Analysis 1

1. Let $q \in \mathbb{R}_{+}$and $x_{n}:=\sqrt[n]{q}, y_{n}:=\sqrt[n]{n}, n \in \mathbb{N}$. Do the sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ converge? If so, find the limit.
2. (a) Find a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\inf \left\{a_{n}: n \in \mathbb{N}\right\}<\liminf \left\{a_{n}: n \in \mathbb{N}\right\}<\lim \sup \left\{a_{n}: n \in \mathbb{N}\right\}<\sup \left\{a_{n}: n \in \mathbb{N}\right\}
$$

In this case, must the set $\left\{a_{n}: n \in \mathbb{N}\right\}$ have a maximum?
(b) Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ and define sequences $\left(y_{k}\right)_{k \in \mathbb{N}},\left(z_{k}\right)_{k \in \mathbb{N}}$ in $\mathbb{R} \cup\{ \pm \infty\}$ by

$$
y_{k}:=\sup \left\{x_{n}: n \geq k\right\}, \quad z_{k}:=\inf \left\{x_{n}: n \geq k\right\}, \quad k \in \mathbb{N} .
$$

Show that $\left(y_{k}\right)_{k \in \mathbb{N}}$ and $\left(z_{k}\right)_{k \in \mathbb{N}}$ converge in $\mathbb{R} \cup\{ \pm \infty\}$ and that

$$
\lim _{k \rightarrow \infty} y_{k}=\lim \sup x_{n}, \quad \lim _{k \rightarrow \infty} z_{k}=\lim \inf x_{n}
$$

3. Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be a sequence such that $a_{n} \neq 0$ for all $n \in \mathbb{N}$. Show or find a counterexample:
(i) If there exists an $N \in \mathbb{N}$ and $q \in \mathbb{R}$, $q<1$, such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \leq q, \quad n \in \mathbb{N}, n \geq N
$$

(ii) If there exists an $N \in \mathbb{N}$ and $q \in \mathbb{R}$, $q \leq 1$, such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<q, \quad n \in \mathbb{N}, n \geq N
$$

then $\lim _{n \rightarrow \infty} a_{n}=0$.
then $\lim _{n \rightarrow \infty} a_{n}=0$.
4. The Fibonacci sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is defined recursively by

$$
a_{0}=1, \quad a_{1}=1, \quad a_{n+1}=a_{n}+a_{n-1}, \quad n \in \mathbb{N}
$$

Moreover, let $\sigma<\tau$ be the solutions of $x^{2}-x-1=0$ and

$$
x_{n}=\frac{a_{n+1}}{a_{n}}, \quad n \in \mathbb{N}
$$

(a) Show that $\left(a_{n}\right)_{n \in \mathbb{N}}$ does not converge in \mathbb{R}.
(b) $a_{n}=\frac{1}{\sqrt{5}}\left(\tau^{n+1}-\sigma^{n+1}\right), \quad n \in \mathbb{N}$.
(c) $\lim _{n \rightarrow \infty} x_{n}=\tau$.

