Análisis complejo

Taller 8

Teorema de Cauchy; residuos.

Fecha de entrega: 10 de octubre de 2024

- 1. Sea $R = \frac{P}{Q}$ con polinomios P y Q tal que $Q(x) \neq 0$ para todo $x \in \mathbb{R}$ y tal que $\deg(Q) \geq \deg(P) + 1$. Muestre que $\lim_{r \to \infty} \int_{-r}^{r} R(x) \, \mathrm{d}x$ existe y exprese este límite en términos de los residuos de R. No olvide formular su afirmación.
- 2. Fracciones parciales de $(\sin \pi a)^{-2}$. Sea $n \in \mathbb{N}$ y sea γ_n el borde del rectángulo con esquinas $n + \frac{1}{2} + in$, $-n - \frac{1}{2} + in$, $-n - \frac{1}{2} - in$. Sea $a \in \mathbb{C} \setminus \mathbb{Z}$.
 - (a) Demuestre que $\lim_{n\to\infty} \int_{\gamma_n} \frac{\pi \cot(\pi z)}{(z+a)^2} dz = 0.$
 - (b) Demuestre que $\frac{\pi^2}{\sin^2 \pi a} = \sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2}$.
- 3. (a) Sea $U\subset\mathbb{C}$ una región, $g:U\to\mathbb{C}$ holomorfa, f meromorfa en U con zeros en z_1,\ldots,z_n y polos en p_1,\ldots,p_k . Sea γ una curva cerrada homotópicamente nula en U y suponga que $\gamma\cap\{z_1,\ldots,z_n,p_1,\ldots,p_k\}=\emptyset$. Demuestre que

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} g(z_j) \operatorname{ord}(f, z_j) \operatorname{ind}_{\gamma}(z_j) - \sum_{j=1}^{k} g(p_j) \operatorname{ord}(f, p_j) \operatorname{ind}_{\gamma}(p_j).$$

(b) Sea $U \subseteq \mathbb{C}$ abierto, sean $p \in \mathbb{C}$, R > 0 tal que $\overline{B_R(p)} \subset U$. Sea $f : U \to \mathbb{C}$ holomorfa y suponga que $f|_{B_R(p)}$ es inyectiva. Sea $V := \{f(z) : z \in B_R(p)\}$. Entonces $f^{-1} : V \to B_R(p)$ está bien definida. Demuestre que

$$f^{-1}(q) = \frac{1}{2\pi i} \int_{\partial B_R(p)} \frac{zf'(z)}{f(z) - q} dz, \qquad q \in V.$$

4. Sea $\gamma = \partial(B_2(0) \cap \{z \in \mathbb{C} : \operatorname{Im}(z) \geq 0\})$. Calcule las siguientes integrales:

(a)
$$\int_{\partial B_2(0)} \frac{1}{(\sin z)^2 \cos z} dz$$
, (b) $\int_{\gamma} \frac{e^{\pi z}}{z^2 + 1} dz$.

5. Ejercicio adicional para código 4. Determine todos los valores que puede tomar $\int_{\gamma} \frac{1}{1+z^2} dz \text{ si } \gamma \text{ es un camino cerrado en } \mathbb{C} \setminus \{\pm i\}.$