Universidad de los Andes MATE-2201

Analysis 1

Problem Sheet 4

Hand in: February 17, 2009

Metric spaces and sequences.

1. (a) Let $(X, d), X \neq \emptyset$, be a metric space and let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ be sequences in X. Show: If there exists an $a \in X$ such that

$$\lim_{n \to \infty} x_n = a = \lim_{n \to \infty} y_n,$$

then

$$\lim_{n \to \infty} d(x_n, y_n) = 0.$$

Is the converse also true (proof or counter example)?

(b) Let $n \in \mathbb{N}$ and let

 $\|\cdot\|_{\max} : \mathbb{R}^n \to \mathbb{R}, \quad \|x\|_{\max} = \max\{|x_j| : j = 1, \dots, n\} \text{ for } x = (x_j)_{j=1}^n \in \mathbb{R}^n.$

Show that $(\mathbb{R}^n, \|\cdot\|_{\max})$ is a normed space. Sketch the unit ball in the case n = 2.

- 2. (a) Let $(X, d), X \neq \emptyset$, be a metric space and $M \subseteq X$. Show that the following is equivalent:
 - (i) M is bounded.
 - (ii) $\exists x \in X \exists r > 0 : M \subseteq B_r(x).$
 - (iii) $\forall x \in X \exists r > 0 : M \subseteq B_r(x).$
 - (b) For $M \subseteq \mathbb{R}$ show that M is bounded as subset of the ordered field $(\mathbb{R}, >)$ (Definition 1.1) if and only if M is bounded as subset of the metric space (\mathbb{R}, d) (Definition 4.3) where d(x, y) = |x y|.
- 3. Let (X, d) be a metric space and $\rho : \mathbb{N} \to \mathbb{N}$ a bijection. Show: If $(x_n)_{n \in \mathbb{N}} \subseteq X$ converges, then also $(x_{\rho(n)})_{n \in \mathbb{N}} \subseteq X$ converges and has the same limit.
- 4. (a) Let $x_n = \sqrt{1 + n^{-1}}$, $n \in \mathbb{N}$. Show that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R} .
 - (b) Do the following real sequences converge? If so, find the limit. Prove your assertions.
 - (i) $(a_n)_{n \in \mathbb{N}}$ with $a_n = \frac{2^n}{n!}, n \in \mathbb{N},$
 - (ii) $(b_n)_{n \in \mathbb{N}}$ with $b_n = \sqrt{1 + n^{-1} + n^{-2}}, \quad n \in \mathbb{N},$
 - (iii) $(c_n)_{n \in \mathbb{N}}$ with $c_n = \frac{1+2+\cdots+n}{n+2} \frac{n}{n}, n \in \mathbb{N},$
 - (iv) $(d_n)_{n \in \mathbb{N}}$ with $d_n = \sqrt{n^2 + n + 1} n, \quad n \in \mathbb{N},$