Analysis 1

1. (a) For every $x \in \mathbb{R}_{+}$there exists an $n \in \mathbb{N}_{0}$ with $n \leq x<n+1$.(Proposition 3.19)
(b) Every interval in \mathbb{R} contains a rational number. (Proposition 3.20)
(c) \mathbb{Q} does not have the least upper bound property. (Hint: $\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}$)
2. Find the infimum and supremum of the following sets in the ordered field \mathbb{R}. Determine if they have a maximum and a minimum.
(a) $\left\{x \in \mathbb{R}: \exists n \in \mathbb{N} \quad x=n^{2}\right\}$,
(b) $\left\{x \in \mathbb{R}: \exists n \in \mathbb{N} \quad x=\frac{1}{n^{3}}\right\}$,
(c) $\left\{x \in \mathbb{R}: \exists n \in \mathbb{N} \quad x=\frac{1}{n}+n\left(1+(-1)^{n}\right)\right\}$,
(d) $\left\{x \in \mathbb{R}: x^{2} \leq 2\right\} \cap \mathbb{Q}$.
3. (a) Let $X \subset \mathbb{R}, X \neq \emptyset$, and $\xi \in \mathbb{R}$ an upper bound of X. Show that

$$
\xi=\sup X \quad \Longleftrightarrow \quad \forall \varepsilon \in \mathbb{R}_{+} \exists x_{\varepsilon} \in X \quad \xi-\varepsilon<x_{\varepsilon} \leq \xi
$$

What is the analogous statement for $\inf X$?
(b) Let $X, Y \subset \mathbb{R}$ non empty sets such that

$$
\forall x \in X \quad \exists y \in Y: y<x
$$

Does that imply $\inf Y<\inf X$? Proof your assertion.
4. (a) Show that for every $z \in \mathbb{C} \backslash\{0\}$ there exist exactly two numbers $\zeta_{1}, \zeta_{2} \in \mathbb{C}$ such that $\zeta_{1}^{2}=\zeta_{2}^{2}=z$.
(b) Let $a, b, c \in \mathbb{C}, a \neq 0$. Show that there exists at least one $z \in \mathbb{C}$ such that

$$
a z^{2}+b z+c=0
$$

