N}.$$

Moreover, let $\sigma < \tau$ be the solutions of $x^2 - x - 1 = 0$ and

$$x_n = \frac{a_{n+1}}{a_n}, \qquad n \in \mathbb{N}$$

- (a) Show that $(a_n)_{n \in \mathbb{N}}$ does not converge in \mathbb{R} .
- (b) $a_n = \frac{1}{\sqrt{5}} (\tau^{n+1} \sigma^{n+1}), \quad n \in \mathbb{N}.$ (c) $\lim_{n \to \infty} x_n = \tau.$