Análisis complejo

Taller 11

Convergencia de funciones holomorfas.

Fecha de entrega: 02 de noviembre de 2018

Sea X un espacio métrico. Una sucesión $(f_n)_{n\in\mathbb{N}}$ de funciones $U\to\mathbb{C}$ se llama continuamente convergente si para toda sucesión $(x_n)_{n\in\mathbb{N}}\subset X$ convergente el límite $\lim_{n\to\infty} f_n(x_n)$ existe.

- 1. (a) Sea X un espacio métrico y $(f_n)_{n\in\mathbb{N}}$ una sucesión de funciones en X que converge continuamente. Demuestre que $f:X\to\mathbb{C},\ f(x)=\lim_{n\to\infty}f_n(x_n)$ está bien definido (es decir, que es independiente de la sucesión $(x_n)_{n\in\mathbb{N}}$ escogida) y que f es continua (inclusive si las f_n no lo son).
 - (b) Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones en X que converge continuamente. Demuestre que lo siguiente es equivalente:
 - (i) $(f_n)_{n\in\mathbb{N}}$ converge compactamente a una función $f\in C(U)$.
 - (ii) $(f_n)_{n\in\mathbb{N}}$ converge continuamente.

En particular, una sucesión continuamente convergente de funciones holomorfas converge a una función holomorfa.

- 2. Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to \mathbb{C}$. Suponga que $f_n \to f$ compactamente y que f no es constante. Demuestre que para todo $z_0 \in U$ existe una sucesión $(z_n)_{n \in \mathbb{N}} \subset U$ y un $N_0 \in \mathbb{N}$ con $\lim_{n \to \infty} z_n = z_0$ y $f_n(z_n) = f(z_0)$ para todo $n \geq N_0$.
- 3. Sea $U \subseteq \mathbb{C}$ abierto y $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to \mathbb{C}$. Suponga que $f_n \to f$ compactamente y que f no es constante. Demuestre:
 - (a) Si existe $W \subset \mathbb{C}$ tal que $f_n(U) \subseteq W$ para todo $n \in \mathbb{N}$, entonces también $f(U) \subseteq W$.
 - (b) Si todas f_n son inyectivas, f también es inyectiva.
 - (c) Si todas f_n son localmente biholomorfas, f también es localmente biholomorfa.
- 4. (a) Sea R > 0 y $f : B_R(0) \to \mathbb{C}$ una función holomrfa con serie de Taylor $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Suponga que $||f||_{B_1(0)}^2 := \int_{B_1(0)} |f(z)|^2 dz = M < \infty$. Demuestre que para todo 0 < r < 1

$$||f||_{B_r(0)}^2 = \pi \sum_{n=0}^{\infty} \frac{|c_n|^2}{n+1} r^{2n+2}$$
 $y \quad |f(0)| \le \frac{||f||_{B_1(0)}}{\sqrt{\pi r}}.$

(b) Sea $U \subseteq \mathbb{C}$ una región acotada y sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones holomorfas $U \to C$. Suponga que existe C > 0 tal que

$$||f_n||_U < C, \qquad n \in \mathbb{N}.$$

Demuestre que la sucesión $(f_n)_{n\in\mathbb{N}}$ es localmente acotada. Concluya que contiene una subsucesión que converge uniformemente subconjuntos compactos de U.