Analysis 1

Problem Sheet 3

Supremum; complex numbers.

Hand in: February 10, 2009

- 1. (a) For every $x \in \mathbb{R}_+$ there exists an $n \in \mathbb{N}_0$ with $n \leq x < n + 1$.(Proposition 3.19)
 - (b) Every interval in \mathbb{R} contains a rational number. (Proposition 3.20)
 - (c) \mathbb{Q} does not have the least upper bound property. (Hint: $\{x \in \mathbb{Q} : x^2 \leq 2\}$)
- 2. Find the infimum and supremum of the following sets in the ordered field \mathbb{R} . Determine if they have a maximum and a minimum.
 - (a) $\{x \in \mathbb{R} : \exists n \in \mathbb{N} \mid x = n^2\},$
 - (b) $\left\{x \in \mathbb{R} : \exists n \in \mathbb{N} \ x = \frac{1}{n^3}\right\}$,
 - (c) $\{x \in \mathbb{R} : \exists n \in \mathbb{N} \ x = \frac{1}{n} + n(1 + (-1)^n)\},\$
 - (d) $\{x \in \mathbb{R} : x^2 \le 2\} \cap \mathbb{Q}$.
- 3. (a) Let $X \subset \mathbb{R}$, $X \neq \emptyset$, and $\xi \in \mathbb{R}$ an upper bound of X. Show that

$$\xi = \sup X \iff \forall \varepsilon \in \mathbb{R}_+ \ \exists \ x_\varepsilon \in X \ \xi - \varepsilon < x_\varepsilon \le \xi.$$

What is the analogous statement for $\inf X$?

(b) Let $X, Y \subset \mathbb{R}$ non empty sets such that

$$\forall x \in X \ \exists y \in Y : y < x.$$

Does that imply $\inf Y < \inf X$? Proof your assertion.

- 4. (a) Show that for every $z \in \mathbb{C} \setminus \{0\}$ there exist exactly two numbers $\zeta_1, \zeta_2 \in \mathbb{C}$ such that $\zeta_1^2 = \zeta_2^2 = z$.
 - (b) Let $a,b,c\in\mathbb{C},\,a\neq0.$ Show that there exists at least one $z\in\mathbb{C}$ such that

$$az^2 + bz + c = 0.$$