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Chapter 1

Introduction

In general relativity, the stage of physics is a four-dimensional differentiable manifold with a
Lorentzian metric (M, g), the spacetime. Events in spacetime are points in M. Spacetime, how-
ever, is not an immutable stage for physical action to take place, but is itself part of physics. The
relation between the geometry of spacetime and the energy contained in it is given by Einstein’s
equation

R, — %RGab = 81Ty, (1.1)

where the left hand side is the so-called Einstein tensor, which involves the metric g and derivatives
thereof, and hence describes the geometry of spacetime. The right hand side is the stress-energy
tensor arising from the energy distribution in spacetime. System (1.1) is a nonlinear partial differen-
tial equation for the components g,,, of the metric g. A differentiable curve v in spacetime is called
timelike if g(&, &) < 0 for all tangent vectors £ on the curve (if the metric ¢ has signature (—+++)).
A spacetime is called stationary if it admits an isometry ®; whose orbits are timelike curves. It
has been shown that all stationary electrovac solutions of Einstein’s equation are given by a three
parameter family, the so-called Kerr-Newman metric. If the Kerr-Newman metric describes the
spacetime outside a black hole, then the three parameters M, ) and a in the Kerr-Newman metric
have the physical interpretation as the mass M, the electric charge ) and the angular moment per
mass a = J/M of the black hole. That the field outside a stationary black hole is determined by
three parameters only has been summarised by J. A. Wheeler in the statement that “a black hole
has no hair”. For this and other results on black holes and general relativity we refer primarily to
[ I, [ ] and the references therein.

In this work we consider a Spin—% particle in the Kerr-Newman background metric. Such particles
are described by a four component spinor ¥ subject to the Dirac equation. In Kerr-Newman
spacetime, the Dirac equation is a coupled system of partial differential equations which can be
written in the form

~ ~

R+A)T = 0, (t, 7, 9, @) € (—00, 00) X (ry, 00) x (0, 7) X (=m, @),  (1.2)

see [ | and | ]; the explicit form of the differential expressions & and 2 is given in (2.5).
A priori it is not clear how this formal differential expression can be implemented in an operator
theoretical context. Physical considerations imply that this operator should act on an .#?-space
since the solutions ¥ are to be interpreted as the possible wave functions of a fermion. Taking into
account the functional determinant arising from the Kerr-Newman metric, the integration weight
in the #2-space should be sin 9 X(r,9) = sin9(r? + a® cos? ¥), see (2.2).

The left hand side of the equation in (1.2) is well defined on the space of all smooth functions
with compact support. However, it is not clear if the operator defined in this way is essentially



selfadjoint in the .#?-space described above (or any other suitable Hilbert space), thus providing a
unique canonical description of the physical situation.

In this work we follow the approach of Chandrasekhar by applying a suitable ansatz for T such
that the Dirac equation is separated into the following coupled system of differential equations
(see (2.8))

(R@ _ \) <§+) —0, (AW (g;) _ (1.3)

the first one, the so-called radial equation, is an ordinary differential equation with respect to the
radial coordinate r on (74, c0), while the second one, the so-called angular equation, is an ordinary
differential equation with respect to the angular coordinate ¢ in the interval (0, 7). The full solution
of the Dirac equation is then given by

X_(r) S4(9)
X_(r) S_(¥)

for (t,r,9,¢) € (—00,00) X (rq,00) x (0,7) x (—m,m).

The quantity w is interpreted as the energy of the fermion in the Kerr-Newman metric as measured
by a distant observer. In the special case a = 0, i.e., if the spacetime is spherically symmetric,
the number k € Z is the z-component of the total angular momentum J of the fermion. In this
case, the operator associated with A4 can be identified with the spin-orbit operator & in usual
relativistic quantum mechanics, and the coupling parameter A is an eigenvalue of £, see section 3.1.

Both the angular equation and the radial equation in (1.3) admit an operator theoretical realisation
in a Hilbert space. It has been shown in | | that the formal differential operator representing
the radial equation gives rise to an essentially selfadjoint operator in a weighted .Z?-space whose
essential spectrum comprises the whole real axis. We show that the spectrum of the angular
operator consists only of eigenvalues; so far, only numerical approximations are known in the
literature | I, [ ].

The aim of this work is to establish analytical bounds for the eigenvalues of the angular operator A
in terms of the physical parameters a, m and w. To this end, we first realise the formal differential
expression A@ in the case k € R\ (—1,0) as a selfadjoint operator A in a suitable .#?-space and
show that the spectrum consists of isolated eigenvalues only. Then we apply various techniques
that give rise to different kinds of bounds: First, we derive a lower bound for the modulus of the
eigenvalues of A by means of an off-diagonalisation of the angular operator. Then we apply a
variational principle for operator valued functions to obtain a formula for the eigenvalues of the
angular operator A in a certain right half plane which yields upper and lower bounds for these
eigenvalues of A. Finally, for certain values of aw and k, we establish another lower bound for the
modulus of the eigenvalues of A that differs substantially from the bounds derived by the methods
above. The proof relies on the fact that A is unitarily equivalent to a block operator matrix Ay
such that the spectra of the diagonal entries of Ay do not overlap. Observe that the first two
techniques apply not only to the angular operator, but to a wider class of block operator matrices.
The results of these methods are compared with bounds for the eigenvalues obtained from standard
perturbation theory and with numerical results in the above mentioned papers.
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The thesis is organised as follows. In chapter 2 we investigate the angular equation and its operator
theoretical implementation in a Hilbert space. After a certain transformation of A(® we obtain the
formal differential expression 2 on the interval (0,7) which is formally symmetric in the Hilbert
space Z2((0,7),dd)2. With 2 we associate the minimal angular operator

DA™Y = CF(0,7), AT = AV, (1.4)

In section 2.1 we show that A™" is essentially selfadjoint for all wave numbers k € Z (we obtain
this result even for all k € R\ (-1, 0)). The unique selfadjoint extension of A™" is denoted by A4;
it has the block operator matrix representation

D(A) = D(B)®D(B), A = (; g) (1.5)

with the bounded multiplication operators
D(A) = D(D) = Z£*((0,7),d9), A = —D = amcos? (1.6)
and the closed first order differential operator
D(B) = {f € Z*((0,7),dV) : f is absolutely continuous, B, f € £((0,7),dd)},
d k+13

Bf = ®B+f = (dT9+ sin o

(1.7)

+ aw sin 19) f.

In section 2.2 we show that the spectrum of A consists only of simple eigenvalues without accumu-
lation points in (—oo, co) and that it is neither bounded from below nor from above.

In chapter 2.3 we establish several symmetry properties of the angular operator with respect to the
physical parameters a, m, w and k that will prove useful in the subsequent chapters.

In chapter 3 we apply an abstract off-diagonalisation method for block operator matrices to obtain
lower bounds for the modulus of the eigenvalues of A. In section 3.1 we consider the case a = 0
where the eigenvalues of A are known explicitly (see lemma 3.3):

op(A) = {\, =sign(n)(|k+ 3| —3+n) : neZ\{0}} if a=0.

In the rest of this chapter we establish lower bounds for the eigenvalues A of A in the case a # 0, first
by using standard perturbation theory in section 3.2, then with the help of an off-diagonalisation
method in section 3.3. Based on the off-diagonalisation method, corollary 3.18 in section 3.3.1 yields
a lower bound for the modulus of the eigenvalues of block operator matrices of type (1.5) under the
assumption that A and D are bounded and that B and B* are boundedly invertible. Remark 3.32
shows that in the special case of the angular operator the same lower bound can be obtained from
standard perturbation theory; however, the off-diagonalisation also yields a lower bound for the
modulus of the eigenvalues if one of the operators A or D is only relatively bounded with respect
to B* or B. In section 3.3.2 we apply the off-diagonalisation method to the angular operator.
To this end, we first show that the off-diagonal entries B and B* of the angular operator are
indeed boundedly invertible. Using the explicit form of their inverses, we derive a lower bound for
| B~1]|71, see lemma 3.30 for a rather rough estimate, and lemma 3.34 for a refined estimate which
is obtained by an iteration process. Another lower bound for ||[B~!||~! is provided in section 4.2.2
where estimates for the eigenvalues of BB* are obtained by Sturm’s comparison theorem. For
most values of the parameters a, k, m and w the latter estimate gives sharper lower bound for the
modulus of the eigenvalues A than the bounds obtained by the iteration method; nevertheless, there
are situations where the bounds obtained by the iteration method are tighter, see, e.g., figure 6.1.



Finally, we show with the help of the off-diagonalisation method in combination with the special
form of the entries of the angular operator that under certain conditions on am and k there is an
interval that contains no eigenvalues of A.

In chapter 4 we obtain a variational characterisation of the eigenvalues of A to the right of the

spectrum of D by applying the variational principle from | ]. From this formula, upper and
lower bounds in terms of the eigenvalues of BB* are deduced.

Note that the classical variational principle based on the Rayleigh functional (see, e.g., [ )]
does not apply here since the operator A is not semibounded. In | | a variational principle for

eigenvalues of operator matrices in a gap of the essential spectrum was proved where the authors
did not assume that the operator was semibounded. However, they assumed that the spectra of
the operators on the diagonal do not overlap, so that, roughly speaking, the given decomposition
of the Hilbert space is close to the decomposition of the Hilbert space into spectral subspaces of
the operator matrix under consideration. In the case of the angular operator, however, the spectra
of the diagonal entries coincide so that the result of | ] does not apply either. In recent works,
various types of block operator matrices and their spectral properties have been considered, for a
survey we refer the reader to | ]. In section 4.1 we consider so-called off-diagonal dominant
selfadjoint block operator matrices

T = (Tl,} Tl?) . D(T) = D(T},) & D(Two),
T12 T22

where all Tj;, 4,5 € {1,2} are closed and T1; and T are relatively bounded with respect to 17,
and To, respectively. The term “off-diagonal dominant” refers to the fact that the diagonal entries
are dominated by the off-diagonal entries. Note that the selfadjointness of 7 implies that the
restrictions of 711 to D(T7,) and of The to D(T12) are symmetric. Further we assume 777 to be
semibounded from below, and we suppose that there exists a co € R such that (c2, 00) C p(T52).
Observe that we do not require that the spectra of these operators are separated.

For A to the right of co we associate the Schur complement

Sl(A) = T —A— T12(T22 — )\)_1T1*2, AE (CQ, OO),

with the block operator matrix 7. Since the operators 771 and 712 may be unbounded, the domain
of S1(A) has to be chosen carefully. In corollary 4.9 we show that the spectrum of the Schur
complement and the spectrum of 7 to the right of ¢s coincide if the Schur complement with an
appropriate domain is selfadjoint and if T35 is surjective. A sufficient condition for the existence
of a selfadjoint Schur complement Sp(A) is that T is bounded and that 77 is relatively bounded
with respect to Tia(Tas — )\)*1T1*2 with relative bound less than 1. Under these assumptions we
prove a variational principle that gives rise to upper and lower bounds for the eigenvalues of 7 in
an interval (c2, \¢) having empty intersection with the essential spectrum of 7.

In the special case where in addition to the above mentioned assumptions we also suppose that

the spectrum of the operator 7y = (T%Q T(lf) consists of isolated eigenvalues only, that there is a

bound b > 0 such that ||775z| > b||z| for all z € D(T};), and that the Schur complement S;()) is
selfadjoint with domain D(S1(X)) =: D(S) independent of A, the variational principle gives rise to
the following estimate of the eigenvalues of 7 in (c2, A¢), see theorem 4.25:

Q21
/\n S 9 vV Un+ng + \/VnJrno + %(a21\/7jn+no + ||T22|| + a)2 + % (Oé + 62) ) 1 § n § N,
(1.8)

)‘n > vV'Vn+ng +%(61_HT22H)7 I1<n<N.

where A, is the nth eigenvalue of the operator 7 greater than c3. The numbers /v, are the
eigenvalues of 7y greater than 0, ng is an index shift due to the variational principle, the numbers o
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and aw; arise from the relative boundedness of 777 with respect to 175, and ¢; is a lower bound for
T11. In the case Ty1 = 0, Thy = 0 we obtain A, = /Vy; therefore inequalities (1.8) can be regarded
as a perturbation result for a certain class of off-diagonal dominant block operator matrices with
an unbounded perturbation of one diagonal entry.

The upper bound in (1.8) can be further improved if we assume that both T1; and Tss are bounded.

Under the further condition that T7; = —T59, satisfied by the angular operator, we obtain the
following two-sided estimate, see theorem 4.28,
vV Vno+n — ||T22H < >\n < v Vno+n + HT22H7 1<n<N. (19)

In the case of bounded 771 and 159, also standard perturbation theory is applicable; we compare
the bounds (1.9) with the corresponding results of standard perturbation theory.

Finally, in section 4.2, we apply the theorems of section 4.1 to the angular operator A. All above
mentioned assumptions on 7 and its entries are satisfied by A. In section 4.2.2 we obtain estimates
for the eigenvalues of B := A — (6‘ g) = ( ]g* ]g ) with the help of Sturm’s comparison theorem
applied to the second order differential expression associated with the operator BB*. Inserting
these bounds into (1.9) we get explicit bounds for the eigenvalues of A to the right of || D|| = |am|

in terms of the physical parameters a, m, w and k.

A completely different approach to obtain a lower bound for the modulus of the eigenvalues of
A is used in chapter 5. There we apply a unitary transformation U to A to obtain the unitarily
equivalent operator

k+1 . d
UAU-! = Ay = <—DU BU> _ ( 2 + awsin? 45 +amcos?)

By, Dy " ) » D(Ap) = UD(A)

d k+5 .
—4g Tamcos?y —(53 + awsind)

on the Hilbert space Hy := Hy1 @ Hyz = U(ZL?((0,7),dd)?). Under certain assumptions on
k and aw the entries £Dy on the diagonal of the transformed operator have separated spectra.
Operator matrices of this type have been investigated in | | and | |. However, all the
entries in Ay are unbounded, and it is not at all clear that Ay is still a block operator matrix,
that is, that its domain can be written as a direct sum D(Ay) = Dy @ Dy for suitable linear
manifolds Dy 1 € Hy,1 and Dya € Hye. In fact, remark 5.4 shows that Ay is not a block operator
matrix if £k € {—1, 0}. Since all the entries of Ay are unbounded, we introduce sesquilinear forms
associated with the operators constituting Ay. The eigenvalue equation (Ay — AWy = 0 gives
rise to a linear system of equations in R?, cf. the proof of theorem 5.9. The essential assumption
for the proof of theorem 5.10, which is met by the transformed angular operator Ay in the case
awsign(k + 1) > |k + 1|, is that the spectra of the diagonal entries of Ay do not intersect. The
bound obtained by this method is proportional to /aw for awsign(k + 1) sufficiently large and it
is independent of am, whereas all other estimates obtained for the eigenvalues of A in this work
involve a term +|am| since am is always treated as a perturbation parameter. The drawback of
this estimate is that it holds in the case aw sign(k + %) > —lk+ %\ only; otherwise the spectra of
the diagonal entries in Ay are not separated.

Finally, in chapter 6, the analytical bounds proved in this work are compared with numerical
values for the eigenvalues of A provided in the literature. Furthermore, we use the continued
fraction equation for the eigenvalues given in | | to produce numerical values with the help
of a short Maple programme. All numerical values lie within the analytical bounds. A priori, it is
not easy to decide which of the various analytic lower bounds for the modulus of the eigenvalues is
the sharpest; for fixed m, w and k, figure 6.1 shows that for each of the four different lower bounds
shown in the plot there exists an interval for the Kerr parameter a where it gives a larger lower
bound than the other three.



Notation

In this work, H always denotes a Hilbert space; for scalar products (-, -) on Hilbert spaces H we
use the physical convention (au, fv) = @ (u, v). If not stated otherwise, we always assume that
the Hilbert spaces are infinite dimensional. The space of all linear operators in H is denoted by
Z(*H) and the space of all closed linear operators in H is denoted by €' (H). If H is an .#>-space, we
denote the norm on H by ||-||2. For formal 2 x 2 differential expressions we use capital Gothic types
2, B, ...; block operator matrices are denoted by calligraphic types A, B, ... and their entries by
Roman types A, B.... The domain of a linear operator A is usually denoted by D(A). Sometimes
we use the notation A(H; — Hz) for a linear operator A with domain in the Hilbert space H; and
values in the Hilbert space Ho.

Sesquilinear forms are denoted by small Gothic types b, 0, .... Small Greek letters and small
Gothic types are used for one-dimensional formal differential expressions.

Throughout the text, the letters 2 and A with various super- and subscripts are reserved for the
formal differential expression and operator theoretical realisations of the angular part of the Dirac
equation. To the off-diagonal entries of the angular operator, the letter B is assigned. Sometimes
it is convenient to express the dependence of B on the wave number k explicitly by writing By.
For a list of symbols we refer to the appendix, pp. 149.
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Chapter 2

The angular equation

The aim of this chapter is to implement the formal differential expression representing the angular
part of the Dirac equation in the Kerr-Newman background as a selfadjoint block operator matrix
A acting on a suitable Hilbert space. Furthermore, a qualitative description of the spectrum of A
is given, and various symmetries with respect to the physical parameters are investigated.

The so-called Kerr-Newman metric is the most general stationary electrovac solution of the Einstein
equation (1.1); in Boyer-Lindquist coordinates it is given by

dtd
5 5 14

N (r? + a%)? — Aa?sin? ¥
by

ds? — <A —a? sin279> a8 2asin? 9(r? + a? — A)
(2.1)

b
} sin? ¥ dg? + A dr? + ¥ dv>.

Sometimes the metric is also denoted by ds? = guvdztdzr”, where x# and z¥ run through the
spacetime coordinates t, r, 1, ¢; the coefficients g, of the metric can be read off from (2.1).
The functions A and X are defined by

A(r) == 2 =2Mr+a>+Q* = (r— M)? +ad*>+ Q* — M?,
Y(r,9) = r? 4 a?cos® V.

The functional determinant of the metric g is given by
g(r,9) = det((gu(r,9))py) = —sin?IX(r,9)? = —sin?9 (r? + a? cos? v)?. (2.2)

Note that in the case a = 0 this expression is the negative functional determinant of the usual polar
coordinates in R3.

The family (2.1) of spacetime metrics depends on the three real parameters M, @ and a. If the
metric describes the spacetime in the exterior of a black hole, then these parameters have the
interpretation as the mass, electric charge and angular momentum per unit mass of the black hole.
We define

M4+ /M2 —a?2-Q% if M>—a®—-Q%>0,
ry =
0 if M2 —a?2—-Q?% <0,

so that A > 0 on (74, o) and A(r) = 0 if and only if » € {r_, 4}, provided that A has a zero. It
can be shown that in the case r > 0 the singularity in the metric at r is a coordinate singularity
which can be removed by using a different coordinate system. However, the points of spacetime
with r = r, form a so-called event horizon, i.e., particles can cross the event horizon from the
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outside into the region with » < r,, but nothing can cross the horizon from the inside to the outer
region. Therefore, if the black hole condition

M?—a*-Q* >0 (2.3)

holds, the true singularity at ¥ = 0 is hidden behind the event horizon. In the case M?—a?—Q? =0
the metric (2.1) is called the extreme Kerr-Newman metric. If M? — a®> — Q% > 0, then the
Kerr-Newman metric for (r,t,9, ) € (ry,00) x (—00,00) x (0,7) x (—m,7) is interpreted as the
spacetime outside of a massive, charged, rotating black hole with mass M, electric charge () and
angular momentum aM. The parameter « is also referred to as the Kerr-Newman parameter. If
M?—a?—Q? < 0, then the function A has no zero. Therefore, a spacetime described by (2.1) would
contain a so-called naked singularity which is supposed to be forbidden by the cosmic censorship
conjecture. For more details on the Kerr-Newman black holes and general relativity we refer above
all to the textbook | ] and the monograph | ]

In the following we consider a spin—% particle with mass m and charge e in the Kerr-Newman

background. In general, the behaviour of fermions is governed by the Dirac equation, a linear
system of four differential equations. In the Kerr-Newman metric, the Dirac equation is formally

given by the coupled system of partial differential equations (see, e.g., | I, 1 )
(R+2A)0 =0 (2.4)
where
imr 0 VAR 0 -® 0 0 5%
~ —i P —~ _ by
T R SRR R A
0 VARY 0 imr ¥ 0 0 D
and
D = amcosV,
RGP = % + i [(r2 +a?) i% + aia(?o + eQr} =: % +i0(r) on (ry,00),
ehe = 8879_’_00;19:':1 {asinﬁgt—i—shllﬁéio] on (0, ).

We would like to emphasise that at this stage the Dirac equation is a formal equation only. The
choice of its realisation in an operator theoretical context has yet to be made, see the discussion at
the end of this section and also in section 2.1 where an operator associated to the angular part of
the Dirac equation is established.

It is clear, however, that for massive fermions, that is, for m # 0, the formal operator on the
left hand side of (2.4) cannot be formally selfadjoint in any space of square integrable functions
because of the nonvanishing complex multiplication operators on the diagonal of the matrix R.
To overcome that obstacle to (formal) symmetry, we multiply equation (2.4) from the left by the
invertible matrix

o~ oo
o o
oo |
=R=N=)
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11
and we obtain that equation (2.4) is equivalent to
(R, + AT = 0, (2.6)
with
—-iR¥ 0 -m 0
- N 0 imy¥ E)/Z —mr
Ry = VR = . e YA
—ﬁ 0 19%4, 0
_mr _imb¥
0 N 0 iRZ
0o —ig¥® i® 0
- ~ 1| —igh® 0 0 i®
A, = VA = — - .
0 VA | —iD 0 0 121’“’
0 —i® ig"¥ 0

A straightforward computation shows that E)A‘is and QAIS, and consequently 5 s 1= ﬁs—i—é\ls, are formally
symmetric on the weighted .#2-space .Z2((ry, 00) x (0, 7) x (—m, 7), sin®d dr dd dep)*.

Chandrasekhar showed that this system of partial differential equations can be separated into a

system of ordinary differential equations, see | ]. To this end, we employ the ansatz

\T/(t, r,, @) =: e*i“’te*i(kJr%)‘P\Il(r, )

Uy (r,d) X_(r)S4+(v) (2.7)
_. efiwtefi(kJr%)sD Wy(r, ) _. efiwtefi(k+%)g0 X4 (r)S-(9)
' W3 (r, ) ’ Xy (r)S+(9) |7

Wy(r, V) X_(r)S-(9)

so that the system (2.4) of partial differential equations decouples into the following system of
ordinary differential equations with coupling parameter A (the superscript (d) labels the operators

“decoupled”):
(d) _ X-‘r _ (d) _ S- _
(R A) (X_> =0, (A A) (S ) =0, (2.8)

where
1) _ —imr  VAR_ and d) — <_© £_>
VAR,  imr —5 2
with
Rem Lo L Lged vaterhread] = L sinw 29)
dr A ? o , |
d cot . %
e, = U + 5 F aw sin ¥ + e (2.10)

are obtained from JR*¥ and £5% by replacing the differential operators i% and i% by the multi-
plication operators w and (k + %), respectively.
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To clarify the structure of 5 s = E)A‘is + ﬁs that accounts for the Afact that the Dirac equation can be
separated into a radial and a angular equation, we transform $); with the unitary matrix

and obtain that the Dirac equation (2.6) is equivalent to

VRV LV v Hve = o, (2.11)

with the 4 x 4-matrices

% — Q(r) 0 —% 0
VRV = o AT ! i
i 0 — (2 +Q(r)) 0
0 £ 0 — (72 +Q(r))
) (7% . Q(r)) I —dp,
41 — (= -0m) b
0o 0 -D £
oLy 1 0 0 —-£ 9 1 0 A@
VA2 ¢ 0 of vA\a@ o )’
£, ® 0 0
—i(Uy — Wy) —i (X - X_)S_
S B B e I T B S Lt
V2 | = (U 4 Wy) V2 | —(Xp +X0)S
— (U + U3) —(X4+X_)S¢

Let <g*> be a nontrivial solution of the equation for (?) in (2.8). Since by assumption the
+ +
functions X1 do not depend on 9, it follows from the Dirac equation (2.11) that

Ft 7w (EAQm)Y [0 (X - X0) ., 2.12)
TR —Q(r) -4 % —%(prx,) - '

Application of the unitary transformation W := % (jl j) shows that the above equation is
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equivalent to

. W( &+ 7% —(Q%+Q(r))> W_1W<—\/‘§(X+—X_)>
+

m_0r) -4+ —s (X4 +X2)
_ ﬁ—l—% —%4‘19(7") Xy
—% —iQ(r) LA — % X_

which is equivalent to the first equation in (2.8). Remember that the second equation in (2.8) is

satisfied by our assumption on (gl )

Conversely, if we have solutions of (2.8), then we obtain a solution U of the Dirac equation by (2.7).

Remark 2.1. Note that for m # 0 the differential expression R(® is not formally symmetric
in .#?-spaces due to the multiplication operator —im on its diagonal. However, it is possible to

write the radial equation (R(® — )) (i&) = 0 as an eigenvalue equation with w as the eigenvalue

parameter such that the corresponding radial operator becomes formally symmetric, see | ].
To this end we extract from formula (2.11) the equation

. (:/%—Q(r) —%+ﬁ ><—\}§(X+—X_)>
= (", v

7= —(Er+em) (X +X)

Lok + 1)+ eQr) — <05 -4 4+ X X
_[va— 1’ 2 A a A w1t
B W’I‘Q (12

£+ —om — t(alk+ 3) +eQr) — L) X

which, considered as a mere equation, coincides with (2.12) since only the rows of the matrices are
interchanged. The operator realisations, however, of the left hand sides of both equations differ
substantially because exchanging of the rows of matrix can in general not be achieved by a unitary
transformation.

In order to get rid of the factor in front of the eigenvalue parameter w, we introduce the new radial
coordinate x defined by % = TZJ(T; for r € (r4,00). The new coordinate x is uniquely defined up
to an additive constant xg; it is given explicitly by

2 2
r4+2ryIn(r—ry) — T:_tj + xo ifrp =r_,
x(lr‘) - a2+,,.,2 (Z2+’I’2
T+ M_Tt In(r —ry) — o= In(r—r_)+xg ifry#r_.
After multiplication of the radial equation above from the left by Tf}:} we obtain the equation
A d AMWA
:g’”i{;—ﬁ(a(k+%)+ec2r)—w *@+r2$;2 w-l Xt -0
(% + T)ﬁﬁ —:’;ﬂ;{g - Tngr(IQ (a(k+3)+eQr) —w X_

which is an eigenvalue equation with eigenvalue parameter w for a formally symmetric operator
on the Hilbert space #?((—o0,00), dz). The above system is a Dirac system, thus providing a
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convenient starting point for the investigation of the spectrum of the radial part of the Dirac

equation as carried out by Belgiorno and Martellini in | ]. In this paper, the authors have
proved that there is a unique selfadjoint operator representing the radial equation and that its
essential spectrum covers the whole real line. O

In the next section we show that the angular equation has a representation as an eigenvalue equation
for a selfadjoint operator on Hilbert space with eigenvalue .

If there is a number A such that the system (2.8) can be satisfied by functions X4+ and Si enjoying
certain integrability properties, then the system consisting of the Kerr-Newman black hole and the
fermionic particle is stable. In this work we establish analytic bounds for the eigenvalues of the
radial operator that might prove useful in the investigation of the full coupled problem (2.8).

The properties that have to be postulated for the solutions S+ and X can be deduced either from
physical or from mathematical considerations. In the first case, one argues that U describes the
state of one particle, hence for every given ¢ it must be square integrable on (4, 00) x (0, 7) X (—m, )
with respect to the integration weight induced by the metric ds?, see also section 2.1.1. Hence the
angular and radial operators under consideration are supposed to be acting on complex .#?-spaces
with the integration weight induced by the metric. It turns out that with these weights the operators
are formally symmetric.

From a mathematical point of view, given the formal radial and angular equation only, one would
consider the formal differential expressions 2 and R or transforms thereof on some .Z?-spaces
where the integration weights have to be chosen such that they are formally symmetric and admit
selfadjoint realisations. Of course, the integration weights obtained by this procedure coincide with
those obtained by a physical reasoning.

For results on the radial part of the Dirac equation we refer to | | and the recent paper | ]
and references therein. Here, we deal with the angular operator only. The first aim is to implement
the formal differential expression A@ as a selfadjoint operator A. Then we give a qualitative
description of the spectrum of A in section 2.2.
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2.1 Operatortheoretical realisation of 2

In this subsection we collect some basic definitions and facts concerning differential operators, see,
e.g., | ]. We consider formal differential expressions of the form

(3] j
rf(2) = r-l(w>{ (-1 ()1 @)
j=0

- i | (2.13)
£ 3 1 (o) (q;f<fv>f”+”<x>>(j)”

J=0

on an interval (a,b) C R, where 7, p; and ¢; are m x m-matrix valued functions on (a, b) such that
r(x) is positive definite and pj(x), j =0, ..., [§], are Hermitian for almost all x € (a,b). Further
we assume that p;, ¢;, 7 =0, ..., [§], and r are measurable on (a,b). In addition we require for
odd n =: 2k + 1 that
(i) g is absolutely continuous and g (x) := (qr — ¢i)(x) is regular for every z € (a,b),
(ii) ]ij_ll, ]Ejk_l(pk +q;,)] \Zg\k_lqk,ll, Ipjl, |gj] for 7 =0, ..., k—1 and |r| are locally integrable
on (a,b).

For even n =: 2k we suppose that the following conditions hold:

(i) pr(x) is regular for almost all = € (a, b);
) o'l 1o awals ok = gGapg el Ipgls lggls 7= 0,1, ..., k = 2, and |r| are locally
integrable on (a,b).

If r is continuous and the coefficients g;, pj, 7 =0, ..., n are sufficiently often continuously differ-
entiable, then the following minimal operator associated with T is well defined in the Hilbert space

Z?((a,b), dz):
D(T™M) := C5°(0,m)™, TN = 1 f. (2.14)
Remark 2.2. In the general case, the minimal operator associated with 7 is defined as

D(T{min}) := {f € H :f has compact support, f{o}, . .,f{"_l} are absolutely continuous
and 7f € H}.

For the general definition of the quasi-derivatives fi9} we refer the reader to [ , chap. 2].
In this work, we are only interested in the case nm = 2: in the next section we show that the
formal angular operator (@ of (2.8) is a differential expression of type (2.13) satisfying the above
mentioned conditions for n = 1 and m = 2. The case n = 2, m = 1 arises in section 4.2.2. For
nm = 2, the quasi-derivatives are given by

PO =g f0 = (T ) f = rrf it n=1,m=2

= = (p1c%ﬁ - CIo> f;
F2 = (—% - qépfl)f{l} + (po - qa"pflqo) flOF = rrf if n=2m=1.

If the coefficients of 7 are such that 7™ is well defined, then we have T'{min} — T'min O
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In the following we recall some basic definitions.

Definition 2.3. For an interval (a,b) C R consider a vector valued f : (a,b) — C™. Then we say
that f lies right in 2%((a,b),dx)™ if for every ¢ € (a,b) we have f|.p € £*((c,b),dz)™. Analo-
gously, f is said to lie left in £*((a,b),dz)™ if for every ¢ € (a,b) we have [, € Z£*((a,c),dz)™.

Definition 2.4. If for some A € C every solution of (1 — \)f = 0 lies right in .#?((a,b),dz)™,
then 7 is called quasi-regular at b. Quasi-regularity at a is defined analogously. The differential
expression 7 is called quasi-reqular, if it is quasi-regular at a and b.

Definition 2.5. Let (a,b) be an interval in R and 7 be a formal differential expression on (a,b) as
in (2.13). We say that 7 is in the limit circle case at b, if for every A € C all solutions of (1—\)f =0
lie right in .#?((a,b),dz). 7 is in the limit point case at b if for every A € C there is at least one
solution of (7 — \)f = 0 that does not lie right in .#?((a, b),dz).

The notions limit point case at a and limit circle case at a are defined analogously.

Weyl’s alternative states that in the case nm = 2 these are the only cases that can occur for real
differential expressions 7. We cite the theorem in the version of | , theorem 5.6].

Theorem 2.6. Let 7 be a differential expression as in (2.13) with real coefficients and p := nm = 2.
Then exactly one of the following two cases holds.

(i) For every A € C all solutions of (t — \)f = 0 lie right in £*((a,b),r(z)dx)™.

(ii) For every A € C\ R there exists a (up to a multiplicative constant) unique solution f of
(7 — A\ f = 0 which lies right in £?((a,b),r(z)dz)™.

The same result holds with “left” replaced by “right”.

Theorem 2.7. Let 7 be a differential expression as in (2.13) with real coefficients such that the
minimal operator T™™ is well defined and let p := nm = 2. If T is in the limit point case both at a
and b, then the closure of the minimal operator associated to T is selfadjoint.

The proofs of theorems 2.6 and 2.7 may be found in | -

2.1.1 Transformation of spacetime coordinates

From the metric (2.1) we obtain the functional determinant g(r,9) = — sin? 9 £2(r,4). The factor
Y(r,9) = r? + a?cos? ¥ is strictly positive and bounded; here strictly positive means that there
exists a constant ¢ > 0 such that 3(r,9J) > ¢ for all ¥ € [0, 7] and all r € [ry,00). Hence for fixed
r € (ry, 00), the functional determinant g can be estimated from above and from below by some
positive constant multiple of sin® 4, which suggests that the Hilbert space for A4 to operate on is
the weighted space £?((0,7),d cos9)? = £2((0,7),sin® d9)?. Indeed, one can show that in this
space 2@ is formally symmetric.

This symmetry becomes more apparent if we transform the given spectral problem into a problem
in the Hilbert space £2((0,7),dd)?. To this end, consider the isometry

i Z2((0,7),sin 9 dY) — L2((0,7),dd), f = Vsindf.

We have j* = j~! and linear operators T on .#?((0, 7), sin 9 d¥J) transform according to the following
commutative diagramme:

22((0,7),sin 9 dY) —— L2((0,7),sin ¥ dv)

i IE

220,7),d9) L 22((0,71), )
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This shows that multiplication operators remain unchanged under this transformation, but differ-
ential operators change. Consider the linear operator T = % + C°2t Y as an operator acting on
Z%((0,7),sin ¥ dd). Then, for arbitrary f € D(T), we have

TGN = Vaind (35+957) (2= - GN)
- 1 d cost cot 9 .
- Smﬁ( S04V smo)) 2\/sim9>(‘7fw)
d .
= @(Jf)(ﬂ)-

Thus we have shown

T 1 d on j(D(T)) C.Z%((0,n),dv).

T a0
If we transform the formal matrix differential operator (@ with J := j @& j = ({) ?), we obtain
9 d k—i—% in
A = JUD -1 = —limicos W T oy T awsin
—% + S;g + awsin am cos

which acts on the Hilbert space Z2((0, ), d¥)2. To simplify the following calculations we write 2A
as the sum of the unbounded operator 2, and the bounded operator 2 given by

d okt B .
D/IEES ( 0 w T sinﬁ) and 2y = < am cos ¥ aws1m9> '

—d 4 k+3 0 awsintd  amcos?
dv sin ¥

(S

Now, if in (2.13) weset n=1,m=2,a=0, b=m, r(z) =1 and

1/0 I k+1 /0 1
qO(ﬂ)_2<_I 0>7 pu,O(ﬁ)_ sin ¥ (I 0)7

k+1/0 1 —amcostY awsind
plt) = 2(1 0>+( >

sin v awsind  amcos?

we find that the formal expressions 2, and 2 are of the form (2.13), so they fit into the general
framework discussed at the beginning of section 2.1.

2.1.2 Realisation of 2l as a selfadjoint operator on .Z?((0, ), dd)?

In the following we always assume a,m,w € R and k € Z if not stated explicitly otherwise. Then
it is easy to see that both 21 and 2, are formally symmetric on the space .Z2((0,7),dd). First we
work only with 2[,, because the calculations are simpler. The minimal operator associated with 2,
is

. ) 0 d + k+%
D(A™M) = ¢ (0,7)?, A = A = ( 4L kel d¢ Smﬂ) . (2.15)
) + sin ¢ 0
According to | , theorems 3.7 and 3.9], the operator A™® is symmetric, hence it is closable.

Let A, be the closure of A™". Then the following holds:

Lemma 2.8. The operator A, is selfadjoint if and only if k € R\ (—1,0).
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Proof. We show that 2, is in the limit point case at 0 and at 7. A fundamental system of the
differential equation A, ¥ = 0 is

¥, (9) = (tan 2)"*2 <é> Wy (1) = (tan 2)~FF2) <(1)) (2.16)

Now we have to examine the square integrability of these solutions. Let k > 0, ¢ € (§,7) and
d € (0, 5) arbitrary. Then it follows that

/]\111(19)]2d19 = /(tang)%ﬂdz? > /tangdﬁ = —2lncosg‘: = o0,

Cc Cc

and

d d d
/]\112(19)2d29 = /(cotg)%ﬂdﬁ > /cotgdﬂ = 21nsing|g = 00.
0 0 0

On the other hand, we have the estimates

/y\ylw)y? dv = /(tang)%“ dv < (tan$)** /d19< 00,
0 0 0
/]\112(19)]2 dv = /(cotg)%“ dv < (cot &)+t /d19< 0.
d d d

Hence in the case k > 0 the solution ¥y lies left in .Z?((0,7),dd) but it does not lie right in
Z%((0,7),dd), whereas the solution Wy lies right, but not left in .#2((0, ), d9)2. For k < —1 the
same holds true for ¥; and ¥y exchanged.

Using Weyl’s alternative we conclude that for k¥ € R\ (—1,0) the formal expression 2, is in the
limit point case both at 0 and at m, hence it follows from theorem 2.7 that the closure of A™™ is
selfadjoint.

To prove that A, is not selfadjoint for & € (—1,0), we show that in this case the solutions ¥y and
Wy lie in Z2((0,7),dv)?, thus 2L, is in the limit circle case both at 0 and 7. Then, by theorem 2.7,
the assertion is proved. We give a proof only for ¥y € £?((0,7),d?) in the case k € (—1, —%]; the
remaining cases can be treated analogously. By assumption, we have 2k + 1 € (—1,0]. Hence it
follows from sing > % > 0, ¥ € (0,7), and the monotonicity of the cosine and tangent functions
that

us
g 2 T

[m@ra = [wmepa+ [ jnoPa

0

VB

™

(cos §)~CF D (sin §71 a0 + [ (1an )™ a0

Il
o'\ o
(VB

Wl

™

%
< R+ cos(0) / YH+L d19+tan% / dv
0

[VE]

1 3 0w
I 192k+2}2 T ¢ .
7261 (2k + 2) { o Ty %
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It is clear that for nonreal k the operator A, is not even symmetric, hence it cannot be essentially
selfadjoint. 0

Note that the proof of lemma 2.8 does not rely on k being integer though in the following k is
always assumed to have this property.

We can also find an explicit representation of the domain of A,. To this end we introduce the
so-called mazimal operator associated with 2, by

D(AP™) :={W € Z%((0,m),d0)? : U is absolutely continuous, A, ¥ € .£?((0, ), dﬁ)g} , 2.17)
2.17
AmEXG 9

By | , Theorem 3.9] we have A} = A;'**. Since for k € R\ (—1,0) the operator A, is selfadjoint
by lemma 2.8, it follows that

A, = Amax

Although A, is not essentially selfadjoint for k£ € (—1,0), it is still symmetric and all selfadjoint
extensions are given as restrictions of the maximal operator associated with 2, in terms of boundary
conditions.

The next theorem contains the main result of this section.
Theorem 2.9. The angular operator

D(A) = {¥ e Z22((0,7),d0)? : W is absolutely continuous, AV € 32((0,7r),d19)2},

- 4, kL ) (2.18)
AT = Ay — gﬁcosf} a9+ smg Tawsind) o
_%4_ g T awsind am cos ¥

is selfadjoint if and only if k € R\ (-1,0). In this case, A is the closure of the minimal operator
A™ - defined by D(A™™) 1= CP(0,7)%, AT := AV,

Proof. First note that D(A) = D(A;*). Let A, be the operator maximal associated with the
formal multiplication operator 2y, i.e., D(Ap) = £2((0,7),d?), Ay¥ = A, ¥. The operator Ay is
symmetric and bounded in the Hilbert space .£2((0,7),dv)?. Hence the stability theorem for

selfadjoint operators [ , chap. V, theorem 4.10] shows that A = A, + A, with domain
D(A) = D(A,) is selfadjoint if and only if A, is selfadjoint. The assertion follows now from
lemma 2.8. O

Recall that an operator matrix 7 = (%1 %5 ) on a Hilbert space H = H; @& Hz has a block operator

matrix representation if its domain can be written as D(7") = Dy & D2 with suitable linear manifolds
D CH; j=1,2

Remark 2.10. The angular operator A has a block operator matrix representation.

Proof. Let (5) € D(A) = D(A,). We have to show that (g) and () lie in the domain of A.

Since A, is the closure of A™, there is a sequence ((J» ))neN C D(AMD) = C5°(0,7)? such that

In
lim < Fn )
n—00 adn

(s)
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and
d k+%)
) W T s g
Jim Ag“n(f”) — lim <di T = Au<f).
n—oo n—oo 5
In (_@—i_ sin129)f” g
Thi d k—&-% d k-l—%
is shows that both sequences ((—@ + W)fn> nen and ((@ + m)%) nen converge. Hence
. n o . O _ 0 . . .
also nh_g)lO ({) ) = (g) and nh—>n<§o (gn) = (g) lie in the domain of A,,. O

Remark 2.11. Consider the angular operator in the special case m = 0 and define the formal
differential expression

E+1 .
B - ( 0 ‘B+> _ . 1O %—I—Sin;—}—awsmﬁ .
B- 0 —d% + S;:g + aw sin ¢ 0

It follows from theorem 2.9 that for k € R\ (—1,0) the operator
D(B) = D(A) = {¥ e 2?((0,n),d9)? : ¥ is absolutely continuous, BY € Z2((0,7),dv)?},
BV = BY

is selfadjoint and that it is the closure of the minimal operator B™in given by D(B™1) := C(0, )2,
B .= BW. This implies that the operators

D(B) := {Uy € Z?((0,7),dV) : ¥y is absolutely continuous, B, ¥y € £2((0,7),dd)},
BUy := B Uy,

D(B_) := {¥; € Z*((0,7),dv) : ¥, is absolutely continuous, B_¥; € £?((0,7),dd)},
B_V, = B_T,

are adjoint to each other, so that we have B = ( E?* ]g ) Moreover, the operators B and B* = B_
are the closures of
D(B™) = CX(0,7), B™My := B, Ty,

D(B™1) = CX(0,7), B™M; = B U,

respectively. O

2.2 Spectrum of A

Since A is a selfadjoint operator, its spectrum o(.A) is real. In order to determine the essential
spectrum of A we use the so-called decomposition method. The idea is to find a symmetric operator
7T such that A is a finite dimensional extension of the closure of 7. Since the essential spectra of all
finite dimensional selfadjoint extensions of 7 coincide (see, e.g., | , theorem 8.17]), it suffices
to determine the essential spectrum of one particular finite dimensional selfadjoint extension of 7.

Let ¢ € (0, 7) be arbitrary and let 2A° and 2™ be the restrictions of 2 to (0, ¢) and (c, 7), respectively.
With these formal differential expressions we associate the minimal operators

DA™™) = €P(0,0)2, AT = AW,
D(A™™) = CF (c,m)?, AT = ATV
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From the general theory of differential operators we know that these operators are closable and
symmetric. In the proof of lemma 2.8 we have seen that 2° is in the limit point case at 0 and that
2™ is in the limit point case at . Both operators are in the limit circle case at ¢ because they are
regular at the point ¢. Hence the operators A" and A™" are not essentially selfadjoint, but we
can construct selfadjoint extensions if we restrict the corresponding maximal operators A" and
AT in terms of boundary conditions at the regular point ¢; more precisely:

Lemma 2.12. Let v° be an arbitrary non-trivial real solution of A’v = 0 and v™ be an arbitrary

non-trivial real solution of A™v = 0. Then selfadjoint extensions A° and A" of A0 gpd Ammin
are given by

D(A%) == {W € .£?((0,c),dv)* : U is absolutely continuous, AV € £*((0,¢),dd), [v°, ¥]. =0},
A = A0,

D(A™) = {\IJ € Z%((¢,m),d¥)? : U is absolutely continuous, A"V € L*((c,7),dd), [v™, V], = 0} ,
AT =A™,

where 0, W] = (g0 — g2)o(e), U(c)) = <<_01 é) v(c),\I/(c)>.

Proof. This is an application of | , theorem 5.8.iii. O

Since both differential expressions A° and 2™ are regular at c, there are solutions v° and v™ such
that v°(c) = ({) and v™ = (}). With these functions we obtain the particular selfadjoint extensions

D(A°) = {¥ € £*((0,c),dV)? : ¥ is absolutely continuous, A°¥ € .£2((0,c)d¥,,) ¥i(c) =0},
A = A0,

D(A™) := {U € £*((c,m),d¥)? : VU is absolutely continuous, A"V € L*((c,7),dd), Va(c) =0},
AT =A™,

It is clear that the operator A° @ A™ with domain D(A%) @ D(A™) is selfadjoint and we have

Tess (A @ A™) = 005s(A%) U 055 (AT).

Lemma 2.13. 0.55(A) = 0css(A%) U 0ess(AT).

Proof. Consider the operator 7 given by

D(T):={VeDA): ¥U(c) =0}, TU:=AL.

Obviously, both A°® A™ and A are finite dimensional selfadjoint extensions of the closed symmetric
operator 7, so by | , theorem 8.17] their essential spectra are equal, i.e.,

Tess(A) = Tess (A D A™) = 0es5(A) U 0ess(A™). O

Using oscillation theory for Dirac operators we can prove the following theorem.
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Theorem 2.14. o.55(A) = 0.

Proof. Using the preceding lemma it suffices to show that oess(.A%) and oess(A™) are empty. First
we consider A”™. If we apply the unitary transformation

v= i)

we obtain the formal differential expression

k+3 .
AT = UAU! = < Od <ﬁ9> n g +awsind ) aimcosﬁ
—w 0 am cos VY _(siﬁg + aw sin )

and the operator AT, := UA™U~!, D(AT) := UD(A™). Since U is unitary and A" is selfadjoint,
77 is also selfadjoint and oess(A) = 0ess(Ar).
For real A and real solutions ¥ = (ﬁ;) of (Ay — A)¥ = 0 we apply the transformation

Ya(9) -
arctan 25y if ¥1(9) # 0,
where p(¥) = \/¢%(19) + 12 (10)? and 0(v) = :511((19)) ~

arccot ;- if 12(9) # 0.

This transformation is known as Priifer’s transformation, see also section 4.2.2. By the requirement
tan(d(9)) = ifggg and cot(4(9)) = z;ggg, respectively, the function § is determined modulo 27 only,
but it is possible to choose § such that it is continuous. According to | , chap. 16], the function

¢ fulfils the differential equation

550 = (e (o) (o). veom. (2.19)

with
k+3 . 9
G) = A— e + awsin k+almcos .
am cos —(Sim% + aw sinﬁ)

To express the fact that ¢ depends also on A via the function ¥, we frequently write d(«J, \).
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As already mentioned, the phase function ¢ is determined a priori modulo 27 only. In the following
we choose 0 such that d(c, A) € [0,27). Let E be the spectral resolution of Af;. For all A\j < Ay we
define

1
n+()\1, )\2) ;= — liminf (5(29, )\2) — 5(19, )\1)) N

T 9w
n_ (s da) == limsup (59, Aa) — (9, A1)
T 9/ n
MM, A2) = dim(E(\2) — E(\1)).
According to | , theorem 16.4] we have the inequalities
n_(A,A2) —2 < MM, A2) < ngp(A, A) + 2. (2.20)

For arbitrary N € N we show that for all A € (=N, N) the function §(-, \) is bounded. By (2.19)
it follows that

d B k+ 4 _ ) k+3 : 9
@5(19) = — <sin?9 +aw81n19—)\> cos” 6(0) + g~ + awsin® + A | sin® §(¢)

— 2am cos ¥ sin § (1) cos 6(19)

e+ L
= X — 2amcos ¥ sin () cos §(¥) + ( +ﬁ2 + aw sin 19) (Sin2 5(1) — cos? 5(9)). (2.21)

S11

Let |A| < N and assume that (-, A) is unbounded from above or from below. Furthermore we
k+3
sin129’

assume k + 3 > 0. Since the function 9 —
we can choose ¥y € (¢, 7) such that

J A
+192 + awsind > || + 2|am)|, v € (Yo, ). (2.22)

¥ € (5, ), is strictly increasing and unbounded,

sin
By assumption, § is continuous and unbounded, hence there exists either v; € Z, ¥4 € (J¢, ), or
v_ € Z,V_ € (Vg,m), with the properties

(U, \) = vy, (9, A) >6(94,A) in a right neighbourhood of ¥,
(-, A) = (v— + 3)m, (¥, A) <6(9-,A) in a right neighbourhood of ¥_.
On the other hand, (2.21) shows that the phase ¢ is monotonously decreasing in a neighbourhood of
¥+ and monotonously increasing in a neighbourhood of ¥_ in contradiction to (2.23). For k+% <0
the proof is similar.
Thus for all A € (=N, N) the function 6(-,\) is bounded. Hence also ny and, consequently,
M (A1, A2) are bounded for all Aj, Ay € (—N, N). By definition of M (A1, A2) it follows that
Oess(Af) N (=N, N) = 0¢ss(A™) N (=N, N) = 0.

Since this result is valid for all N € N, it follows that o.ss(A™) = (.
Analogously we can show O'ESS(AO) =0. O

(2.23)

As a corollary we obtain the following theorem.

Theorem 2.15. The spectrum of A consists of isolated eigenvalues only which accumulate at most
at +00 or —oo.

In fact, since A is unbounded and selfadjoint, the spectrum of A is unbounded. Hence at least one
of the points 00 must be an accumulation point. Later, in section 3.2, we show that the spectrum
of A is neither bounded from below nor from above.

Remark 2.16. In theorem 3.23 we show that A has compact resolvent which also implies that the
essential spectrum of A empty.
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2.3 Symmetries of the angular operator A

In this section we establish some symmetry properties of the formal differential expression 2l with
respect to the physical parameters k, a, m and w. Recall that the formal angular operator is given
by

d k-‘r% .
—am cos v L4+ 2 4+ qwsind
A= fa L do " sing on (0, m).
—%—i—ﬁ%—awsinﬁ am cos ¥

Since in the following we consider different values of the variables a, k, m and w, we often write
A(k,a,m,w) and A(k,a, m,w) to indicate the dependence of 2 and A on these variables explicitly.
If no confusion arises, we omit some or all of them.

For fixed A € R, the equation (2 — \)u = 0 is a linear system of two differential equations on the
interval (0, ), hence it has two linearly independent solutions. Using the symmetry properties of
2 given in lemma 2.17, we can, for instance, construct a second solution of (24 — A)u = 0 if one
solution is already known.

Here we are only interested in formal solutions, i.e., in solutions that need not be square integrable;
therefore we work with the formal differential expression 2 rather than with the operator A.

Lemma 2.17. Fix k € Z and a,m,w, X € R. Further, let ¥ = <$;) be a formal solution of
(A(k,a,m,w) — A)u = 0.
Then the following holds:

(i) W is also a solution of
Ak, —a,—m,—w) —N)u = 0.
(ii) The function X(9) := U (r — ), 9 € (0,7), is a formal solution of

A(—(k +1),a,m, —w) + Nu = 0.

iii) The function ®(¥) := (91) U (r —0) = 7’&2(#:19) , 9 € (0,m), is also a formal solution of
I0 1 (m—9)

(A(k,a,m,w) — AN)u = 0.

(iv) The function Z(9) := (~

O~

D) v (@) = (—%(@)) v € (0,7), is a formal solution of
Ak, a,—m,w) + N)u = 0.

Recall that ¥ is an eigenfunction of A(k, a, m,w) with eigenvalue A if and only if ¥ is a solution
of the differential equation (24(k, a, m,w) — A)u = 0 and both ¥ and 2(k, a, m,w)¥ are elements of
£2((0,m),dd)?. Hence ¥ is an eigenfunction of A(k,a, m,w) if and only if the functions X, ® and
Z are also eigenfunctions of the corresponding operators.

Proof of lemma 2.17. (i) The assertion follows from A(k, —a, —m, —w) = A(k, a, m, w).
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(ii) Let X be defined by X () := ¥(m—9) for all ¥ € (0, 7). If we apply the coordinate transforma-
tion ¥ — 7 —1, the eigenvalue equation (A(k, a,w, m)—A\)¥ = 0 becomes (A~ (k,a,m,w)—A)X =0
with the formal differential expression A~ given by

A (k, a4, m, w) = :rricosﬂ d19+smﬁ+aws1n19 '
44 S;;% + aw sin Y —am cos ¥
Now we have the following equivalent equalities:

0 = A (k,a,m,w) —N)X

= 0 = (—2A (k,a,m,w) + )X
a , —(k+1)+3 .
— 0 — 7?;;1:;?;879 T g > —awsind ) x
—%—{—Tﬁz’—awsinﬁ am cos

and the last line is exactly the assertion.

(iii) For X and A~ (k,a, m,w) as above we know that (A~ (k,a, m,w) — A)X = 0. Since the matrix
(? 6) is invertible, we have the following equivalences:

0 = A (kya,m,w) — )X

= o (a6 ) Y-

— 0 = _:’ﬁCOSﬁ d19 + 51n19 + aw sin - <§], é) X.
_%4_ 2 | qwsin?d am cos

sin ¢

The last line is the same as (A(k,a,m,w) — A\)® = 0 and the assertion is proved.

(iv) Since the matrix (_é (1)) is invertible and self-inverse, we have the following equivalences:

0 = (Ak,a -V
I I 0 -1 0
((o ) “mw>(o D) (0 0
k+3 .
— 0 — (( amcosﬂ £9+Sim29—|—awsm19>+)\>z

k4
e 2 | qwsind —am cos

d 4
T

= 0 = (Ak,a,—m,w) + N)Z. O

The next corollary follows immediately from lemma 2.17 (iv).

Corollary 2.18. If either a = 0 or m = 0, then the point spectrum of A is symmetric with respect
to 0.

Lemma 2.17 allows us to draw some conclusions about the value of an eigenfunction at 9 = 7.
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Corollary 2.19. Let ¥ = (ﬁ;) be an eigenfunction of A with eigenvalue \. Then lemma 2.17 (iii)

implies that also & := (9 6) V(m —-) is an eigenfunction of A. Moreover, there is a v € C with
|v| =1 such that ® = vV holds. With this v we obtain
1
. 2.24
) <_7> (2.24)

Proof. Let ¥ and A be as in the assertion. Furthermore, let X be another solution of (A4 — X)u =0
such that ¥, X form a fundamental system of (A — A)u = 0. Since A — A is in the limit point case
both at 0 and at 7 and since ¥ is square integrable by assumption, the function X lies neither
left nor right in .#2((0,7),dd)?. The preceding lemma shows that also ® := (9!) ¥(x — ) is an
eigenfunction of (A — A\)u = 0, hence there exist 7,0 € C such that & = 4V + §X. Since both ¥
and ® are square integrable on (0, 7), but X is not, it follows that § must be zero. Furthermore,
the equality ||¥| = ||®|| implies |y| = 1. Comparing ¥ and ¢ leads to

vp = a®m ()] vE - i

In particular, none of the components of ¥ vanishes identically.

i) _ _ _ (el =)
(i) = v =201 = (FEZF). veom,
and
P1(9) _ / Y, - —h(m — )
gl (@(ﬁ)) = V(W) = (W) = ( ?(W_ﬁ)> . 9e(0,m).
In the special case ¥ = § these equations show that

P1(3) = 12 (%), Yi(5) = —¥s(3),

which proves equation (2.24). O



Chapter 3

Three different lower bounds for the
modulus of the eigenvalues of A

In theorem 2.9 we have shown that the angular operator

k+1 .
A= —am cos % + siJr:fé + awsin ¥ _. -D B (3.1)
d | k+3 : "\B* D '
—q9 + w5 +awsind am cos ¥

in the Hilbert space £2((0,7),dd)? with domain
D(A) = D(B*)@D(B) = {¥e £%(0,m),d¥)*: ¥ is abs. cont., A¥ € .£>((0,7),dv)*}

is selfadjoint and has purely discrete point spectrum. All eigenvalues of A are simple because A is
a selfadjoint linear differential operator of first order.

The operator D with domain D(D) = £?((0,7),dd) is a bounded multiplication operator in the
Hilbert space .Z2((0,7),dd). In remark 2.11 we have seen that the operator B is the closure of
B™n defined by B™tf = B, f, f € D(B™") := C(0,7). Where necessary, we express the
dependence of B on the wave number k by writing By instead of B, otherwise we suppress the
subscript k in order to keep the notation as simple as possible.

The aim of this chapter is to establish lower bounds for the modulus of eigenvalues of A by applying
an off-diagonalisation method. In order to express these lower bounds in terms of the physical
parameters k, a, m and w, we need an explicit upper bound for ||[B~!||. Since we know the form of
B! as an integral operator explicitly, we can derive various upper bounds, depending on how the
integral kernel of B~! is estimated, see lemmata 3.30 and 3.34. The lower bounds for the modulus
of eigenvalues of A resulting from the off-diagonalisation method are established in theorem 3.35.
Other lower bounds for the modulus of the eigenvalues of A are obtained in the following chapter
where we use Sturm’s comparison theorem to obtain bounds for the eigenvalues of BB*. Both
the off-diagonalisation method presented in this chapter and the variational principle of the next
chapter basically treat the bounded operators on the diagonal of A as a perturbation. A completely
different approach to obtain lower bounds for the modulus of eigenvalues of A is given in chapter 5.

In the first section of this chapter, we consider the angular operator for a = 0. In this case, the
eigenfunctions and eigenvalues of A are explicitly known, see lemma 3.3. Since for a = 0 the
spectrum is unbounded both from below and from above, it follows from standard perturbation
theory that also in the case a # 0 the set of eigenvalues of A is neither bounded from below nor
from above. The knowledge of the eigenfunctions of A for ¢ = 0 allows us to give first order
approximations of the eigenvalues Ayj (the first positive and the first negative eigenvalue of A)
with respect to a for small a.

In the following we always assume that £ € R\ (—1,0).

27
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3.1 The special case a =0

The aim of this section is twofold. Firstly, if we know the eigenvalues of A in the case a = 0, then
we can use analytic perturbation theory to derive estimates for the eigenvalues in the case of small
la]. On the other hand, a comparison of the angular operator (3.1) in the case a = 0 with the
angular part of the usual Dirac operator in flat spacetime as given, e.g., in | ] provides us with
a physical interpretation of the eigenvalue A of the angular operator A.

3.1.1 The Dirac operator in flat spacetime

The usual Dirac equation without potential in flat spacetime is a linear system of four coupled
partial differential equations given by

(—igt +Hp)® =0 with Hp=a-j+pm, (3.2)

where 3 = <102 _012> and @ = (g ‘g ) with & = (01, 09, 03), consisting of the Pauli spin matrices

(0 1 (0 —i (1 0
=10/ 27\ o) BT 0 —1)-
The quantum mechanical momentum 7 is given by the formal differential operator
9 9 2)
ox’ Oy 0z/

Note that throughout the text we follow the standard convention A =c¢ = 1.

7= —iv = —i(

In most textbooks on relativistic quantum mechanics, the Dirac equation is separated by applying
a suitable ansatz for the angular part of the eigenfunctions, see for example | ] or | ].
However, in order to see that the Dirac equation (3.2) and the Dirac equation for a fermion in the
Kerr-Newman background as given in (2.4) are equivalent in the special case a = 0, M =0, @Q =0,
we carry out the separation process explicitly, see | ]. In analogy to the ansatz (2.7) for the
solution of the Dirac equation in the case of the Kerr-Newman metric, we use the ansatz d=c Wi
for solutions of (3.2) so that the derivative with respect to ¢ can be substituted by —iw. Further,
we use polar coordinates (r, 9, ¢), with the normalised basis vectors

€ = (sinv cos ¢, sinvsing, cos?), € = (cosV cosp, cos¥sing, —sind), €, = (—sinyp, cosp, 0).
In polar coordinates, the formal differentiation operator —iV and the angular momentum operator
L:=7xp=—i7x V have the form

o 1 - - .. 1 0 0

—-iV = —lé'rg—;(é»rx_[/), L = leﬁsinﬂ%_i€¢%'

(3.3)

=

Obviously, we have €, - L = 0.
Since in the following it is always clear on what spaces V and the angular momentum operator
L act, we do not use different notations for these operators with respect to the dimension of the

£?-spaces they are acting on; for example, L has to be understood to be the block matrix (g %)
when applied to functions with values in C2.
It is convenient to introduce the so-called spin operator

= - g 0
S = 75&2%(0 5,>

N[ =
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with the 4 x 4-matrix v; = ( 102 102 ) It is well known that for arbitrary vectors A and B the relation

(@-A)(@-B) = A-B+2iS-(Ax B)
holds. In particular, using & = 2755 , we obtain for A = &, and B = L that

L) = —iys(@-&)(@-L).

QL

a-(@ xL) = 2758 (8 x L) = i (@& L) —ins (@-&)(

With this relation, the equality 5 (& - €,) = (@ - &) 75 and the representation (3.3) of V, it is easy
to verify that in polar coordinates the Dirac operator has the form

Hp = —id@-V+pm = —i(&'ér)%—%d'.(é}xfzwrﬁm
0 i -
= —i(a 6r)§+*(&'€r)75(&‘L)+ﬁm
o Ly 0 i, o= =
= —i(a eT)§+2;(a &)(S L)+ pm

If we introduce the operators £ := & L+1 acting on functions with values in C? and the spin-orbit

0

operator R= I6] (2§ L+ 1) (§ ﬁ) acting on functions with values in C*, the Dirac equation
becomes
= i, ./ 0 ~ =
0 = (Hp—w)® = (—f(oz-er)(ra——i—l—ﬁR)—|—ﬁm—w>¢>. (3.4)
r r

It is easy to see that

oo 0 - e ith v - cos?d e ¥sind
a-& = (. . wi -8 = | ...
" c-¢& 0 " e¥sind —cos?d )’

and by straightforward calculations it can be shown that (¢ - €,) and & anticommute, and that R
commutes with the Dirac operator, i.e., (¢ -€.)8 + R( - €,) =0 and RHp — HpR = 0.
Furthermore, it should be mentioned that

R=p@*-L2-8%+1) = pR*-L*+ 1, (3.5)

where J := L + § is the total angular momentum of the Dirac particle From the formula above, it
follows that & commutes also with J2 and J,.
Next we transform the Dirac equation with the unitary matrix

_ g B
7 <U '0 ) 7 with U 1 e 21(1 cos ) o sin ¢ '
0 iU 2(1 — cos ) e2?sin v e2?(1 — cos 1)

Observe that

s = (-1 0

U (0-&)U = <0 I)’
e _ (0 I 9 cotv“_ 0 1 i i_—IO
Ul (@-&)F-L)U = <1 o) (aﬂ+ 2 ) —I 0) sind 9y 0 I

(e ) ()
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with the differential expressions £ = % + Cogﬁ F (aw sin v + ﬁ%), cf. (2.10). Hence we obtain
)

for the Dirac equation in the form (3.4

0 = (U Y(Hp-w)U) (U ')

= (—iﬁ‘l (@-e)U (% - %) +% Ut ((1'~é’r)ﬁ§(~]+ﬁm—w) (U719)

- -~ /0 1 -
_ (_IU—1 G-8)0 (5 + ;) + 0@ 8)25- L+ 1)U + fm — w) )
_ . iUt @G-e)u\, 0 1
B <_1<—1U‘1(5~€T)U 0 )(87‘+r)
i iUt @G-e)d-L+1)U .
z - - Uo
t; <—1U—1 G-8)G-L+1)U 0 +m—w ) (UT0)
-7 0 £7
I 8 1 1 Sf_ 0 71
= (|70 . Gt3) | . Fhm=w | (UT9)
0 —1I -£7 0
1000
Next we transform with the self-inverse, unitary matrix Uy := <8 _OI ? 8> and apply the ansatz
0001
o = %e_i(’“'%)‘p@ so that we have (2 +1)® =120 and i%@ = (k+ 1)®. We finally obtain that

the Dirac equation (3.2) is equivalent to

0= U()ﬁfl(HD —w)ﬁUo (Uoﬁfli)

m-—w 0 -2 0 0 £
0 m-w 0 -2 0 £, 0 ~
= " - ~19).
% 0 —(m+w) 0 + r 0o £ 0 (Uol ™ @)
0 % 0 —(m+ w) -£+ 0

This is exactly equation (2.11) with @ = 0, M = 0, @ = 0, since in this case \/A(r) = r and
Q(r) =w.

Note that the ansatz ® = %e_i(’”%)‘p@ is natural in the sense that, by physical reasoning, d is
supposed to be square integrable on (0, 00) with respect to 72 sin drdddey, cf. also section 2.1.1.

The calculations above show that in flat spacetime, that is, a = 0, M = 0 and @ = 0, the angular
operator A is similar to the spin-orbit operator £. In fact, it follows from the calculation above
that

(d) ~ .
(0 2 ) = iU U (a-&)BRUU,

AD 0
B 0 U1 (7-&)RU
= o <U1 (7-8) /U 0 > Uo
I 0\, 1,- -
0 —<0 —I>U (6-8)RU

I 0
o -1 —»‘—»
U~/ eT)U<0 —1) 0
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Because of
I 0 1= = _ (T 0 1= = 1 g1
_<O —I) U (6-8)RU = <O —I> U (6-&)UU "RU = U " RU
and
a2 = I 0 T 1= = I 0 I
—U " R(d eT)U<O —I) = U "RUU " (¢ eT)U(O —I> = U " RU
we obtain
A4 = Ul /U (3.6)

Remark 3.1. Let a = 0. Then CI\IAis a solution of the Dirac equation (i/)\{ + 5/2\1)(1\/ = 0 in the form of
(2.4) if and only if @ =1 UU; VW is a solution of the Dirac equation (3.2).

We conclude this section with some remarks on the spectrum of the angular part of the Dirac
operator in flat spacetime.

It is well known that neither the spin operator S nor the angular momentum operator L commute
with the Dirac operator Hp, see for example | ] or | |; but the total angular momentum
J=L+S and the parity operator P commute with Hp and with each other. Furthermore, J? and
3. have purely discrete point spectrum and there is a basis {\Iljcmj 14, mj € N+ %, |m;| < j} of

simultaneous eigenfunctions of J2, J, and the parity operator P, with

~2q 0 + ~ ot + + +
J \I»'j’mj =j(j+ 1)\Ifj7mj, qu’j,mj = mj\lljmj and P\IJj’mj = j:\IIjvm]_.
. . . . + + wé‘ﬂﬂ' .
It is possible to choose these eigenfunctions ¥ m; such that W dmy =y 7 ) where the two-spinors
Jym

1/1§-7mj and ¢§:mj are cigenfunctions of L with ecigenvalues | and I respectively, with |l — '] = 1.
From the angular operator algebra it follows that |j — | = % and [j —1'| = %
The functions \I/;tm] are also eigenfunctions of the spin-orbit operator K. As already mentioned, &

commutes with 32, J, and the Dirac operator Hp. From (3.5) it follows that R has purely discrete
point spectrum, and that the \I/;tm] are eigenstates of K with eigenvalue k, where

j+s=1+1  ifj=1+1,
(3.7)
v

j+3) = —1 ifj=1-1.

Thus, instead of classifying the eigenstates according to their parity, we can classify the eigenfunc-
tions according to the eigenvalues of A

If we fix an m; € N+ 3, then the eigenvalues of 32 are j,(jn + 1) with j, = |m;| + n, n € Ny.
Hence the eigenvalues k of R are given by

(Fn=20n+3) :neNg} = {Fn==%(mj|+1+n):neNy}
= {Fn =sign(n)(Imy| — 3 +1nl) : n € Z\ {0}}. (3.8)
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3.1.2 Eigenvalues in the case a =0

In the previous section we have seen that in the case a = 0 the angular operator A is similar to
the spin-orbit operator £, hence their spectra coincide. Although the spectrum of £ is known,
see (3.8), we present a direct calculation of the spectrum of A that also provides the eigenfunctions
explicitly. For a = 0 the angular operator reduces to

d  k+3
A= ( 0 1 dd + sin129> .
d +3
—a0 T s 0

sin ¥

Recall that ¥ = (gl) is an eigenfunction of A with eigenvalue \ if and only if ¥ does not vanish

identically on (0, ) and satisfies the differential equation
(A-NU =0 (3.9)
and the integrability condition

|3 = /(\1!(19),\1/(19)>d19 < oo. (3.10)
0

As an abbreviation we set k := k + % Recall that 2 is in the limit point case at both endpoints of
the interval (0, ) if and only if |x| > %, otherwise it is in the limit circle case at both endpoints.
In the rest part of this chapter we assume || > 3.

The differential equation (3.9) is equal to the coupled system

d K
<(w+sim9) Sy —AS_=0, Je(0,m),

(3.11)

d K

of differential equations for the components S_ and S of .

Lemma 3.2. Leta=0. If ¥V = (gl) is an eigenfunction of A, then neither of its components

S_ nor Sy vanishes identically. Further, A = 0 is not an eigenvalue.

Proof. Assume that one of the components Sy vanishes identically. Then, by corollary 2.19, we
have [S_(5)| = |94 (5)| = 0. The uniqueness theorem for solutions of linear differential operators
implies that W vanishes identically, in contradiction to our assumptions.

From the form of the fundamental system (2.16) of AW = 0 it is clear that A = 0 cannot be an
eigenvalue of A. O

Note that 0 ¢ o(.A) is also a direct consequence of the fact that the differential operators % +

are boundedly invertible. These differential operators are discussed in more detail in section 3.3.2.

Solving the first equation for S_ and inserting into the second equation yields

d K d K 2¢
<d19 - sinﬁ) <dz9 + sm19> S+ A5 =0. (3.12)

Evaluating this product and applying similar calculations for the function S; we obtain

d? 1
[cW + g (—rcosd — /<;2) + /\2] Sy =0, (3.13a)
[ d? 1

2 2
(W+SH1219(HCOS19_KI)+>\:|S_ = 0. (3.13Db)
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Note that the second differential equation can be obtained from the first differential equation if we
substitute x by k' = —k (or, equivalently, k by ¥ = —k — 1).

Lemma 3.3. Ifa=0 and k € R\ (—1,0), then the spectrum of A is given by
op(A) = {\, =sign(n) (([k+3i))—3+n|) : neZ\{0}}. (3.14)

The corresponding eigenfunctions are W, := (g;g) with
S_n(¥) = s_pu(1+cos?)?(1—cos?)® F(—(n| —1),2(a+ B) + |n| — 1; 28+ 35 (1 + cosd)),
(3.15)
Sin(¥) = spp(l+cos?)*(1—cos?)’ F(—(|n| — 1),2(a+ B) + |n| — 1; 2a + 3; (1 + cos?)),
(3.16)

with o = %\k| + % and 3 = %|k‘ + 1]+ % and the hypergeometric functions F(E,E; ¢ x), see also
remark 5.4. Furthermore, we have

. 1
S54.m A )Slgn(k+§)

. = sign(k + )<7|k+%\+% :

Proof. Since k = k+ % the condition k € R\ (—1, 0) is equivalent to || > 3. To find eigenfunctions
of A, we must solve the system of differential equations (3.13a) and (3.13b) and then check that
the solution also satisfies the coupling condition (3.11) and the integrability condition (3.10).

We transform the independent variable ¥ according to

z = 1(1+cos?). (3.17)
Short calculations show
cost = 2z —1, sind = 2¢/z(1 — x),
d d d2 d2 1 d
— = —z(l—2)— — = z(l-2)— — =22 —1)—.
a0 w(l-)q ar ~ e mogE G-y

Inserting into the differential equations (3.13a) and (3.13b) yields

d? d -
[x(1—x)w—;(2x—1)m+m <—2m_(ﬁ_;)2+i> -i—)\ﬂ F=o0  (318a)

x(1— )d2 1(2 —1)i+¥ 261 — ( +1)2+1 +Xg =0 (3.18D)
Va2 T 2 T Vs Tl —) T TV T 9= '
where f(z) := S, (9(z)) and §(z) := S_(J(x)) for all z € (0,1). It is easy to see that (g;) is an
cigenfunction of A if and only if (f,§) are solutions of (3.182) and (3.18D), coupled by

(_md(.im

—Ag(z) =0, xz € (0,1)

2V ) | (3.19)

d
(_ 2(i—a) o - 2\/_) )+ A flz) = z e (0,1),
and satisfy the integrability condition
1
/(\f( )+ () (1l —x) Tz < . (3.20)
0
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If we also transform the dependent variables according to

fla) = a*(1=2)’f(z),  gla) = 2”(1 - 2)%(2)
with
a = glkl+g = gl—gl+1 = glk+ll+i = gletgl+g

we obtain the differential equations

2

[3:(1 - x)% a4l (1424 25)@% FA - (ot 5)2} f@) = o, (3.212)
2

[a:(l - x)% +(28+3—(1+2a+ 25):5)% + 22— (a+ 5)2] g(x) = 0. (3.21Db)

These are hypergeometric differential equations. Recall that the general hypergeometric differential
equation is given by

2 - ~
{x(l — x)% +(c—(1+a+ b)x)% - 61)} w(z) = 0. (3.22)

Comparison of equation (3.22) with (3.21a) and (3.21b), respectively, yields

) . {gf:2a+;=|k:|+1 for (321a), 3 93)

a+b:2a+ 5 CcC =
(o 45) Cg = 2B8+3=]k+1/+1 for (3.21D).

A2 = (a+B)%—ab. (3.24)
In particular,
A = 3la—b|

andcy=|k|+1>1and ¢y, =|k+1]+1>1.
If the parameter ¢ in (3.22) the not a negative integer, then the hypergeometric function

F(E,E; G x) = Z (az%(:)n %T!La

n=0

with Pochhammer’s symbol
(r)o:=1, (r)p=r(r+1)...(r+n—-1) forneNandreR

converges for |z| < 1 and is a solution of the differential equation (3.22). Its behaviour at the
point 1 depends on § := Re(¢ —a _E); obviously, F('d,g; ¢ 0) =1, see [ , sec 15.1].

Since in our case both ¢; and ¢, are positive numbers, the functions f(x) := n¢F(a,b; ¢f; x) and
g(x) :=n4F(a, b; Cq; ) with constants ny and 7, are solutions of the equations (3.18 a) and (3.18 b);
moreover, we show at the end of the proof that the numbers 7, and 1, can be chosen such that

f and g also satisfy the coupling condition (3.19). Since o > i and § > i, it is follows that the

corresponding functions f and § lie left in £2((0,1), \/z(1 — w)ildx), thus the corresponding wave
function ¥ lies left in .#2((0, ), dd).

Since the differential equations (3.21 a) and (3.21b) are of second order, there are solutions f(2), g(2)
independent of the hypergeometric functions, that might also lead to an eigenfunction ¥ y) of the
original eigenvalue equation (A — A)¥ = 0. The wave function Wy is linearly independent of
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U (constructed from the hypergeometric functions) and therefore cannot lie left in .#2((0, 7), d?)
because A is in the limit point case at 0.

Thus we have shown that if f and g solve the differential equation (3.21a) and (3.21b) such that
also the integrability condition for the corresponding fand g is satisfied, they must be proportional
to hypergeometric functions.

Since we already know that none of the functions f and g vanishes identically, it follows that ny # 0
and ny # 0. Now we have to distinguish several cases.

Case 1. a = 0.
In this case, solutions of the differential equations (3.21a) and (3.21b) are constant functions and
(3.20) is satisfied. Hence,

A= Bl = atB = blk—d+lnt b)) = {

is an eigenvalue of A.

Case 2. a = —n withn € {1,2,3,...}. N
In this case, the hypergeometric function F(a,b; ¢; x) reduces to a polynomial and therefore is
finite at x = 1. From (3.23) it follows that b = 2(« + ) + n and hence

ﬂ—i-%—i—n iffi>%7

Al = a+pB+n = L(s—3+[k+i[+1D)+n = _
Al B 5 (1 ikal 2| ) —/i—i—%—i-n ifﬁé_%

is an eigenvalue of A.

Case 5. b= —n withn € {0,1,2,...}. B
This is analogous to the previous cases since the differential equation (3.22) is symmetric in @ and b.

It is clear that in the cases 1, 2 and 3 the functions fand g fulfil the integrability condition (3.20)
because a, (G > % and the hypergeometric functions are polynomials so that the integrand in (3.20)
is bounded.

Case 4. @, b¢ {0,—1,-2,...}. N

We show that in this case the vector function (f, g) is not an eigenfunction of the system (3.18 a),
(3.18b). As already mentioned, the behaviour of F(a,b; ¢; z) at x = 1 is determined by the value
of

§ =Re(¢—a—b) =Re(@—2(a+A)),

see [ , 15.1.1]. If § < —1, then F(Ei,g; ¢; x) diverges at x = 1. In our case we always have
either 6y =¢y —2(a+ ) < —lor oy =c4g—2(a+p) < -1
Suppose that <g;> = (%ii;;) is an eigenfunction of A. Without restriction we may assume that

¢ —2(a+B) < —1so that f = F(a,b; cy; - ) diverges at x = 1.
By lemma 2.17 (iii), also (gfg::; ) is an eigenfunction of A4 with the same eigenvalue. This implies

that there is constant v # 0 such that f(x) = 7g(1 — ), and hence

npF(@,b; ¢ ) = yngF(a,b; &g 1 —x)
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for all z € (0,1). For & — 1 the function F(a, b; ¢g; 1 — x) remains bounded whereas the function

F (6,5; ¢r; x) diverges. Therefore, ( g;) cannot be an eigenfunction of A.

Summarising the cases 1 to 4, we find that for £ € R\ (—1,0) and a = 0, a number X is an eigenvalue
of A if and only if

Al € {a+B8+n :neNg} = {3(Jk—3|+|s+3|+1)+n:neNg}

Since by assumption |k| > 3 we can simplify |k + 3|+ |k — 5| = 2|x| = [2k +1|. From corollary 2.18
we know that the spectrum of A is symmetric to 0 in the case a = 0, so it follows that A is an
eigenvalue of A if and only if

A€ {£(k+3+3+n) :neNg} = {sign(n)([k+ 3| -1 +n]) : neZ\{0}}.

For n € Z\ {0}, let A, := sign(n)(|k + 3| — & + |n[). It remains to determine the ratio of 7y
and 7y for fixed n € Z\ {0}. From the differential equations for S_ and S, and the ansatz
S, (W(z)) = 2*(1 — 2)P f(z) and S_(I(x)) = 2°(1 — 2)*g(z) we obtain

1 1
Aoz (1= 2)* 2 g(2) = —a(l—a)f'(x) + (—a+ 5k +5) +a(a+0)) f(2).
With f(z) =ns F (@,b; & ) a straightforward evaluation of the right hand side yields
ur WF(&,Z; cgsx) if k>0,

Ang(z) = -
ng k F(a,b; ¢g; ) if k< -1,

hence, using A2 = (a + B+n)? = (|k+ 3| +n+ 1)%, we find in both cases

Ao ) sign(k’—i—%)

2 2

The above calculation also shows that the coupling condition (3.19) is satisfied. Ul

Remark 3.4. The polynomials F(Zi,g; ¢,x) with @ € —N are the so-called Jacobi polynomials. ¢

A comparison of the sets (3.8) and (3.14) shows that the spectra of A and R coincide, as is clear
from the relation A@ = U1 R U, see (3.6). The quantity k + % originating from the separation
ansatz (2.7) can be identified with the z-component of the total angular momentum of the fermion.
From (3.7) it follows that if A = K is positive, then j =1+ % which implies that the spin and the
angular momentum of the upper component of the fermion are parallel; if )\ is negative, then we
have j =1 — %, i.e., the spin and the angular momentum of the upper component of the fermion
are antiparallel.

Another way to see that A should be interpreted as the parameter describing the spin-orbit coupling,

without using the angular equation, is to consider the radial equation. For a = M = Q = 0 the
radial equation (R(® — )) ())gjr) =0, see (2.8), reduces to

%—% w—m X+ X .
w+m %—% 1(Xy—X) 7

which is equivalent to the radial part of the Dirac equation in flat spacetime without potential,
where ) is the eigenvalue of the spin-orbit coupling operator R, see, e.g., | | or | ].
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3.2 Analytic perturbation theory

In the previous section we have computed the spectrum of the angular operator A in the case a = 0.
Now we apply analytic perturbation theory to derive some basic estimates for the eigenvalues of A
in the case a # 0 from the results in the previous section. We also give a first order approximation in
terms of the Kerr parameter a for the first positive and first negative eigenvalue in a neighbourhood
of a =0.

To indicate the dependence of the angular operator A and its eigenvalues A\, on the parameter a,
we use the notation A(a) and A\, (a).

In general, perturbation theory deals with operator valued functions 7 : U — %(X,Y) defined
on an open set U C C with values in the set of closed operators from the Banach space X to the
Banach space Y. Sometimes, we also use the notation of a family of closed operators (7 (¢))cev-
Without loss of generality, we assume that 0 € U. Usually the spectrum of 7(0) is known or
can be approximated. If the operators 7 (0) and 7 (¢) differ only slightly in an appropriate sense
for |¢| small enough, then knowledge of the spectrum of the unperturbed operator 7 (0) leads to
information about the spectrum of 7(¢).

For the purpose of this work it is sufficient to consider holomorphic families of operators only; for
the following definitions and properties of holomorphic families we refer to | , chap. VII].

Definition 3.5. Let U be a domain in C and let X and Y be Banach spaces.

(i) A family of bounded operators (7(¢))¢cy from X to Y is called (bounded-)holomorphic if it
is holomorphic in norm in U.

(ii) Let 7 = (7(¢))cev be a family of closed operators from X to Y such that each 7(¢) has
nonempty resolvent set. Let (o € U and A € p(7 ((p)). Then the family 7 is called holo-
morphic at g if there is a neighbourhood Uy of (p in U such that A € p(T'(¢)) for all { € Uy
and the family of the resolvents ((7(\) — ¢)™1)¢er, is bounded-holomorphic. The family 7°
is called holomorphic in U it it is holomorphic at each (o € U.

Definition 3.6. Let U C C be some domain. A family of densely defined, closed operators
(T'(C))ceu is called a selfadjoint family if

@) =1T(), (€U

Definition 3.7. Let U be a domain in C and let X and Y be Banach spaces. A family of closed
operators (7(())¢cy € €(X,Y) is called a holomorphic family of type (A) if

(i) D(7(¢)) = D is independent of (,
(ii) for all u € U the vector valued function ¢ — T'(¢)u is holomorphic for ¢ € U.

It can be shown that holomorphic families of type (A) are holomorphic families. Holomorphic
families of type (B) are defined in section 4.1.
Obviously, the function

=
+
NI

d k’—i—% . .
C — C(L2(0,7),d0))), a— Ala) = 0 as + s +a< m cos ”51“79)
%_i_smﬂ 0 wsintd  mecosd

defines the holomorphic family of type (A) (A(a))qec. We showed earlier in lemma 3.3 that the
spectrum of A(0) is given by

p(A0)) = {M(0) = sign(n) ((Jk+3]) — 5 +1nl) : n € Z\{0}}.
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Since for real a the differential expression (a) is in the limit point case at both endpoints of the
interval (0, 7), all eigenvalues of A(a) are simple. From analytic perturbation theory it follows that
the eigenfunctions and eigenvalues of A depend analytically on a. Consequently, if A, (ag) < A\n(ao)
for some ag € R, then also \p,(a) < A\p(a) for all a € R.

Remark 3.8. The first derivative of A with respect to a is the bounded operator

q _ .
di.j(a) _ < mcos ¥ wsmﬂ)j acC, (3.25)

wsin?d  mecosV

and we have H%(a)H = max{|m/|, |w|}, a € C.

Proof. Formula (3.25), and consequently the boundedness of ||%(a)|| is obvious. The assertion
concerning the bound of ||%(a)||, we note that for arbitrary ¥ = (g;) € Z%((0,7),dv)?

9 K
H%(a)\PH2 = /(mzcos219—&—wQSinzﬂ)(\\Pl(ﬂ)\Q—i—\1112(19)\2) dv (3.26)
0
< max{m2 cos? ¥ + w?sin? 9 : 9 € (O,7r)}||\11||% = max{m2, w2}|]\If|]§,

hence [|44(a)| < max{|m|, |w|}. Let T' be the multiplication operator v/m?2cos2 ¥ + w?sin?(v)) on
the Hilbert space #2((0,7),dd). Then (3.26) implies that ||%(a)|| > ||T|| = max{|m|, |w|}. O

Lemma 3.9. Let \,(0), n € Z\ {0}, be the nth eigenvalue of A(0). Then for the eigenvalue A, (a)
of A(a) the following estimate holds:

[An(a) = An(0)] < max{|ml], |wl[}. (3.27)

Proof. Let ¥$ be a normalised eigenfunction of A(a) with eigenvalue A\, (a). The index n enumerates
the eigenvalues, the argument a denotes the dependence of the eigenvalue on the parameter a.

By | , chap. VII, §3.4], the derivative of \,, with respect to a is given by
dA, dA
“ha) = (v, (o) ws). 2
) = (v, (o) (3.28)
Since || U] = 1 by assumption, the previous remark yields
d, dA dA
—_— < ||— a < ||— < .
@) < [F@w| < |G| < mxgol

Application of the mean value theorem to the continuous function A, leads to

IAn(0) — An(a)] < la max{dd)\n(Zi) : oga’ga} = |a| max{|m|, |w|}. O
a

Equivalent to (3.27) is
An(0) — max{|m|, [w|} < An(a) < An(0) + max{|m], |wl[},

or, using the explicit formula (3.14) for the eigenvalues A, (0),

sign(n)(|k + 3| — 3 + [nl) — |a| max{|m], |w}
< Anfa) < sign(n)(Jk+ 3| — 5 + |nl) + |a] max{|m], |wl},
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Corollary 3.10. The set of eigenvalues of A(a) is neither bounded from below nor from above.

Proof. The assertion holds for A(0) as shown in lemma 3.3. Since the derivative of the eigenvalues
with respect to a is bounded, the assertion follows also for all A(a). O

Now we use equation (3.28) to give a first order approximation of the eigenvalues A, in a neigh-
bourhood of a = 0. We consider the case |n| = 1 only, since this case can be treated fairly well
analytically; for higher eigenvalues the computations become rather involved.

Lemma 3.11. Up to first order in a, the eigenvalues At have the asymptotics

sign(k+ 1) |k +i|+1 m 9

A — AN Y T S 2 2 2 -_— +0 )
1(a) [k + 3]+ 2 |k+§|+1< “ yk+;\+;>a (@)

Ai(a) = _‘]H_l‘_l_i_Sign(lH'%) k+50+3 <_ w—7>a—|—(’)(a2)
-1 2l 72 2 k+3+1 k+ 3|+ 3 ’

O(a?)

1S bounded.

where the Landau symbol O(a?) denotes a function such that lir%
a—>

Proof. 1t follows from analytic perturbation theory that the eigenvalues Ay are analytic functions
with respect to a. We have Ay1(0) = £(|k + 3| + 3) by (3.14), so it remains to calculate the first
derivative of A\11(0). By lemma 3.3, the eigenfunctions of the angular operator A for a = 0 are

w0 = (g;:) with S+, defined in (3.15) and (3.16). According to (3.28), the derivative of the

eigenvalue with respect to a at @ = 0 is given by

dA, B o dA 0 _ S_n —mcost wsind S_n
E(O) N (‘II”’ E(O)‘I’"> N <<S+7n)’ <wsin19 mcosﬁ) <S+7n>>

= m / cos ¥ (=S_ ()% + Sy n(9)?) d9 + 2w / sin® S_ ,,(9) Sy (9) do.
0 0

In the special case |n| = 1, the hypergeometric functions appearing in the formulae for Sy ,, are
constant functions, identical to 1, and we have s_ /sy, = nsign(k+ 3), implying [s_ | = [s_ _n|.
The numerical value of |s_ | is derived below. With the transformation z = (1 + cos ) the first
integral becomes

™

/cosz? (=S n(9)? + Sy n(9)?)dv
0

)

1
_g2428 2 /(Q:U S 1) (=21 — 2)2 4 22(1 — 2)2) (2(1 — 2)) "} dz
0

1
— gl 2 /(29[; S 1) (—a (1 — ) gl (1 - ) )
0
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For k > 0, integration by parts yields
by 1
/00519 (S (0)% + Sy n(0)2)d0 = 2P2H1IH1 2 /(237 ~ 1) (a(1— @)k (1 — 22)d
0 0
pl2k+1l+1 g2 1 " pl2k+1l+2 2 1 oo
I _ _ +1y/ - Tt +
P /(Qx 1) ((x(1 —2)" ) de F T / dz.
0 0
For k < —1 we obtain by an analogous calculation
z 9[2k+1[+2 2 ) 1
/00519 (=S n(9)? + Sy n(9)?)dy = —T /(x(l — )" da.
0 0
Using —k = —(k+ 1)+ 3 = |k + 3| + 1 for kK < —1, we can summarise both cases in the formula
™ 1
QI2k+11+2 g n( k:+ ) 52
/cosﬁ (=S n(9)? + Sy n(¥)?)dy = — g =t / Ntz 4.
k+ 3+ 3
0 0
Similarly, we can compute the second integral; the result is
™ 1
2/sin195’_,n(19) Syn(@)d9 = 22K sion(k + %) 32,71 /a;o‘+ﬁ(1 z)* P dx
0 0
1
/ :c))‘l”%”% dz.
0

2I12E+11H3 4y sign (k + 3)s

Hence we obtain for the derivative of A\,,, n = *+1, at a =0

d dA
7 — \I/O \IJO
da)\n(o) ( da( ) ”)
1
= (2nw— — ) ol2k+1l+2 sign(k + 3 )s% |k+ +3 da
ot 3145 !
0
9—2— |2k+1| T(lk
_ <2nw_ 71n 1)22k+1|+2 sign(k + 1) s, VA D(Jk+ 3] +3 3)
k+3l+3 (/% + 3] +2)

1

The constant s_ ; is defined be the requirement that ¥9 be normalised, that is
/S_ 1(9)2 + 8,1 (9)2dy = 2Pk+1H+1 32,71 /(x(l —z))Ftal-ady

1 =
0

_ ol2k+141 312 2R /7 T(k + 5| + 5 )'
’ T(k+3|+1)

L(lk+ 5l +1) T(k+ 50+ 3)

This implies that
d sign(k + 1) m
a0 = 2 TR N+ L) T(k+ 4+ ) T(k+ 3+ 2
a k+3l+5/ Tk +35/+3) D(k+30+2)
= ASign(k—i—%) <2nw— m > ‘k+%‘+%
2 k+3+31) k+3]+1
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In general, the slope of A at a = 0 is the steeper the larger m or w are, unless they are somehow
balanced, that is, m = sign(n)(|k + 3| + 3)w. Further it should be noted that for large values of
|k + %| the first order behaviour of the eigenvalues is governed by w.

Remark 3.12. There are other ways to apply analytic perturbation theory to the angular operator
A. For example, we can treat m or w as the perturbation parameter while a is fixed. We can even
consider A a family of operators depending on two parameters, say m and w.

If, for instance, we want to use m as perturbation parameter, we have to compute or at least
approximate the eigenvalues of B = ( B?* fg ) Since B is the angular operator in the special case
m = 0, the spectrum of B consists of simple isolated eigenvalues only. Let ... < pu_1 <0< pu; < ...
be the eigenvalues of B; then perturbation theory yields for the eigenvalues A, of A, now depending
on m,

tn — lam| < Ap(m) < pn + lam], n e Z\ {0}.

Estimates for the p, are derived in theorem 4.39 with the help of Sturm’s comparison theorem
applied to the operator BB*. O
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3.3 An off-diagonalisation of certain block operator matrices

Our aim is to show that certain 2 x 2 block operator matrices allow for a factorisation if the off-
diagonal elements are closed and boundedly invertible. This factorisation is then applied to the
angular operator A to derive a lower bound for the modulus of its eigenvalues.

3.3.1 The general case

In this section we consider block operator matrices on a Hilbert space H = H; & Ho where H;
and Ho are Hilbert spaces and H is endowed with the usual scalar product induced by the scalar
products of H; and Hsy. Let B(He — Hi) and C(H1 — Ha) be closed linear operators. Further,
assume that A(H; — H;) is a C-bounded and D(Hs — Hs) is a B-bounded linear operator, that
is, we have the inclusions

D(C) € D(A), D(B)<CDD)
and there exist real numbers «,~, 3,9 > 0 such that

[Az]| < aflz]| +~[|Czll, = eD(C),
[Dz| < éllzl| + BlIBzll, =€ D(B).

IN

Then the block operator matrix

T .= (é g), D(T) = D(C) & D(B),

is a well defined operator in H. Note, however, that 7 is not necessarily closed. But if we strengthen
the assumptions on A and D, then the following lemma implies the closedness of 7.

Lemma 3.13. Assume that B(Hy — H1) and C(H1 — Ha) are closed linear operators. Further-
more, let A(H1 — H1) and D(Hgy — Ha) be bounded linear operators. Then the operator T defined
above is closed.

Proof. We can show the assertion directly. Let ((f,j:; ))neN C D(T) be an T-convergent sequence,

that is, there are (z) , (g) € 'H such that (gz) — (;) and ’]'(?gj:) — (5) for n — co. Obviously,

we also have Ax,, — Ax and Dy, — Dy because A and D are bounded. Thus we can conclude
Axy + By, — f By, — f — Az yeD(B), By=f— Ax
e —
Cxp+ Dy, — g Cx, — g— Dy x € D(C), Cx =g — Dy,

since B and C are closed. Hence (y) € D(7) and 7 (y) = (5) holds. O

Remark 3.14. In lemma 3.13 it would suffice to assume that only one of the operators A or D is
bounded. For example, let A be bounded and assume that D is closed and B-bounded. Then it
follows as above that y € D(B) C D(D). Then, also as above, we have 2 € D(C). O

Remark 3.15. A more elegant proof of lemma 3.13 makes use of a stability theorem. If A and D
are bounded, then also (6‘ j%) is bounded. Since (g ]g ) is closed, the perturbation theorem | ,
chap. IV, theorem 1.1] implies that also their sum is closed. O
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In the spectral theory of operator matrices the so-called Schur factorisation plays an important role

(see, e.g., | I, [ ], 1 ). For A € p(A) or A\ € p(D) we have, at least formally,
the following factorisations
B I 0y ([A—X 0 I (A-)N"'B
T-A= (C(A—A)—l I> < 0 SD(A)> (0 I > A€p(d),  (3.29)

o (é B(D;A)_1> <SAO(A) D2A> ((D—IA)lc ?) NepD), (330

with the operator valued functions

Ss(\) = A—X—B(D-\"!c, X € p(D),
Sp(\) = D—X—-C(A-)N"'B, A€ p(A).

The functions S4 and Sp are called the Schur complements of the matrix 7. Usually, the domains
of the operators Sa(\) and Sp(\) are taken to be their natural domains, for example, for A € p(D),
it is natural to define D(Sa()\)) := {z € Hy : € D(A)ND(C), (D — \)~'Cz € D(B)}; note that
in general these domains depend on the parameter \.

The factorisations (3.29) and (3.30) can be used to characterise the spectrum of 7; for instance,
A € p(T) N p(D) if and only if 0 lies in the resolvent set of S4(A). Note, however, that the Schur
factorisation gives no results for A € o(A) N o (D). Roughly speaking, the Schur factorisation is
obtained if the linear systems (7 — ) (3 ) = 0 is decoupled by using the fact that either A — X or
D — )\ is invertible. We will use the Schur complements later to obtain lower and upper bounds for
the eigenvalues of the angular operator A, see section 4.2 and appendix B.

On the other hand, if we know that B and C' are invertible, then it is also possible to decouple the
equation (7 — A) () = 0 by inverting B and C. This results in the off-diagonalisation stated in
the next lemma. Note that we need not assume that both A and D are bounded.

Lemma 3.16. Let A(H1 — H1), D(Ha2 — Ha2), B(H2 — H1) and C(H1 — Ha) be densely defined
linear operators and assume that B and C are surjective and boundedly invertible. Further we
assume that A is C-bounded and D is B-bounded.

(i) If D is bounded, we define Ty by

T (A=NCY\ [0 Ti(N)\ (I CHD-)N)
Ti=A = <0 I ) <C’ 10 > <0 I > (3:31)
with
Ti(A\) =B — (A= NC7HD -\, D(T1()\)) = D(B), (3.32)

and its natural domain

D(T7) :{(i) e H & D(TY) x+0_1(D—)\)y€D(C)}.

(ii) If A is bounded, we define Ty by

i3 = (s 1) (aoy o) laran 1) (3:53)

with

To(\) =C — (D - NB Y A=), D(D(\)=D(C), (3.34)
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and its natural domain

D(Ts) {(;‘) € D(T) & Ho - y—I—B_l(A—)\)xeD(B)}.

Furthermore, let

T .= <él g), D(T) = D(C) & D(B).

Then we have the following factorisations

T )\ = Ty — X if D is bounded,
= if A is bounded.

Note that the domains of 77(\) and T5(\) do not depend on A, so we write D(T}) and D(T3) instead
of D(T1(N\)) and D(Ta(N)).

Proof. We have to show the equalities D(7) = D(7T;) = D(72) and that 7 () = T1 () = T2 (y)
for all (y) € D(T).

In formulae (3.31) and (3.33), the first and the last factor of the first term on the right hand side are
bounded and boundedly invertible. For example, in case (i), the operator C~(D — )) is bounded
because both C~! and D are bounded; furthermore, for all z € H; we have

I(A=NC el < MO || +allo™ 2l +llz] < (ICTHIA+a) + )]

so that also (A —\)C~! is bounded. A purely algebraic calculation shows that the operators 7, T;
and 75 coincide formally, see also the calculation below. To prove 7 = 7; and 7 = 75 it remains
to show that the domains of these operators coincide. We consider 77 only, the proof for 75 is
analogous. For () € D(T) the component y lies in D(B) = D(T}), and since D is B-bounded,
also y € D(D) holds. Thus the element x + C~1(D — \)y is well defined and lies in D(C). This
shows that () € D(7;) and

A5) - () e )

- (OGO ()
-

Hence 7 C 7; is proved. Now consider () € D(7y). Since y € D(T1) = D(B) C D(D), it follows
from z € {—C~1(D — Ny + ¢ : 70 € D(C)} = D(C) that () lies also in D(7), hence the above
calculation implies that 77 (y) =7 (). O

The previous lemma shows that under the given assumptions the spectrum of 7 can be obtained
from the spectra of 77 and T5, respectively (for the definition of the spectrum of operator valued
functions see definition 4.8). As an example we state the following corollary.

Corollary 3.17. Let A € C and assume that the assumptions of one of the cases (i) or (ii) in
lemma 3.16 are satisfied. Then the following equivalences hold.

(i) If D is bounded, we have the equivalences

T — X\ is bijective <= T3 is bijective,

T — X is not injective <= T is not injective.
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(ii) If A is bounded, we have the equivalences

T — X\ is bijective <= T is bijective,

T — X is not injective <= Ts is not injective.
Proof. This is a direct consequence of the factorisations (3.31) and (3.33). O

Corollary 3.18. Let T be a block operator matrix as in lemma 3.16. In addition assume that D
is bounded. Then for every eigenvalue A € C of T the following inequality holds:

1
A2 (ot IC+ID1) + (Mo +Ale = ID12 + (IBHICH) ™). (3.35)

If both D and A are bounded, then we obtain

A= =314+ 1D0) + (F(141 = 112 + (1B e ™) (3.36)

Proof. Let A be an eigenvalue of 7. Then, by the previous corollary, 0 is an eigenvalue of the
operator Ty(A\) = B — (A — \)C~1(D — \). For an eigenfunction f of Tj(\) with eigenvalue 0 we
have the identity f = B~1(4 — \)C~1(D — \)f and hence it follows

1A < 1IBTHHIA =NC=HD =]

< BT (ST +allCH +9) 1D = Mf]

IBTHHICTH (AL + e+ A IC™HTH) (DI + M) 1171

IBTHHCTHH (AR + A (@ +y ICTHITH + 1D + allD] -+ AIIDIHICHI) [1£1]

INIA

= IBYICH (A + L (a+ Ay Ic 1+ 1D1)* = La+~y 17~ = 1D1D) IF]-
Dividing by || f]| yields
(M +L(a+~vC Y+ D) = La+ylc I = 1p)) + (B Y Ic— )~

which implies inequality (3.35). If A is bounded, we can choose a = ||A|| and v = 0 which gives
inequality (3.36). O

In the special case H1 = Hy = C and A, B,C, D € C the eigenvalues of the matrix 7 are given
by A+ = 3(A+ D) + /(A — D)2+ BC. This formula shows that corollary 3.18 gives an optimal
result in the case A =D = 0.

Before we apply this result to the angular operator, we want to point out the connection of the
off-diagonalisation given in lemma 3.16 with the Schur factorisation. Let 7 be a block operator
matrix as in lemma 3.16 and assume H; = Hs. Instead of 7 we consider the block operator matrix

o) = <? é) T2 = (A(ix DB?)\>

with domain D(T) = (9!) D(T) = D(B) ® D(C). For all puc € p(C) and pp € p(B) we have the
Schur factorisations

TO) ~ e = <(A - )\)(é —pc) ?> (C _OMC 53&0)) <é o HC);(D : )\))

e A | (o S S | (PRSP §
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where the Schur complements for the block operator matrix ’Z~'()\) are given by
Sp(pc) = B—pc—(A=MN(C = pc) (D= N), ne € p(0),
Sc(pp) = C—pp— (D= A)(B —pup) " (A-N), s € p(B),

see formulae 3.29 and 3.30.
Since 0 € p(C)Np(B), the Schur complements Sp(uc) and Sc(up) are well defined for po = pp =0
and the factorisation yields

7= (e D6 smo) 6 G 3.7

_ (é (D—?)B—1> <SCO(0) g) (B—l(i—)\) ?) 39

Sp(0) = B—(A-NC (D -X) = Ti(V),
Sc(0) = C—(D—=XNB YA -\ = Tr(\).

with

From the above factorisation of 7 we recover the off-diagonal factorisation of 7 given in lemma 3.16
if we multiply equations (3.37) and (3.38) from the left by (9! ) and insert the factor I = (3£) (9 1)
after the first factor on the right hand sides.

3.3.2 Application to the angular operator

In this section we apply the off-diagonalisation presented in the previous section to the angular
operator A = (%9 g), see (3.1). To this end, we have to investigate the operators B and B* in
greater detail. First we verify that the off-diagonal entries B and B* of A are boundedly invertible;
in fact, we show that o(B) = o(B*) = (). Then, in lemma 3.30, we derive upper bounds for
| B~ and ||[B*~!||. In section 3.3.3 these estimates are further improved by an iteration method
(see lemma 3.34). Together with corollary 3.18, we obtain lower bounds for the modulus of the

eigenvalue of A with smallest modulus.

For p € C we introduce the formal differential expression defined by

— 0 By —p
]

With 95, we associate the differential operator
D(B,) =D(A), B,Y :=%B,V.

Furthermore, with the notation in remark 2.11, we have

0 B
B:Boz<B* 0).

For every u € C, the operator B, is selfadjoint since A is selfadjoint and B, — A is symmetric and
bounded. It can be shown that oces(B,) is empty; the proof is analogous to that of theorem 2.14,
where we have shown os5(.A) = .

A main tool for computing the inverse operators is to consider the selfadjoint operator B instead
of B and B* separately because to B we can apply well known results for Dirac operators, see for
example | ].

First of all, we show that the point spectrum of B and B* is empty. Eventually, it turns out that
the spectrum of B and B* is empty.
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Lemma 3.19. 0,(B) = 0,(B*) = 0.

Proof. Fix an arbitrary p € C. The number p lies in 0,(B) U 0p(B*) if and only if at least one of
the differential equations

d  k+3 ,

<@+ sin ¢ +aws1n19—,u>cp(19) =0
d k+1 ,

<—@+ gy —i—awsmﬁ—u)w(ﬁ) = 0

has a square integrable solution. The solutions of these differential equations are

aw cos 19 7(k+l)

pud) = et (tan )T
- —aw Cos 19 k+l -

P 0) = ce w 19('53“15) ‘= (e1(9)) g

)

The functions ¢, and 9}, are unique up to a constant factor ¢ € C; without loss of generality we
set ¢ = 1. The following computation (cf. also lemma 2.8) shows that ¢, and 1y, are not square
integrable on the interval (0, 7):

/(P[u](ﬂ)zdﬁ _ /GQRe(u)ﬁ+2awcosﬁ(tang)(2k+1) dv
0 0

™

> M</2(tan’29)_(2k+1)d19+/ (tan 2)~FY dz9>,
0

Jus

2

where M := inf{e?Re(w)¥+2awcosd . g ¢ (0, 71)} > 0. For k > 0 it follows that

o\
[VE]

3
/(tan g)_(%ﬂ) dy >
0

(tan 2)71 dd = 21In(sin g)‘g = 00. (3.39)
<1
For k < —1 we estimate
/(tan g)_(gkﬂ) dy > /tan 2 d¥ = —2In(cos g)‘% = 0. (3.40)
3 =l 3

In both cases we find ¢y, ¢ 22((0,7),d9) 2 D(B). Analogously we can show ¢y, ¢ D(B*). O

Corollary 3.20. For all p € C we have 0 ¢ o,(B,).

Proof. Assume 0 € 0,(B),) and let ¥ be an eigenfunction of B, with eigenvalue 0. From

B (0o IN{0o I\, (B—u 0 0 I
-av=5. (7 o) (7 o)v- (%" wla) (0 0)v

it follows that either (B — ) or (B* — T) is not injective, in contradiction to o,(B) U op(B*) =0
as shown in lemma 3.19. O
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This corollary together with the fact that oess(B,) = 0 shows that B, is boundedly invertible.
According to the previous corollary, we have 0 € R\ (0,(B) U 0ess(B)) = p(By). Thus B — p
and B* — i are boundedly invertible and their resolvents and the resolvent of B,, are connected as

follows:
((B—OM)_l (B*_OM)_1> _ <Bau B*O_/)_l _ (? é) B! (3.41)

In particular, we have rg(B — i) = rg(B* — 1) = .£%((0,7),dd). Thus we have shown
o(B) =o(B*) = 0. (3.42)
Lemma 3.21. Fiz u € C and define, as in the proof of lemma 3.19, the functions
aw cos - k+l — aw Cos k+ 3
Pl (V) = e+ v (tan g) (bt2) y o Y (0) i=e (ni+ 2 (tan g) 2 v € (0,m).

Then the inverse operators of B — u and B* — i map functions g, h € £*((0,7),dd) to

(9
1 J U (t)g(t) dt if k>0,
(B—p)tg(¥) = @) 0 9 € (0, ), (3.43a)
v [ (Dg(t) dt if k < —1,
) J e h(t) dt if k>0,
(B* — )" h(v) = N 9 e (0, 7).  (3.43Db)
P fon @ ik < -1,
\ 9

Proof. We know from the proof of lemma 3.19 that ¢y, is a solution of (B — p)u = 0 and that
Yy, is a solution of (B* — p)u = 0. To show that formulae (3.43a) and (3.43b) indeed represent
explicit expressions of the resolvents of B — y and B* — p we first show that

(B = p)G(0) = g(0), (B* — w)H(9) = h(), Ve (0, m),

holds formally; here G and H denote the right hand sides of (3.43a) and (3.43Db), respectively.
Assume, for example, k > 0. Then for g € rg(B — p) we obtain

d k‘+
(B-maw) = (441t - ) oo /ww <>w]
0
d k+3 /
= [((w—i-smﬁz—l—awsmﬂ MSD[M] ]/¢
0

= () Yy () g(¥) = g(¥)

where we have used that ¢y, (9) = (¢, (9)) ! and (B — p)epy = 0. The case k < —1 and the
equation for h can be shown analogously It remains to prove G € D(B) and H € D(B*). Again,
we give an explicit proof only for G € D(B) in the case k > 0. The assertion for £ < —1 and the
inclusion H € D(B*) follow by analogous calculations.
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Recall that the domain of B is given by
D(B) = {g € £*((0,7),dV) : g is absolutely continuous, Bg € .£*((0,7),d9)},

so it remains to be shown that G is square integrable on (0,7). The proof for that is similar to
that of the subsequent lemma 3.30; here we use a simplified calculation (the estimation for the
integrand is less accurate). By assumption we have k > 0, so that

/ GOy = / 90 |2/ Y0 </ V7is 'dt> 34

Since by assumption g € £?((0,7),dd), we also have g|(0719) € £2((0,9), dt) for all ¥ € (0,n).
Furthermore, we have the estimate

2
_ e—2 Re(p)(t—9)—2aw(cos t—cos ¥) ( ta‘n
tan g
——
<1

2k+1
) 2 Re(w)lotdlaw] =g ¢ <9 < 7,

Vi (9)

thus w[“ w €< 2((0,99), dt) for each fixed ¥ € (0, 7). Therefore we can apply the Cauchy-Schwarz

inequahty to estimate the inner integral in (3.44) and obtain
Yy (t) ? Yy (t) /
eilienn)” < ([ o) (fwor
g(t)|"dt
</ ‘%} v) P (0 )

< 1962|Re(,u)|7r+4|aw| ||QH§
Inserting into (3.44) shows that

7r 2
ﬂ- e s aw
16 Par < el jg) < o, =

Since we are only interested in the inverses of B and B*, that is, in the case u = 0, we omit the
subscript g in the following.

Now that we have obtained an explicit form of B~!, we can show that B, and consequently A, has
compact resolvent.

Lemma 3.22. The operator B has compact resolvent.

Proof. To show that the operator B~ = ( 391 B*Ofl) is compact, it suffices to show that the

operators B~ and B*~! are compact. We prove only that B~! is compact in the case k > 0; the
case k < —1 and the assertion concerning B*~! follows analogously.
Recall that for k > 0 and g € Z?((0, ), d?)

9
Blg(9) = w(lﬁ) / b(Bg(t) dt, D€ (0,7),
0

1
with 1(9) = e=% 57 (tan g)k+2 defined in lemma 3.19. For each n € N we define the operators

07 19% [%7 7'('—%],
Tn: 22((0,7),d9) — Z£%((0,7),d9), T,f(¥) = 1 fw(t)f(t) dt, velt n—1
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and

&

N 9
To: L[5 —1),d9) — 23,7 - L,d0), T.f(9) = Lf@b(t)f(t)dt-

These operators are bounded for all n € N. Moreover, the operators fn are even compact since
the integral kernel is continuous and bounded, see, e.g., | , chap. III, example 4. 1] For
every f € £?((0,7),dd) the corresponding function f= f\[1 1] lies in 92”2([”, T — 1],dv).

It is clear that for any convergent sequence (gn)nen € Z%([1, m — 1],d¥) also the sequence
(§)nen C ZL2((0,7),dd) converges where the g, are defined by

< L Oa Y ¢[%5 ™= %L
9a(9) = {gm dell, w1

™

for all n € N. Now let (fmn)men be a bounded sequence in .£2((0,7),dd). Then (fm)meN is a
bounded sequence in .£2([2, ©— 1], dv). Hence for every n € N the sequence (Thofim)men contains
a convergent subsequence. Consequently, also (T fm)men contains a convergent subsequence since
(T\n fm) = (Tnfm)- This shows that the operators T,,, n € N, are also compact. If we have shown

that lim 7j, = B~! in the operator norm, that is, that ||7,, — B~!|| — oo, n — oo, then the lemma
n—oo

is proved. To see that, we note that for all f € .Z?((0,),dd)

(T = BHfIE = [ (T =B Hf@)Pd = [ [Bf@)Pd + [ [B7f(9)d0
[ [ |

2eﬁaw
<

I1£113

holds where we have used that for all (a,b) C (0, )

a/bBlf(ﬁ)zdﬁ = /(0/01/’((;)) |£(t) dt) dy < e4law|/</yf (t)|? dt><0/1dt> do

a

{

_e2|au\

b
e4'“w/7fllf||% A = '™z (b—a)lf]5

Thus
lim |7, — B7!|| < lim — =0. O
n—oo

Theorem 3.23. The angular operator A has compact resolvent.

Proof. We know that both A and B are selfadjoint, hence their spectra are real. For any u € p(A)
and v € p(B) the second resolvent equation yields

A=) =B-v)" = A=) (B-A+p-v)B-v)"

Since (B — v)~! is compact and (A — u)~! and (B — A+ p — v) are bounded, the operator on the
right hand side is compact. Thus also (A — x)~! has to be compact. O
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We want to add two remarks concerning this theorem. First, the theorem follows also from the fact
that (A(a)), is a holomorphic family of type (A), and A(0) = B is compact, see | ]. Secondly,
we observe that from theorem 3.23 it follows immediately that the spectrum of A consists of
isolated eigenvalues with no accumulation points in (—o0, 00), see | , chap. III, theorem 6.29].
Recall that this has already been proved in section 2.2 with methods of oscillation theory for Dirac
operators.

In the remainder of this section we derive estimates for || B~!|| and ||B*~!|| and apply corollary 3.18
to find a lower bound for the absolute value of eigenvalues of the angular operator A. The next
lemmata provide some rather technical estimates used for this task.

Lemma 3.24. For 0 < x <y < m we have the following inequalities:

tan 2

—2 < < (3.452)
an § y

tan 2 —

o =y (3.45b)
an § T—

tan £ x Y

2 o 2% (3.45¢)
tan 5 ey e T

2

z Y
Proof. (i) Since inequality (3.45a) is equivalent to the inequality m% < taz 2 we consider the
function f : (0,7) — R, f(z) = ta% Obviously, f is continuously differentiable and inequal-

ity (3.45a) is equivalent to f(z) < f(y) for 0 < = < y < w. Thus it suffices to show that f is a
monotonously increasing function of x. An easy calculation shows that

d tan % 1 sin £ x
/ 2 2
T) = — = — cos— | >0
f(z) de =« 2.%'COS2§( 5 2) ’
——
> <t
hence the assertion is proved.
(ii) With the trigonometric identity tan(3 — a) = —— we find
tan 5 _ tan(§ — 75%) _ tan "5 _Ty
tan ¥ tan(§ — 5Y) tan 5% T—x

where we have used 0 < 5 < 5% < 7 and inequality (3.45a).

z
tan 5

(iii) To prove (3.45c) fix again y € (0,7) and define the function g : (0,7) — R,z —
This function is continuously differentiable, so as before it suffices to show that g is monotonously
increasing because obviously inequality (3.45c) is equivalent to g(z) < g(y). Thus the assertion
follows from

d tan 1 x x\2
1o 2 _ :
g(w) = dr e*  2e®cos?% <sm§ — s 5) > 0. =

Lemma 3.25. There exists a unique number py € (0,7) such that
posinpg+cospg—1 = 0. (3.46)
Further, with v := —sin py, c— := 1 and c4 := —1 4 wsin pg, the functions

g—:[0,7] — R, g—(¥) == v¥+c_,
g+ :[0,7] — R, g1(¥) = vi+cy
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satisfy the inequalities
g-(9) < cos?d < g4 (), ¥ € [0, 7).
Corollary 3.26. For aw € R the inequalities
aw(vd +v-) < awcos? < aw(vd+v4), v € (0,m),

and hence

aw(ity-) < qaweosd o gaw(vitry) (3.47)

hold with ~y = {Zi Z Zz i 8
Note that the definition of 4 and v_ implies aw(v4 —v-) = |aw(cy — c—)] for all a,w € R.
Proof of lemma 3.25. First, we define the auxiliary functions

f:[0, 7] — R, f(¥) = ¥sind + cos — 1

go: [0, 7] — R, go(¥) = cos?.

The existence of pg as in the assertion follows because the function f is continuously differentiable
and therefore must have at least one zero pg because of

fr) =—=2 < 0 < g—l = £(Z).

On the other hand, it is easy to see that p = 7 is the only extremal point of f in (0,7) and that f
is zero for p = 0, thus pg is uniquely determined and pg € (5, 7).
The derivatives of gy — g— and gg — g+ are equal and given by

(90 — g-)'(9) = (90 — 9+)'(¥) = —sind +sinpy, ¥ €0, 7].

This shows that (go — g—) and (go — g4+) are increasing in [0,7 — pg) U (po, 7] and decreasing in
(m — po, po). Since (go — g-)(0) = (9o — g4)(7) = 0, it follows that

(90 — g-)(¥) > (90 — g-)(po) =0, € (m — po, ),
(90 — 9-)(¥) > (90 — 9-)(0) = 0, € (0, ™ — po)
(90 — 9+)(¥) < (90 — g+ )(m — po) =0, € (0, po),
(90 — 9+)(¥) < (g0 — g+)(m) =0, € (po, ).

d

The value v gives the slope of the linear function by which the cosine is estimated. In the case of
the lemma, the numerical values of the constants pg, v and v, — ~_ are given by

po ~ 2.331122370, v~ —0.7246113541, Y+ — - == sign(aw) - 0.276433707.

Instead of the number v of lemma 3.25 we can choose any real value for v; but then also the
numbers ci have to be adapted, see figure 3.1. For example, if we choose v = —1, we have c_ =1
and ¢y = 7 — 1. Hence the exponential function C'(w) (see lemma 3.27), which is important for the
estimation of the eigenvalues of A, has larger values, and in general the estimates will be weaker.

Now let a > 0. With the help of the previous lemmata we can estimate the following double
integrals.
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2 cos(¥ C+ cos(¥
g- g g- g

C+ g g

1 - 1 *

0 0
-1 -1
—9 -2

o I F ¥ o= o I F ¥ =

Figure 3.1. The left graph shows the estimates for the cosine with v from lemma 3.25, the right graph
shows the estimates with v = —1.

Lemma 3.27. For all o« > 0 we have

T 9

a % g\ @
//<tan > eQaw(cosﬁ—cost) dtdy — //(tanz> eQaw(cost—cosﬂ) dt do (3.48)
tan 2 tan 5
0 0 v
< Cw)?*o(3(a—1),w)? (3.49)
where
eﬂ(awufg) . o

7(2%”,_2) if §—awr <0,

Clw) = e+ §(l(a—1)w) = {/Tlawr — 2T if ¢ —awv >0,

\% if §—awv =0.

Since in the following the function § is always applied to a = 2k + 1 as first argument, we have
defined it in the seemingly awkward way above. In lemma 3.30 we also admit arbitrary negative
values as first argument of 9.

Proof. First we show inequality (3.49). If we use (3.47) to estimate the exponential function
containing the cosine and equation (3.45c¢) to estimate the quotient of the tangent functions we
obtain

T 9 T 9
//(tan > 2aw(cosﬁfcost) dtdy < //ea(tﬁ)GQawu(ﬁt)JrQaw(’}q.’y—) dt d¥
tan ¥
0 0 O
T Y
oZlaw(er—c_)| / / oV (2w —a) gt(~2awv+a) g4 qy.
0 0

For 2awr — a = 0 the assertion is now obvious. For awr —a # 0 integration with respect to ¢ yields

T U =

2law(cy—c—
//(tan > 2aw(cosﬂ—cost) dt 49 < M /679(2“‘*”’_0‘) — 1 dd. (350)
0 0 0

tan 2 2awr — «
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For 2awrv — o > 0 we use

7 - 7(2awr—a)
0 < /eﬁ(2awua) —1dy < /eﬁ(Qawua) dy < 67 (351)
2awv — «
0 0
to obtain the assertion. If 2awr — o < 0, then
0> / Vavv=a) _q 49 > / —1dY = -7 (3.52)
0 0

yields the assertion.
Now we have to show the equality in (3.48). To this end, we apply the substitutions s := 7 — ¢
an )" we

and o := 7 — 1. Using the trigonometric identities cos(m —t) = —cost and tan 5+ =
obtain
// tan Qaw(cost cos ) dtdy = // tan Qaw(coso'fcoss) ds do. ]
tan tan
For 0 < |2awr —a| < 1 we can improve estimates (3.51) and (3.52). Assume that 0 < 2awr —a <1
holds. Then

™ 1
/ VRawr—a) 149 = — — <e(2‘“‘”’*o‘)7r —1—7(2awr — a)>
0 2awr — «
< (2aw1/ . O[)ﬂ_Ze(Qawz/—a)w (351/)

instead of equation (3.51) might provide a better result. For —1 < 2awr — a < 0 the estimate

s ™

/eﬁ(Qawu—a) —1dy > eﬂ(?awu—a) / 1 e—7r(2awu—a)d19 _ —7T(1 o ew(?awu—a)) (352/)
0 0

yields a better result than the estimate (3.52).

Remark 3.28. There are other estimates for these integrals which are in general weaker, but
have a simpler form than the estimate given in the previous lemma. Under the assumptions of
lemma 3.27 the following inequalities hold:

2 2
// tan & 2 e2aw(cos V—cost) 44449 m (3.53)
tan © et 1)

T U «a
2
// (tan2> eQaw(cosﬁ—cost) dtdy < Wr(w) , (3'54)
tan @

0 0

AN

AN

where T'(w) := sup{e®(©sV=cost) . (<t <9 < 7}.

Proof. To prove the inequalities we estimate the exponential functions by I'(w) and then use the
estimates (3.45a) and (3.45¢) to estimate the remaining integrand. O
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With the help of these rather technical lemmata we are now able to derive upper bounds for the
norms of B~ and B*~!. Since the estimates depend on the wave number k, we add a subscript k
to the operators B and B* to emphasise their dependence on k. Likewise, we attach a subscript k
to the eigenfunctions ¢ and ¢ of B and B* to indicate to which wave number k they belong (as
mentioned after the proof of lemma 3.21, we omit the subscript [u]).

Remark 3.29. Let Ek_l be the operator obtained from Bk_1 if we substitute aw by —aw; the same
notation applies to the adjoint operator and the eigenfunctions ¢; and . Further, define the
self-inverse, unitary map

R: Z%((0,7),dd¥) — Z22((0,7),dd), h +— Rh:=h(m—").
Then we for all £ € R\ (0,7) we have

Ye(F) = Ypa(mr =0) = p-1(9), (3.55)

pr(V) = Ppr(m —0) = Ppa(V), (3.56)

and for the operators By and B}, the following symmetry properties hold:

By = =B (111, (3.57)
By, = —RB_4)R. (3.58)
In particular, we have || B, | = | B!y | = B}, I

Proof. The assertions concerning R and the elzigenfunctions o and Yy are clealr if we recall that
they are given by ¢ (19) = €% ¥ (tan g)—(k+§) and 1y (9) = e~ Y (tan g)k"'i, see lemma 3.19.
Equality (3.57) follows from

d  k+3 . d  —(k+1)+1 , ~,
B, = @—i— Snd +awsind = —(—@—%T—i—(—aw)smﬁ) = =B
Observing R%R = —%, we find
5 d  —(k+1)+3 . d  k+1 ,
—RB_g )R = —R(@+T+(76Lw)smﬁ)}2 = @qL g +awsind = By.
O
Lemma 3.30. The following inequalities hold:
1B = 1B < Clw)élk,w), (3.59)
_ _ m  TI'(kw)
1B = 1By € 5 ——2——e, (3.60)
2
VIk+3l+3
Bl = |IBY < (ko) |— 3.61
1By [l = 1Byl < I )2|k+%| (3.61)

where C(w) = el®(c+=c-)l is defined in lemma 3.27,

—_

Ik, w) ol if sign(k + 1) aw <0,
,w) =
1 if sign(k + 3)aw >0,



56 3.3. An off-diagonalisation of certain block operator matrices

is a generalisation of I'(w) (see remark 3.28) and 6 is the following extension of the function § in
lemma 3.27

1
eﬂ'\awuf(k+§)\

if sign(k+ 1) (k+ 3 —awr) <0,

|aw1/7(k+%)|
Okyw) = ¢\ /Blawy — (b + D70 i sin(k+ 5)(k+ & — awv) >0,
% if k + = —awv = 0.

A better estimate for || B, ||, involving |k + 3 — awv| instead of its square root, is obtained in
lemma 3.34.

Proof of lemma 3.30. It is well known that | B, | = ||B; '||. Let k& > 0. For every function
g € Z2%((0,m),d¥) and every ¢ € (0,m), its restriction g|(g gy lies in £?((0,9),d?). Since also

n 5 k+7
ta—ﬁ> is square integrable on (0,1), we obtain by the Cauchy-

the function t — eaw(cos¥—cost) (
tan 5

Schwarz inequality, applied to the inner integral,

185 g3 = /]M Jolt) a

T U

k+3

t 2 2

= /‘/e aw(cos¥—cost) <Ean129> g(t)dt
9 an§

2
dv

dv

tan 2k+1 9
S Zaw(cosﬁ cost) 129 dt /|g(t)|2 de |dv
tan§ 9
T 9 ¢ ¢\ 2k+1
al 5
< lgl3 //eaw(*m9 cost) (g) dt dv. (3.62)
J tan 3

Now inequalities (3.49) with o = 2k+1, (3.53) and (3.54) together with the fact that equation (3.62)
holds for all g € .£%((0,7),dd) show the assertion.
Now, let £ < —1. The assertions can either be shown by an analogous computation or by a

symmetry argument. To this end, we recall that ||B, | = | B* 7} (k1) H by remark 3.29, where By, is

obtained from By by substituting aw with —aw. Note that —(k — 1) is nonnegative for k£ < —1.
From

sign(k + &) (awv — (k + %)) = —sign(k + %)((—aw)y —(—k — %))
= sign(—(k+ 1) + ) ((—aw)v — (= (k + 1) + 1)),
| —awv — (=(k+ 1)+ 3)| = |awr — (k + 3)]
for k € R\ (—1,0) it follows that 6(k,w) = d(—(k + 1), —w). Thus, by
1B = Bl < C(=w)6(=(k+1),—w) = C(w)d(k,w),

assertion (3.59) is proved also in the case k < —1. Assertions (3.60) and (3.61) follow if we observe
that D(k,w) = D(—(k + 1), —w). O

After this preparatory work we are now able to establish lower bounds for the modulus of the
eigenvalues of the angular operator A. These estimates are rather rough; we improve them in the
next section.
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Lemma 3.31. Let A be an eigenvalue of the angular operator A. Then we have the following
estimates:

IA| > —|am| + (3.63)

o
Cw)o(k,w)’

2/ Ik +3l+ 5 (3.6

> =z
N 2 ]+ 2Vt

1 2|k + 3|
I'(k,w) T

IA| > —|am| + (3.65)

with C(w), 6(k,w) and I'(k,w) as defined in lemma 3.30.

Proof. Let X be an eigenvalue of A. Since we have A = —D and ||B~!|| = ||B*7!||, corollary 3.18
yields

Al = =D+ 1B (3.66)

If we observe that ||D|| = |am| and insert the estimates (3.59) through (3.61) into the formula
above, we obtain all assertions. ]

Remark 3.32. If we apply analytic perturbation theory to the angular operator and use m as the
perturbation parameter (cf. section 3.2), then we obtain

fin = lam| < Xy < + |am,

where pi,, is the nth eigenvalue of B = (E?* g), enumerated such that p, = A, for a = 0. Since B

and B* are boundedly invertible and the spectrum of BB* consists of eigenvalues only, it follows
that pu; = ||[B~1||~!. Hence, if (3.66) yields a positive lower bound then |[|[B~!||7! > |am| and X\
is the first positive eigenvalue of A, hence the estimate (3.63) can also be obtained from standard
perturbation theory. O

We want to add some comments on the estimates in lemma 3.31. It is not hard to see that for
large |k| the bound (3.65) is larger, i.e., sharper, than bound (3.64). However, in section 5.1.1, the
method by which the latter estimate was obtained (namely estimation of the tangent functions with
a rational function) turns out to be useful when the behaviour of elements f € D(B*) and g € D(B)
in a neighbourhood of 0 and 7 is investigated. It is rather hard to compare in general these two
estimates with the first one, (3.63), since the exponential functions involved in the expressions
differ. However, in the case sign(k + 3)(awv — (k+ 3)) < 0 the first expression should yield better
estimates than the other two if a is considered the perturbation parameter while all other quantities
are fixed. In the following, we always work with estimate (3.63).

3.3.3 Estimates of |B7!| by an iteration method

The first rough estimates for the eigenvalues \ obtained in lemma 3.31 are only of order vk whereas
a bound of order k could be expected from the case a = 0. Indeed, an estimate of order k can
be achieved if we improve the estimate for the norm of B~!. For this purpose, we estimate the
norms ||(B~1B*71)"||, n € N, from which we then derive estimates for || B~!||. By corollary 3.18, all
eigenvalues A of A satisfy |A\| > —|am|+ ||[B~'||~!. Thus a bound for || resulting from an estimate
|B~Y|| < bis the larger, and therefore the better, the smaller the bound b is. In lemma 3.34 such
bounds b are established by using the explicit formulae for B~! and B*~! given in lemma 3.21.
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We obtain various results, according to which of the estimates provided in lemma 3.24 we use to
Y

estimate the quotients of type ZEE appearing in the formulae for B~' and B*~! and how the
2

exponential functions are treated. A priori it is not clear which kind of estimate of ||[B~!| yields
the largest lower bound for the modulus of the eigenvalues of the angular operator A. Sample
plots of the bounds for ||[B~1||~! are given in figures 3.2 and 3.3 at the end of this section. Again,
we attach a subscript k to the operators B and B* to indicate to which wave number k they belong.

The next technical lemma is used in the proof of lemma 3.34.

Lemma 3.33. Let k > 0. For everyn € N, n € R and sg € (0,7) the following estimates hold.

m Uy T n— n 1
(i) /7/ / H(Wt;il)“; 1(2)“5 (Z(Z)%H dsn>2 Aty dsy_1 ... ds; dy

so 0 s1 Sp_1 J=

7r(21k-|-2) (kigfn_l(w—so)

T ot o T n n—1 tn %
w []].- /(H)<H> ( [ dsn) Ahedss s . sy d,
j=1 i=1

so 0 s1 Sn—1 M7 J= 0

pm @2 "ze 0 i >0,

e—2nn7r .
DEENE if <0,
57 ()" if n=0.

Proof. Both Assertions are proved by induction with respect to n.

(i) For n =1 we have

7r—t1

51\ 2k+1 1 2 1 +1 1
— S 1 = t t
<t1 ) ! ! \/zk T2 / ™ — 50 e

=

S0

O\:,_

N / T —t1\k+3 1 m
< dt1 = T —S0).
- V2k+2 (W—So> LT mk 1 2) k+%( 0)
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Now assume that the assertion holds for an n € N. Then we have

T 11 n+1 1 n tnt1 %
—t: \k+3 2k+1
// //H U ) 2 H( ) (/ (S”“) dsn+1> dtyi1 sy . .. dsy diy
T—5j_1 - tnt1
j=1 0
T 1t
1 2n—1 ¢ ktl
() T o e
T(2k+2) \k+ 3 77—50 t1 \<,_«
<m
1 T n T —t1\Fkt3
. (E=2) F tan
T2k +2) \k+ 5 T — S0 ~~
S0 <7
1 o\ 2t
()
7T(2k‘ + 2) k + 5
which proves the claim for n + 1.
(ii) We start with the case n > 0. In the proof we repeatedly use the relations
‘ Lo ot Lot
0 < /e"sds:(en—l) < =€ t e (0,m),
0 n n
" —nt L _ S —nm L s
0 < e Mdt=— (e —e ) < —e s € (0,m).
s n n
For n =1 it is easy to see that
s t1 l
1
—2nt1 / 2ns1 dt; < / —nt1 g =750
e e S1 1 = € )
/ <0 ) 77\/277
50

hence the assertion holds. Assume the assertion to be valid for some n € N. Then

Tt T tp n+1 n tn+1 %
[ ]] /(H) (H) ( [ e d) Qs dsy .. dsy diy
s0 0 Sn—1 0 sp =1 j=1 0

T t

< //6277“6277817)(2”1)(277)% e "1 dsy dty

so O

K
1 / 1
—2n —nt1 —(2n+1) —= . —Nso
e ™dt; < n (2n) " ze
V2n
S0

shows the assertion also for n + 1. Now we show the assertion for n < 0. If we use

t
1 1
0 < /eQnsds = (1) = —(1—-eM) < —, te (0,m)
21 27| 20
0
—2nt 1 —2ns —2nm 1 —2nm —2ns 1 —2nm
0 < [eds = —(e7P —e 1) = —(e 1" —e ) < —e s € (0,m),
2n 27| 27|
S
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we find forn =1

" n —2777r
—2nt1 / 27751d d / 277t1
e e $1 dt; <
/ \/I ul !277|\/|277
S0 0
Assuming that the assertion holds for some n € N we find for n + 1
n+1 t77+1 %
/ / / / /(Hem ) (H) ( / d) dtnsrrds... sy dt
—2n777r T
e 2t g2ns1 dsy dtq
v ||
—2nnm e—2(n+L)nm
e _
S o T 62% tlST'
(201 v/[2n] J |20/ [20]
It remains to show the assertion for the case n = 0. Using the estimates
T tn 1 T
: 3 2 (3 3 2 3
ds, | dt, = adty, = 5(m2 —s._;) < 572, Sn—1 € (0,7),
Sn—1 0 Sn—1
Tt ™
//ds’dt - /tdt — 1) < I s € (0,m),
s 0 s
we find
Tt w
/] / ( / dsn) s dsidiy

Tt 7w T th-1

/// / / syt dbn_1...ds1dt; < 272 (Ar?)" ! = ﬁ(%ﬁ)". O

), we have | B; "By~ = | By !B, Y| and the

w\w
M\u

Lemma 3.34. For everyn € N and k € R\ (—1,0
following estimates hold

G < T )zn_l, (3.67)

1By ' By )" < T(k,w)™ i
2,/2r(lk + 1+ 1) \[k+3l+1

k+ 4 (T(kw)\*"
|2 <k+§\> (368)

1B B "M <
2ol if sign(k+ 3 aw <0
with T(k,w) = ¢ Zf s?gn( + 3) =5 as defined in lemma 3.30.
1 if sign(k+ 3)aw >0
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In addition, we have the estimates

1B B

C(w 2n e7r|awu—(k+%)| 2n ' .
lawy — (k)-|— %)]271 < 9 > if sign(k + %)(k‘ + % —awv) <0, (3.69a)
C 2n
: ) 1\ 2n—2 \/? if sign(k+3)(k+3—awv) >0,  (3.69b)
lawy — (k+ 35)[*" "2

4 om 1 2\ . .
| 3¢W) (5 T ) if (k+3)—awv=0, (3.69¢)
with C(w) = el®(+=<)l g5 defined in lemma 3.30. Furthermore, we have the following upper

bounds for the norm of Bk_l:

- _ I'(k,w)
Bl = 1B < oot 3.70
1Bl = 1By H_“Wr%’le (3.70)
_ _ I'(k,w)
Bl = 1B = o= 371
B = 1B S .11
and
1B = 1B~
r Clw e7r|awV—(k+%)| ' .
lawy _((k)+ D] 5 if sign(k+ 3)(k+ 3 — awvr) <0, (3.72a)
2
C
= lawv _(EZ)+ D] if sign(k + 3)(k+ 5 —awv) >0, (3.72b)
2
™ ' . B
e Cw) if (k+3)—awv=0. (3.72¢)
Proof. The equality H(Bk_le_l)”H = H(Bz_lBk_l)”H can either be seen by exploiting the sym-

metry properties of B, Dstated in remark 3.29 (a straightforward calculation shows B,’;*lka -
RB;'B;7'R); or we use that

1B B = 1B B = (sup (B By e, @)
llzll=1
o . . (3.73)
= (sup |(By™'a, B o))" = By,
llzll=1

where the first two equalities hold because B 1BZ_1 is a bounded selfadjoint operator on the
Hilbert space H = £2((0,7),dv). Analogously, we obtain ||(B; *Bg)"|| = || B, *[|*", thus equality
(B By ™| = I(B; B, )| follows now from || B~Y|| = || B*1.

Furthermore, (3.73) shows that formulae (3.70), (3.71) and (3.72a)—(3.72 ¢) are direct consequences
of (3.67), (3.68) and (3.69a)—(3.69c), respectively, if in (3.73) we solve for |[B;'|| and then let

n — oQ.
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In the case k < —1, all assertions of the lemma can either be shown by calculations analogous to
those carried out below for the case &k > 0; or they can be derived from the results in the case
k > 0 by symmetry arguments similar to those in the proof of lemma 3.30. Thus it remains to
prove (3.67), (3.68) and (3.69a)—(3.69¢) for k > 0. So fix k > 0. Then for every f € £2((0,),d?)
and every so € (0,7) we obtain by lemma 3.21, with the functions ¢ := pjq and ¥ := 1 defined
in that lemma, that

T 1

// //(H al Sj )f(sn)dsndtn...dsldtl

T t1 us ) n—1 Q/J(tj) tn w(sn) S S S
N e o

T el
[ (gw;
so 0 Sn—1
FET (et V(T v [ Feea
< HfHQSZO/...S{l @;[1 <p(sj_1)> (E ¢(8]_1)><0 Wn)> dt, ... ds dt;  (3.74)

where in the last step we have used that for all ¢, € (0,7) the restricted function | f|(,)| lies

in #%((0,t,), ds,) and that (0,t,) — R, s, w(s;‘) is bounded, so that the Cauchy-Schwarz
inequality applied to the innermost integral yields

[ earan, = (fset an ) ([ (36) 00 )
< 1l Q/(Zgg)2d&l>%

Observe that in (3.74) we have 0 < s;1 <t; <7 and 0 < s; <t; <7 for each j € {1,...,n}.
Hence we can apply lemma 3.24 and corollary 3.26 to estimate the expression (3.74).
First, we prove (3.67) with the help of (3.45a) and (3.45b). For j € {1,...,n} we have

‘(B* lB

IN

A

i—1\ k+1
‘P(tj) _ <tan 5]21> 2e(lw(C0Stj—COSSj—1) < <7T_tj>k+é T'(k,w)
©(sj-1) tan %’ CNT =S5 s
k+3
@ZJ(SJ') (tan 2 ) 2€aw(costj—cossj) < (%)k+% F(k‘ w)'
¢(tj) tan % Y ’
With these estimates and lemma 3.33(i) it follows from (3.74) that
BB f(s)| < I'(k,w)®™ ( ) T —80)-
BB S0 < 11T 00" o (1) 0

Taking the .#?-norm on both sides gives

2

2n—1
B*—lB—l n < T k,w 2n T m 7
BB e < T (™ s (755)

thus (3.67) is proved.
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For the proof of (3.69a)—(3.69c) we use estimates (3.45¢) and (3.47) to obtain

k+3
Sp(tj) _ tan > 2 eaw(costj—cossj;ﬂ < esjfl(k—l—%—awu)etj(—(k+%)+awu)e|aw(c+—cf)|
¢(sj-1) tan% B ’
si\ k+1
wESj)) tan?] 2€aw(costj—0055j) < es]-(k—i-%—awu)etj(—(k+%)+aw1/)e|aw(c+—cf)\_
U(t; tan < N
2

Thus we have

’(B*_IB_1> (30” < Hf” e2n\aw(c+ c_)| so(k+2—awy >

T t1 tn
/ / /(He-u et} -aar ) (H ) ( [ ettt dsn) .. dsydiy
0

to which we can apply lemma 3. 33(11) with n = sign(k + %) (k+ 1 — awv). Hence, for s € (0,7) we
have in the case sign(k + 3)(k + 3 — awv) < 0

N|=

—Qn(k—&-%—awu)w

By B F(so)l < [lfllo @nleetes el erolbgmoan) 2 ri (3.694)
2|k + % —awv|)2
in the case sign(k + %)(k + % — awv) > 0 we have
(BB )" f(s0)] < 7||f|| Qe (k4 § — aww) 3 (3.691)
and for k + % — awv = 0 we have
By B (so)| < [ fllaeiesterel 2 (222)", (3.69¢)
ko Tk - 37 \2
Taking the .#?-norm on both sides of (3.69a)—(3.69¢’) shows (3.69a)—(3.69¢c).
Estimate (3.68) is obtained from (3.69b) if we set v = 0 and substitute C(w) by I'(k,w). O

Note that both the estimates (3.71) and (3.72a)—(3.72¢) are obtained by estimating the quotient
of tangent function by exponential functions. Although it seems that often the estimates (3.72a)—
(3.72c) provide stronger lower bounds than (3.71), the advantage of the latter is that it exhibits
no exponential decay with respect to aw for sign(k + 3)(awv — (k + 3)) < 0.

It is not easy to decide in general which of the estimates (3.70), (3.71) and (3.72a)—(3.72¢) yields
the best lower bound for the modulus of eigenvalues of the angular operator. It seems that for
sign(k + 3)aw > 0 estimates (3.70) and (3.71) provide better results since there is no exponential
decay with respect to a. On the other hand, figure 3.2 shows that, for small |a|, also in this case
the estimates (3.72a)—(3.72¢) provide larger lower bounds for ||[B~!||~! than the exponentially
nondecaying solutions. An other sample plot is given in figure 3.3.
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1.5
k=
w=0.75
1
0.5
(3.70)
(3.71)
(3.72)
a
-5 0 5 10 15

Figure 3.2. The plots show the estimates for ||[B~||~! given by (3.70), (3.71) and (3.72a)—(3.72¢) in
lemma 3.34 for w = 0.75 and the wave number k = 0.

10
k=38 .
w=0.75

6
4

9 (3.70)

(3.71)

(3.72)

a
—6 —4 -2 0 2 4 6

Figure 3.3. The plots show the estimates for ||[B~!||~! given by (3.70), (3.71) and (3.72a)—(3.72¢) in
lemma 3.34 for w = 0.75 and the wave number k = 8. Recall that we have |\| > —|am| + ||B~1||~! for the
eigenvalues \ of the angular operator such that a larger bound for ||B~!||~! provides a stronger result for \.
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3.3.4 Lower bounds for the modulus of the eigenvalues of A

With the help of lemma 3.34 we can improve the lower bound of lemma 3.31 for the absolute value
of the eigenvalues A of the angular operator A.

Theorem 3.35. For every eigenvalue \ of the angular operator A we have

Al > Ag = —|am|+ d(w), (3.75)
with
20 (w) 1 e~ mlawr—(k+3)] lawv — (k+ 1) if sign(k+3)(k+ 3 —awv) <0,
S(w) = C(w) ™t awy — (k + 3)| if sign(k+ 3)(k+ % — awv) > 0,

C(w)*lé if k+3—awv=0.

Proof. The bound (3.75) follows from |A| > —|am|+ || B~!||"! and ||[BY|| < 0(k,w)~! by (3.72a)—
(3.72¢). O

If we compare the result of this theorem with estimate (3.63) in lemma 3.31, we find that the
estimate did not improve in the case sign(k+ 1)(k+ 1 — awv) < 0, where the estimate was already
of order k. In the case sign(k + %)(k + % —awv) > 0, however, iteration has improved the estimate

insofar as now the bound is also of order k instead of only of order Vk.

Remark 3.36. Of course, also estimates (3.70) or (3.71) can be used in theorem 3.35. Then we
obtain the following lower bounds for the eigenvalues A:

(k+ 3|+ 1), (3.76)
A > AGP = — Jam| + i |6+ 3. (3.77)

,w

lin
A =AY = = faml +

The superscripts [lin] and [exp] refer to the fact that we have used a quotient of linear and expo-
nential functions, respectively, to estimate the quotient of tangent functions involved in the formula
for ||B71||. O

Remark 3.37. Even in the case a = 0, theorem 3.35 does not provide sharp estimates. In fact,
inequality (3.75) becomes

1
)\>‘k f‘,
e

whereas the exact formula in lemma 3.3 shows that the eigenvalues with smallest modulus are A1y
with

1 1
Ml = [k 5|+ 5
‘ il’ + 2 + 2 O
In lemma 3.16 we showed that A is an eigenvalue of A if and only if 0 is an eigenvalue of the

operator T;(A), j = 1,2, i.e., if there is a function f € D(B), such that f # 0 and T1(\)f = 0, or
equivalently

f = BY{(-=D-NB* YD - \f. (3.78)

In the previous section we have used this equation to obtain an estimate for a lower bound of the
absolute values of all eigenvalues of A by simply taking the norm on both sides and solving for ||,
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see corollary 3.18. The norms of B~! and B*~! have then been estimated by iterating B*~'B~!.
Instead of applying the iteration process to B*~!B~! only, we can also iterate equation (3.78), thus
we obtain

f =B D+NBID-M)"f, neN. (3.79)

In general we cannot improve the lower bounds for the modulus of the eigenvalues of A by iter-
ating the complete equation (3.78) for f instead of iterating the operators B*~'B~! only. Under
additional assumptions on the physical parameters a, m, w and k, however, the next lemma shows
that (3.78) implies that certain intervals are free of spectrum of A.

Lemma 3.38. Assume that the parameters k,a,m,w are such that |am| < ||B~||~!. Then we

have
(—=I1B7Y7t, ~lam|) no(A) = 0, if (k+1)am >0,
(lam|, | B~ na(A) = 0, if (k+3%)am<0.

Proof. We assume k > 0; the case k < —1 can be treated analogously. If A is an eigenvalue of the
angular operator A, then 0 is an eigenvalue of the operator T»(A) (cf. lemma 3.16). If |A\| > |am|,
then, for every eigenfunction h € .£2((0, ), dd) of To(\) with eigenvalue 0, it follows

\h(9)| = |B* YD — \)B~Y(—=D — M)h(¥)| (3.80)
= [ tM amcost — —am-cos s — S S
. Zo/w(ﬁ)w(t)< Y Nh(s) ds dt

IN
B—
o

SEAS

%=
==
=l

(7(—)\+amcost)(—/\ — amcos s)|h(s)| dsdt. (3.81)

The monotonicity of the cosine implies —1 < cost < coss < 1for 0 < s <t < m. Thus, if
either am > 0 and A < —am or am < 0 and A > am, it follows that

(=X +amcost)(—\ —amcoss) < (=A+amcoss)(—\—amcoss) = A\ —a*m?cos’s < N

Hence (3.81) can be further estimated by

Tt

2 o(t)y(s) O dsdt = \2B*1p-1
()] < A Z/wwwm h(s)] dsdt = A2B B |h|(9).

0
Now, if we take the .Z?-norm on both sides, we obtain
Ihlla < MIB* B~ [hlla = 1B~ [|Allo-
Solving for A shows the assertion. O

Estimates for ||[B~!||~! are given in lemma 3.34.



Chapter 4

A variational principle and estimates
for the higher eigenvalues of A

In the first section of this chapter an abstract variational principle for a class of selfadjoint block
operator matrices
T T
T — ( 1*1 12>
7, 1o

on the product Hilbert space H1 ¢ Ho is presented. An application of this variational principle to
the angular operator A leads to upper and lower bounds for its eigenvalues with modulus greater
than |am].

Note that the classical variational principle applies only to eigenvalues of semibounded operators
below or above its essential spectrum, see, e.g., [ ]. The angular operator A, however, is not
semibounded, but the variational principle proved by Eschwé and Langer in | | applies to
the Schur complements associated with A, see section 3.3.1 and the subsequent definition 4.15.
Here we follow the approach of Langer, Langer and Tretter in [ | where the authors have
studied block operator matrices with bounded off-diagonal entries but unbounded diagonal entries.
For the angular operator, however, we have to consider the so-called off-diagonal dominant case,
i.e., T12 is unbounded and dominates the diagonal entries in the sense that D(T12) C D(Ts2) and
D(T},) € D(T11). For bounded diagonal entries this situation has been investigated simultaneously

to this work in | . Under the assumptions that T127%; and 175,712 are strictly positive,

that the spectrum of 7y = (T%z T62 ) consist of discrete eigenvalues only and under some additional

assumptions on 771 and T59, the explicit formula for the eigenvalues of 7 provided by the variational
principle gives rise to upper and lower bounds for the eigenvalues of 7 in terms of the eigenvalues
of 7p.

In section 4.2 these results are applied to the angular operator A. Since in this special case the
operators on the diagonal are bounded, also standard perturbation theory is applicable and yields
upper and lower bounds for the eigenvalues of 4. These bounds are compared with the estimate
resulting from the variational principle.

If not explicitly stated otherwise, we always assume that all Hilbert spaces are infinite dimensional
and separable.

4.1 A variational principle for block operator matrices

In this section we prove a variational principle for the eigenvalues of a certain class of unbounded
block operator matrices 7 = (%i %Z) on a Hilbert space H = H; & H2. In section 3.3.1 we

67



68 4.1. A variational principle for block operator matrices

already gave the formal definition of the Schur complement of a block operator matrix. Recall that
for A € p(The) and X € p(T11), respectively, they are defined by

S ()\) = T — A — T12(T22 — )\)_ITQI and 52()\) = Thyg — A — Tgl(TH — )\)_lTlg. (4.1)

Since in the following we do not assume D(T71) C D(Ts1) or D(Tr2) C D(T12), the domains of the
Schur complements S;(A) and S2(A) have to be chosen with some care. In fact, in the case of the
angular operator A, the operators on the diagonal are bounded, whereas the off-diagonal elements
are unbounded and hence are not everywhere defined.

In the following, H; and Hs are Hilbert spaces; by H = H1 @ Ho we denote the product Hilbert
space equipped with the usual scalar product induced by H; and Hs.

Throughout this section we assume that the following conditions on the entries T;; of the block
operator matrix 7, acting in the Hilbert space H = H; @ Ho, hold:

(B1) Tz is a closed densely defined operator from Hy to H; with 17, = Thy;

(A1) D(Ty,) € D(T11) and Ti; is symmetric in H; and semibounded from below, i.e., there
is a constant ¢; € R such that

(z, Tuz) > allz|? z € D(T11);

(D1) D(T12) € D(T»2) and Ty is symmetric in Hg and semibounded from above, i.e., there
is a constant ¢y € R such that

(z, Tox) < eollzl’, =€ D(Th);
furthermore, Tho is closed and (cg,00) C p(Th2).

We always assume that the block operator matrix 7 is given by

(T1) T = (2; %2) D(T) = D(T%,) & D(Ths).

Remark 4.1. (i) The block operator matrix 7 depends only on the restriction T = Tll"D(Tl*Q)
of T1;. Hence, if T1; is not symmetric because its domain is too large, we can replace it
by T1;. It is easy to see that the restriction 737 is symmetric if 7 is symmetric because
(y, Thiz) = ((§), T (§)) for all z,y € D(Th1) = D(13;); thus the symmetry of 7 implies
D(T1) € D(T7,).

(ii) Since 771 is closable by assumption, the condition concerning its domain implies (see | ,
chap. IV, remark 1.5]) that T3; is Th;1-bounded, i.e., that there are positive numbers o and
91 such that

[Tz < allzl| + ag [|Tor2], x € D(Tv).

(iii) Condition (D1) implies that T»s is even selfadjoint because the defect index of the closed
operator Thy is constant on the connected set C\ W(T). Now, p(T) N C\ W(T) being
nonempty implies that The has zero defect, hence it is essentially selfadjoint. Since T5o is

already closed, its selfadjointness is proved.

Observe that the above conditions do not imply that 7 is closed.

In this section we study the Schur complement S; and the spectrum of 7 in some right half plane.
The following straightforward definition of the Schur complement can be regarded as a minimal
realisation of the Schur complement of the block operator matrix 7.
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Definition 4.2. Assume that conditions (B1), (A1), (D1) and (7'1) hold. Then for all A > ¢y the
operator

D(ST™(N) = {x € D(T},) : (Taz — \) Tz € D(T12)},

[min] - (4.2)

on the Hilbert space H; is well defined. We call the family (SI™™(A\))xsc, the minimal Schur
complement of T .

Proposition 4.3. Assume that conditions (B1), (A1), (D1) and (71) hold. Then for all A > co
the operator

D(S{™(\) = {o € D(Ty) : (Te2 — N 'Thhe € D(Th2)},
ngm](/\) = Ti1—XA— T12(T22 — A)ilTl*Q

is bounded from below. If in addition one of the conditions
(D2.a)  Tye is bounded;

(D2.b)  the domain of Tis is invariant under (Tos — \)71, i.e., (Tog — N) "1 (D(T12)) C D(T12)
for all X > co;

holds, then Simin]()\) is also symmetric, and therefore densely defined and closable.

Proof. Because of the inclusion D(T7;) € D(T11), the Schur complement is well defined. To show
that S{™"™()) is semibounded, we use that (A —Th2)~! is a positive operator for A > ca; indeed, for
all z € D(SI™(\)) we have

(z, S (N)z) = (x, (T11 — Nz) — (2, Tia(Thy — N) " TiH)
= (2, (T = Nz) + (Thz, (A —Ta) ' Tha) > (e — M|z

In particular, the scalar product on the left hand side is real, hence SI™™()\) is formally symmetric.
It remains to be shown that D(S[™"()\)) is dense in H;. First, suppose that (D2.a) holds. By
assumption, the operator (A — Th) ! is selfadjoint, bounded and positive for fixed A > co. Hence

there exists a positive square root (A — T22)7% which is also bounded and selfadjoint. Therefore
(A=Tha)"2T,)* = Tia(A—Tso) "2 holds. Condition (D2.a) implies that the operator (A\—Th2) 1T,
is closed, hence by the theorem of von Neumann (see, for instance, | , chap. V, theorem 3.24])
the operator ((A — ng)_%Tl*z)*(()\ - ng)_%Tl*z) = —T19(Tey — \) 1T}, with domain
1 1 1
{.’B S ,D((A — TQQ)_ET:[B) : (A — TQQ)_5T1*2$ € D(Tlg()\ — ng)_§)}
={r eD(Ty) : (Toe =\ 'Tirw € D(T12)} = D(SI"™™ (V)

is selfadjoint and its domain is a core of (The — /\)_%Tl*z; in particular, its domain is dense in H;.

Finally, we assume that (D2.b) holds. It follows that D(T12(To2 — A)~'T7,) 2 D(T12T7,). Again
by von Neumann’s theorem, the operator TioT5, is densely defined, hence D(S{™™ (X)) is dense in
H;. O

Remark 4.4. In fact, in condition (D2.b) in the previous lemma, it suffices to assume the inclusion
(Ta — N\)~(rg(Tyy) ND(T12)) € D(Tha), A > co only.
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In proposition 4.16, we use sesquilinear forms to realise the Schur complement of 7" as a family of
selfadjoint operators (S1(\))ase, such that SI™™(X) € S1(\), A > ca.

Corollary 4.9 shows that the spectral properties of the block operator matrix 7 and its Schur
complement S are connected.

The following proposition holds under more general conditions than we actually need.

Proposition 4.5. For Hilbert spaces Hi and Ha, we consider linear operators Ti;(H; — H;),
i,j = 1,2, with D(Tyy) C D(Tn1) and D(T12) C D(Tas). Let T = (%i ;;;) be the block operator
matriz with domain D(T) = D(Ta1) @ D(T12) in the Hilbert space Hi ® Ha. If Tho is bijective, then
the operator
S = Ty — T1aTyy Ton, D(S) :={x € D(Tyy) : Tyy' Torz € D(T12)}

is well defined and the following holds:

(i) T is injective — S is injective.

(i1) If additionally Ty is surjective, then rg(S) @ {0} =rg(7) N (H1 @ {0}) and

T is surjective — S is surjective.

Proof. (i) First assume that 7 is not injective. Then there are f € D(T51), g € D(T12) such that

T f +Tiag =0, To1f +T29=0  and <£) # 0.
From the second equality it follows T. 2_21T 91f = —g € D(T12). Consequently, f lies in D(S) and
f # 0. Inserting the expression for g into the first equality gives Sf = 0, hence S is not injective.
Now assume that S is not injective and fix an element f # 0 in its kernel. For g := —T2_21T21 fit
follows that

0 = Sf = Tif—Tly'Touf = Tiuf+ Ty,
0 = g+ T0'Torf = Tp'(Toog + Tonf).

Since Ty, is injective, the above equations show 0 # (g) € ker(7).

(ii) For every f € D(S), it follows that g := —T5,' To; f lies in D(T}3). Consequently, (5) e D(T)

and
T <f> _ <T11f+T129> _ (Tllf_T12T2_21T21f) _ <5f>
g Tor f + Taag 0 0

which implies that rg(S) @ {0} C rg(7) N (H1 @ {0}). Conversely, let (5) € D(7) such that
’T(ch) = (g) for some z € Hy. From T f + Toog = 0 it follows that g = —Ti1T21f € D(T12).

Thus we have f € D(S) and
z = Tuf+Tig = Tuf—Tely Tnf = Sf,

implying rg(7) N (H1 & {0}) C rg(S) & {0}. In particular, the surjectivity of 7 implies that of S.
Finally, assume that S is surjective and fix (3 ) € Hy @ Ha. Since rg(Ts1) = Ha by assumption,
there is an f' € D(Ty1) C D(T11) such that Ty1 f* = y. Therefore, (Jg) lies in the domain of 7 and
we have T(Jg) = (Tléf'). Since we have already shown that rg(S) @ {0} = rg(7) N (H1 @ {0}),
the surjectivity of S implies H; & {0} = rg(7) N (H1 @ {0}) C rg(T), hence we finally have

(g) =7 ( Jg) + (f”_r"(;“f,) € rg 7 because both terms on the right hand side lie in rg(7). O
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Remark 4.6. In fact, in proposition 4.5 we have shown that

ker(7) = {<_T2_2{T21f> : fekerS} = ker(5). O

Remark 4.7. If 115 is bounded, then we need not assume that T5; is surjective in order to prove
the surjectivity of 7 in assertion (ii) of proposition 4.5. For any given (y) € Hi ® Ha, the
element x — T1oT. 251y is well defined and the surjectivity of S implies that there is an f such that
Sf=x— T12T2_21y. Since Tso is bijective, we can define g := T2_21 (y — To1f). An easy calculation

shows 7 ( 5) = (g) and the surjectivity of 7 is proved. O

The spectrum and resolvent set of an operator valued function are defined as follows.

Definition 4.8. Let S = (5(z)). be a family of closed operators, where z varies in some set U C C.
Then the spectrum, point spectrum and resolvent set of S are defined as

o(S) == {z€U :0e0(S(2))}
op(S) == {z€U : 0€0,(5(2))},
p(S) == {z€U :0ep(S(2))}.

Analogous definitions apply to the other parts of the spectrum of S, e.g., the essential spectrum.

Recall that for a linear operator S the essential spectrum and discrete spectrum are defined by

Oess(S) = {A € C : dim(ker(S — \)) = oo or codim(rg(S — \)) = oo}
0q4(S) = {A € C : \is an isolated eigenvalue of S with finite multipilcity}

For a selfadjoint operator S we have 04(S) = o(5) \ 0ess(.9)-

Corollary 4.9. In addition to the assumptions in proposition 4.3, suppose that the operator T is
selfadjoint and that T7, is surjective. Furthermore, assume that the operator function Sﬁmm] defined

in (4.2) is holomorphic and that each Sﬁmin]()\) is selfadjoint. Then we have

op(T) N (c2,00) = ap<simi“{>, (4.3)
Oess(T) N (c2,00) = ess(STM). (4.4)

Proof. Proposition 4.5 applied to 7 — X shows that A € o(7) N (¢g, 00) if and only if A € o(SI™™).
Moreover, it follows from remark 4.6 that A € o,(S™™) if and only if A € 0,(7) N (¢,0)
with dim(ker(7 — X)) = oo if and only if dim(ker(SI™™()))) = oo. Hence, (4.3) is proved. To
show (4.4) it suffices to show o4(7) N (c2,00) = crd(ngm]). Let A € 04(7) N (cg,00). Then we
have dim rg(SI™™(A))+ = dimker(S!™™(\)) = dimker(T — \) < oo. Further, the range of 7 — X is
closed because A € a4(T). So proposition 4.5 shows that rg(S™™ (X)) = rg(7) N (Hy @ {0}) is also
closed. Hence it follows 0 € og(S™™ (X)) and consequently A € o4(SI™™).

Let A € og(SI™™). Then X € 0,,(7) with dimker(7 — A) = dimker(S;()\)) < oo and we have to
show that X is no accumulation point of (7). Since 0 € og(SI™ (X)) and SI™™ is holomorphic,
there are 6 > 0, ¢ > 0 and holomorphic functions p; : (A — 0, A +6) — R with p;(A) = 0 for
j=1,..., dimker(S;()\)), such that for all X € (A—e, A+¢) we have that p € J(Sﬁmin] (A)N(—¢,¢)
if and only if p is an eigenvalue of S{min} (X) with finite multiplicity and p = ,uj(X) for some j
(see | , chap. 1V, §3 and chap. VII]). Furthermore, for j = 1, ..., dimker(SI™™ (X)) we have

d d min — *
ﬁﬂj()‘) = d—)\(xj, ST (Nay) = —lajl)? = [[(Tez = N) ' Ty 2|
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for normalised eigenvectors x; of Sﬁmin] (A) with eigenvalue 0, hence the functions x; are not constant
in a neighbourhood of A. Thus there exists a nonempty interval (A — g,~ A+ ~)~ such that 0 €
p(SI(N)) for all X € (A —d,\ +6) \ {\}. Consequently, o(7) N (A — 6, A + &) = {\} which
completes the proof. O

In corollary 4.9 we have seen that under certain conditions the spectrum of 7 in the interval (cz, 00)
and that of the operator family S{™" coincide. One of the main assumptions was the holomorphy
of Sﬁmin]. In the following we realise the Schur complement as a holomorphic selfadjoint operator
function S via sesquilinear forms and establish criteria that guarantee SI™™(X) = S (X).

For convenience, we repeat some well known definitions and facts concerning sesquilinear forms on
Hilbert spaces, see, e.g., | , chap. VI]. A mapping

t:Dt) xD(t) — C, (u,v) — tlu,v]

is called a sesquilinear form on a complex Hilbert space H with domain D(t) if D(t) is a linear
manifold in H and if

tlau, fv +w] = a(Btu, v] + tu, w]), a, B €C, u,v,w e D(t).

The simplest example of a sesquilinear form is the scalar product on H (observe that we use the
convention (iz, y) = —i(z, y)). We often use the abbreviation

tu] = tfu, ul, u € D(t).

If for forms s and t on H the inclusion of domains D(t) C D(s) and t[u, v] = s[u, v] for all u,v € D(¥)
hold, then t is called a restriction of s and s is called an extension of t. We denote this relation by
t Cs. A form tis called symmetric if

tlu, v] = tv, ul, u,v € D(t).
The numerical range of t is the set
W) = {tu] : we D), ||u| =1}

Obviously, the numerical range of a symmetric form is a subset of R. A symmetric form is said to
be bounded from below if there exists a v € R such that
t] > yul?,  we D).

If the numerical range of a sesquilinear form is contained in a sector {z € C : |arg(z — )| < ¥}
for some v € R and 0 <4 < 7, then the form is called sectorial. Note that we use the convention
arg(z) € (—m,n] for z € C.

A sequence (up)neny C D(1) is called t-convergent if it converges to some u € H and if t{u,, — ty,)
tends to zero for n,m — oo. If t is sectorial and D(t) is complete with respect to t-convergence, we
call the form t closed. In other words, t is closed if for every t-convergent sequence (uy,)nen C D(%)

also u := lim w,, is in the domain of t and t[u — u,] — 0 for n — oc.

n—oo
The form t is called closable if it admits a closed extension s. If t{u,] — 0 for every t-convergent
sequence (up)neny € D(t) with u, — 0, then t is closable (see | , chap. VI, theorem 1.17]).

If t is closable, then there is a unique smallest closed extension t, which is called the closure of t.
Its domain consists of all u € H such that there is a t-convergent sequence (un)neny C D(t) with
Uy — u. It is well known that for a closable form the numerical range is dense in the numerical
range of its closure.
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By the first representation theorem (see | , chap. VI, theorem 2.1]), for every densely defined,
closed, sectorial form t in H there is a uniquely defined m-sectorial operator T' with D(T") C D(¥)
and tlu, v] = (u, Tv) for allu € D(t) and v € D(T'). T is called the operator associated with t. Recall
that an operator T is said to be m-sectorial if its numerical range is contained in a sector in the right
half plane and if the open left half plane is in the resolvent set of T' with ||(T — A\)~!|| < |Re(\)|~*
for all A € C with Re(\) < 0.

In this section we are also dealing with families of sesquilinear forms and their associated operators.

Definition 4.10. Let U be a domain in C and H be a Hilbert space. A family (t(¢))¢cer of
sesquilinear forms is called a holomorphic family of type (a) if

(i) D(t(¢)) = D is independent of ¢ and dense in H and each t({) is sectorial and closed,
(ii) for each fixed u € D the function ¢ — t(¢)[u] is holomorphic in U.

For each ¢ € U let T (() be the m-sectorial operator associated with t(¢). Then the family (7(¢))cev
is called a holomorphic family of type (B).

It can be shown that a family of type (B) is holomorphic (] , chap. VII, theorem 4.2]).

For A\ > co, we define

D(t11(N\)) = D(T11), t11 (M) [u,v] = (u, (TH—)\)U), (4.5)
D(t1a(\)) = D(TY,), tia(N)[u,v] = (Tu, (Toe — A) ' THv). (4.6)

Proposition 4.11. Assume that the conditions (B1), (A1), (D1) and (71) hold. Further, let either
(D2.a) or (D2.b) be fulfilled. Then the sesquilinear form

D™(\) == D(T),  si™Nlw, o] = (u, (T — M) — (T, (Tes = X) ' Tiy)
in Hy is symmetric, semibounded from below and closable.

Proof. The symmetry and boundedness from below can be shown as in proposition 4.3. Since the
operator 111 — A is symmetric and bounded from below, it is form-closable, i.e., the symmetric form
t11(A) defined in (4.5) is closable. Because the sum of closable forms is again closable (see | ,
chap.VI, theorem 1.31]), it remains to be shown that the form t;2()) is also closable. Consider
the restriction 5™ () of t12(\) with DR () = D(S™™()\)). We showed in the proof of
proposition 4.3 that the operator —Tia(Thy — A)~ T}, with domain D(SI™™ (X)) is symmetric and

bounded from below. Hence the form 5™ ()\) associated with it is closable; therefore it suffices to

show that t12(\) € t§3™(\) where §5™()) is the closure of tf5™()). ‘
To this end we fix x € D(T},). If we assume that (D2.a) holds, then D(S[™"()\)) is a core of
(A= ng)_%Tf‘Q (see proof of proposition 4.3). Consequently, there exists a sequence

min B R *
(zn)nen € D(ST™(N) € D((A—T) 2T3) = D(Tty)
with z, — = and (T — )\)_%TI*QZEH — (The — )\)_%Tl*Qx for n — oo. Then it follows that

tgrgin}(/\) [Zn — 2m] = (Tl*z(xn = Tm), (A= T22)71T1*2(37n - xm))

= H()\—ng)féTﬁ(xn—xm)HQ — 0, n, m — oo.

Hence = € /3™ (\) which implies t;9(\) C €3I ()).
Finally, we assume that condition (D2.b) holds. Since D(T72T7,) is a core of 17, there is a sequence
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Tp)neN C D(T12175) such that z, — « and T}z, — Ti52 for n — co. By the Cauchy-Schwarz
12 12 12
inequality it follows that

t%nn]()‘)[fxn —Tm] = (T1*2(35n —ZTm), (A — T22)71T1*2($n — Tm))
< O = To2) M| | T (20 — 2m) |7 — 0, n, m — oo.

This shows z € D™ (X)), thus t12(\) C R (N).
Hence both (D2.a) and (D2.b) imply f5(\) C t12(\) € €13 (\), and therefore t15()\) is closable.
O

In the following, we set

s1(A) = M), X € (c2,00),

where 5™ (\) is the closure of si™(\). The next lemma gives conditions which ensure that
sI™()\) is already closed. The proof is essentially an application of a perturbation result for closed

sesquilinear forms.

Lemma 4.12. Assume that the conditions (B1), (Al), (D1), (D2.a) and (71) hold. Then s ())
is closed, i.e., s/ (\) = 51(\) for all X € (cg,00).

Proof. Since Ty is bounded by assumption, it follows that also (T — )\)% is bounded and therefore
the operator (A — ng)_%Tf‘Q is closed. For every ti2(\)-convergent sequence (zp)neny € D(T75) we
have

1(Toz — N) 2T (20 — )|l = ti2(N\)[@n — 2m] — 0, n, m — oo.

Since (a2 — /\)_%Tl*z is closed, it follows that x := lim =, € D((Th — )\)_%Tl*Q) = D(T7},).
n—oo

This shows that tj2(A) is closed. The form t11(\) is closable, see proof of proposition 4.11; let

t11(A\) denote its closure. Then it follows that the form s1(\) = t1(\) + t12(N\) with domain

D(t11(A)) N D(t12(N)) is also closed. Since D(ti12(A)) € D(t11(A)) € D(t11(N)), the form s1(N) with
domain D(t12(N\)) = D(17,) is closed. O

Remark 4.13. In lemma 4.12; condition (D2.a) cannot be replaced by (D2.b). Consider, for
example, the unbounded selfadjoint multiplication operators T2 and Ths on H := £2((0,1),dx)
with domains D(T12) = D(Tae) = {f € H : x + L f(z) € H}, defined by

(Tef)@) =~ f@),  (Th@)=-—f@), =€)

Then the block operator matrix 7 := (T?Q %3) with domain D(7) = D(T12) & D(T12) satis-
fies all assumptions of lemma 4.12 apart from (D2.a); in particular, Toe < ¢; := 0. Further,
condition (D2.b) is fulfilled because for every A € (0,00) and every f € D(T12) the function
(0,1) = C, x+ (Too — N7 ' f(z) = — 1755 f(2) lies again in D(T12). Hence, by proposition 4.11,
the form t15(\) defined in (4.6) is closable for all A € (0, 00), but it is not closed. To see this, fix
e € (0, 3) and define the sequence (f,)nen C H by

fula) = {”3 poele



Chapter 4. A variational principle and estimates for the higher eigenvalues of A 75

Obviously, || fn— fll2 — 0 for n — oo with f(z) = R = (0,1). First we show that the sequence
is also t12(A)-convergent. To this end, observe that for arbitrary A > 0 we have

|t12()‘)[fn - fm” = ‘ (T12(fn - fm)7 (T22 - )‘)_ITH(fn - fm)) ’

_ j$2(_x1 N () _ '/nxzs(l +z) ! da

n
/x_% dz
1
™

for n, m — co. Hence f lies in the domain of the closure t19(\) of t12()). On the other hand,
because the integral

1 1
1 2 - —1-2¢ _ 1 _ 52
) - fornae - e
0 0

is not finite, it follows that f ¢ D(T}2). Hence we have proved D(t12()\)) # D(T1). O

IN

— 0

1 _
’mQal—ﬂ?El‘
1—2¢

In proposition 4.11 we showed that t;2(A) is closable if one of the conditions (D2.a) or (D2.b) holds.
In particular, if we have (D2.a), then the form t12()\) is closed. Lemma 4.12 shows that also s1™™())
is closed and that its domain does not depend on A. In this case we set

D(s1) := D(™I(N) = D(T3), A€ (cz,00).

Although under condition (D2.b) the domain of the closure does not necessarily coincide with
D(T7,), the following lemma shows that also in this case the domain of the closure does not depend
on .

Lemma 4.14. Assume that the conditions (B1), (A1), (D1) and (71) are satisfied. Furthermore,
suppose that there exists a A € (ca,00) such that the form t12(\) defined in (4.6) is closable with
closure t12(\). Then the form t1o(p) is closable for all p € (co, 00) and the domain of its closure
ti2(p) does not depend on .

Proof. Let A1, A2 € (¢g,00). Using the resolvent equation
(Too — Xo) ™' = (Toa — M) 7 = (Mo — A1) (A — Too) (Ao — Too) ™,
we find for all x € D(T},)
tia(A)[a] = iz (M) [2]| = | (Tia, (—(Too — M) ™! 4 (Taz — Ao) ™) THp) |
A2 = M| | (A = Tha) 2T1*2x ()\1 — T3) 72 (Ao — To) "' TH) |
1
A2 = A || (A1 — T) ™2 Toa) ™' (A1 — Tag) 2T ||

(
Az = Al | Q2 = To2) M| | (0 - T2z> The |’
A2 = Al || (A2 = To2) 7|tz (A1) [2].

IN

IN

Now let A € (c2,00) such that tj2(\) is closable and fix an arbitrary u € (c2,00). We have to
show that for every t2(u)-convergent sequence (n)neny C D(ti2(p)) = D(TYy) with x,, — 0 for
n — oo also t1a(p)[xy,] tends to zero. Applying the above inequality with = = z, — z;, to A\; = A
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and Ao = p and to A\; = p and Ag = A\ we find that t19(u)[x,, — z,,] tends to zero if and only
if t19(\)[x,, — oy, does. Hence every t1o(u)-convergent sequence is also t12(\)-convergent. Since
t12(\) is closable, it follows that t19(\)[x,,] converges to zero for n — oo. Application of the above
chain of inequalities to z,, shows that also ti2(p)[z,] — 0 for n — oo and the closability of t;2(u)
is proved. To show that the domain of the closure of t12(u) is independent of p, it suffices to prove
the inclusion D(t1a(p)) € D(ti2(\)). For z € D(t12()) we chose a to(p)-convergent sequence
(Zn)nen with x,, — x. As above, it follows that the sequence is also t;2(\)-convergent, hence the
closedness of t12()\) implies € D(t12(\)). In the same way we can show the converse inclusion

D(ti12(N)) € D(t12(p)), hence the domain of the closure of the form t12(p) is independent of p. [

If we assume that 711 is Tha(To2 — )\)_leQ—bounded with relative bound less than 1 (compare
proposition 4.16), then the above lemma also holds for the forms s1()) instead of t12(\) because in
this case s1(\) is closable (closed) if and only if t12()\) is.

Assume now that s1()) is closed. By the first representation theorem | , chap. VI, theorem
2.1] there is a uniquely defined selfadjoint operator Si(\) associated with the closed sesquilinear
form s1(\) such that

D(S1(\) C D(s1) and (v, Si(Nu) = si(\)[v,ul, v € D(s1), u € D(S1(N)).

Moreover, if for fixed u € D(s1) the identity s1(A)[v, u] = (v, w) holds for all v belonging to a core
of §1(\), then w is in the domain of S1(\) and S} (N\)u = w.
Definition 4.15. The operator family (S1(\))xsc, is called the Schur complement of T .

[min]

Now we show that the operator S () is a selfadjoint extension of S;" () defined in proposition 4.3.

Proposition 4.16. The inclusion S"™™(X\) C Sy () holds, where S™™(X) is the operator of propo-
sition 4.3 and S1(\) is the operator associated to the form s1(\). If in addition (D2.a) and

(A2)  Tyq is symmetric and Tio(Too — \) "1 T}, -bounded with relative bound less than 1, i.e.,
there are « >0 and 1 > a > 0 (which may depend on \) such that

[Thnz|| < ol + a||Tie(Te — \) T, z € D(T12(Tho — N)'T1y),

then S1(\) = Sﬁmin]()\); in particular, Sﬁmm]()\) is selfadjoint.

Proof. Fix some z € D(SI™™ (X)) = {z € D(T},) : (Thy — ) ‘T € D(T12)}. Then we have for
all v € D(sy)

s1]v, 2] = (v, (Th1 — N)zx) — (Tl*Qv, (T — )\)_1T1*23:) = (v, (Thh — N —T12(T — )\)_le2):c)
= (v, 5™ (V)a),

hence x € D(S1(A)) and S1(A\)z = SI™™(X\)z, therefore SI™™(\) C S1()) is proved.
If we assume that Tho is bounded and that 731 is bounded with respect to T12(The—A) "1 T}, with rel-

ative bound less than 1, then it follows from the Kato-Rellich theorem | , chap. V|, theorem 4.3]
that S{™™ (\) is selfadjoint since Th2(Tag — \) ~ 5, is selfadjoint, see proof of proposition 4.3; hence
SN = S1(\) follows. O

Recall that D(SI™™(X)) = D(T12(Tae — A)~17T%,). It is not hard to see that under condition (A2)
the restriction s/™™7(\) of si™™(\) to D(SI™™ (X)) is also closable and that its closure is given by
FMI(N) = g1 (X). This follows because S1(\) = SI™™()) is the operator associated with the form
s1(A). On the other hand, 5[1min’r]()\) is the form associated with Simin]()\) and therefore closable.
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Since the correspondence between the set of all densely defined, closed sectorial forms and the set
of all m-sectorial operators is one-to-one, s1(\) must be the closure of si" ().

The selfadjoint extension Si(\) of Sﬁmim (A) which we have constructed via the associated sesquilin-

ear form s1()) is the so-called Friedrichs extension of SI™™(X).

From now on we assume that the conditions (71), (B1), (A1), (A2), (D1) and (D2.a) hold. Then
the family S; = (S1(\))a with A € (c2,00) is a family of selfadjoint operators and its spectrum
coincides with that of 7 in (c2,00), provided that 77, is surjective. This means that the problem
of determining the spectrum of 7 in the interval (cg,00) is equivalent to the spectral problem of
the operator family Sj.

In the remaining part of this section we prove a minimax principle for the eigenvalues of the operator
family S; based on a minimax principle in | |]. The main result of this paper is stated in the
appendix, theorem A.1. The next proposition summarises the assumptions on the block operator
matrix 7 and provides the main properties of Sy.

Proposition 4.17. Consider the selfadjoint block operator matrizc T = (;}; %3) with domain

D(T) = D(T},) ® D(Th2) on the Hilbert space Hy & Ha. Assume that Ty is surjective and that the
conditions (B1), (Al), (A2), (D1) and (D2.a) hold.

(i) For every X\ € (c2,00), the form
D(s1(V) = D(T), s1(N)[w, v] = (u, (T = Xv) = ((Tiyu, (T2 = A)~'Ti50))

is closed and its domain is independent of X. The operator S1(\) associated with the form is
a well defined selfadjoint operator with ST™™(\) = S1()\), A € (ca,00).

Define the operator valued function
S1:(c2,00) — €(H1), A Si(A) (4.7)
and, for fized x € D(sy), the function
o1 : (c2,0) — R, 0T (A) = s1(A)[z]. (4.8)

(ii) The operator valued function Sy : (c2,00) — € (H) of (4.7) is continuous in the norm resolvent
topology, and for every x € D(s1) the function of : (c2,00) — R of (4.8) is continuous.

(iii) For every x € D(s1) \ {0} the function of is decreasing and unbounded from below.
(iv) The equalities 0ess(S1) = Oess(T) N (c2,00) and 0,(S1) = 0p(T) N (c2,00) hold.

Proof. (i) The assertions concerning s1(A) have been shown in lemma 4.12 while the identity
Simm]()\) = S1(\) was proved in proposition 4.16. In particular, the mapping S is well defined.

(ii) From (i) it follows that the family of sesquilinear forms (s1(\))xg(c,,00) I8 Of type (a). Hence
Sj is a holomorphic family of type (B), which implies the holomorphy of S} in the norm resolvent
topology. Obviously, for every x € D(s;) the function of is even smooth on (c2, 00).

(iii) For every x € D(s1), x # 0, the function of is monotonously decreasing because

d d .
50T = sVl = el = [T = V)7 Thal* < —[lz* < 0. (4.9)

(iv) This has been shown in corollary 4.9. O
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Proposition 4.18. Suppose that in addition to the assumptions of proposition 4.17 there is a
constant b > 0 such that for all x € D(T7,) the estimate

[Tz = bllz| (4.10)
holds. For \ € (ca,00) let d()\) be a nonnegative lower bound for (A — Ty2) ™1, i.e.,
(z, A= ng)_lm) > d(\)||z||* > o, x € Ha, A€ (c2,00). (4.11)
If there is a § > 0 with
§ < dNb? +ep— A (4.12)
for all X in a sufficiently small right neighbourhood (ce, co + €) of ca, then
(v) the spectral subspace L(_o 0)S1(N) is trivial for all X € (c2, ca + €);
(Vi) 0ess(S1) N (ca, o +¢) = 0.
If we allow § = 0 in equation (4.12), then we can show (v) only.
Proof. For X\ € (c2, ca + €), assumptions (4.11) and (4.12) imply for all 2 € D(S1(\)) \ {0} that
(z, S1(N)z) = si(N)[a] = (2, Tuw) = M|z|* + (T, (A — T) ™' Tiz)
> (e1 = Nllz]* +d(N) b [l«]* > §lz]*. (4.13)

(v) If § > 0, then for all XA € (c2, c2 + ¢€) the numerical range of the selfadjoint operatorSi(\), the
closure of which equals the closure of the numerical range of s;()), is contained in the right half
plane {z € C : Re(z) > 0}, implying p(S1(A)) 2 (—o0, 0).

(vi) If we assume the strict inequality 6 > 0, then the calculation above shows (—o0,d) C p(S1()))
for X € (ca, 2+ ¢€), hence (c2,co +¢) N (S1) = 0. O

Condition (4.10) on T3, of the previous proposition is fulfilled if, for example, the operator 717,
is boundedly invertible. In this case we can choose b = ||T5, || ~'. If Tyy is bounded, then, for
A € (c2,00) and = € Ha,  # 0, we find

2l = (72 | (A= To) 2w, (A= Ta2)"2 ) [ < [l 2 || (A = Tao) 2 |* || (A — Ta2) 22
= Hm‘”fQ (1’, (/\ — TQQ)H?) (:C, (/\ — T22)711') < H)\ — TQQH (.%', ()\ — ng)fll')
< (A [ Taal)) (2 (A = Toa) 2),

hence we can choose d(\) = (|]A| + || T22||) ™. For X in a right neighbourhood of ¢y, the function d is
bounded from below with bound greater than 0. Thus, if b is large enough, then condition (4.12)
is satisfied.

Proposition 4.17 (iii) shows that for every = € D(s;)\ {0} the function of has at most one zero and
that it is not bounded from below. If in addition (4.12) holds with some ¢ > 0, then of is positive
for A in a sufficiently small right neighbourhood of ¢, see (4.13) Thus the continuity of o implies
that it has exactly one zero. We denote this zero by p(x), i.e.,

oi(A\) =0 <<= X=p(z). (4.14)

If relation (4.12) does not hold, then the function of need not have a zero. In this case we define
p(z) := —o0, so that obviously either p(z) = —oco or p(x) > cp. Further, p(z) does not depend on
the norm of z, i.e., for all £ € C\ {0} we have p(z) = p(&x).
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Now fix a linear manifold D C ‘H;, independent of A, such that
D(Si1(N\)) € D C D(s1(N)), A € (cg,00).

Such a manifold D exists; for example, we can choose D = D(17,).
For n € N we define the numbers

pn = min  max p(z), (4.15)
dim L=n

where L* := L\ {0}. Theorem 4.19 shows that these numbers are indeed well defined. Here and
in the following, a sequence A1 < Ay < -+ < Ay with N = 0o has to be understood as the infinite
sequence A\{ < Ag < ... .

In the following we need one more notation. For an interval A C R and a selfadjoint operator S
we denote its spectral subspace corresponding to A by La(S). By Ae we denote the lower bound
of the essential spectrum of 571, i.e.,

P {infgess(sl) if Uess(Sl) #

)

0
o0 if O'ess(Sl) = @

If (¢, Ae) is not empty, then the eigenvalues of Sy in this interval are characterised by the following
minimax principle.

Theorem 4.19. Let the block operator matriz T = <%*; %;), D(T) = D(T;) ® D(T12) be self-
adjoint in the Hilbert space Hi ® Ha. Suppose that the conditions (B1), (A1), (A2), (D1) and
(D2.a) are satisfied and that TY, is surjective. Further, assume that the set (c2, Ae) is nonempty
and that there is a Ao € (ca, Ae) such that dim £(_ )S1(Xo) < oo. Then the index shift

no := min dim £_ 0)S1(\) (4.16)

A>co ’

is finite and o(T) N (ca, Ae) consists of a (possibly infinite) sequence of eigenvalues Ay < Ag < -+ <
AN, where N € No U {oc}. If the eigenvalues are counted according to their multiplicity, then

An = Pntngs 1<n<N, (4.17)
and N € Ny U {oo} is given by
N = n(Xe) — ng
where n(Ae) is the dimension of maximal subspaces of the set
{z €D : I X>cp with s1(\)[z] <0} U{0}.

If N = oo, then lim A\, = Ae. If N < 00 and 0.s5(S1) = 0, then p, = oo for n > ng+ N. If

N <00, Ae < 00, then i, = e forn >ng+ N.
If even the stronger assumptions of proposition 4.18 are fulfilled, then ng = 0.

Proof. Proposition 4.17 shows that all assumptions of theorem | , theorem 2.1] (see theo-
rem A.1) are satisfied. Hence, the numbers p,, exist and are equal to the eigenvalues of the operator
family Sp. By corollary 4.9, we have 0,(S1) = 0p(7) N (c2,00) and 0es5(S1) = 0ess(7) N (€2, 00) sO
that all the assertions follow from theorem [ , theorem 2.1].

If even the assumptions of proposition 4.18 are valid, then it follows automatically that (c2, Ae) # 0
and that dim £(_, 0)S1(A) = 0 for A in a sufficiently small right neighbourhood of ¢z, hence the
index offset ng appearing in formula (4.17) vanishes. O
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The numbers p(z) are rather hard to estimate. However, there is a representation of p(x) as
the supremum of a functional A4 (3 ) where y varies in some subspace of Hy. The functional Ay is
connected with the so-called quadratic numerical range of block operator matrices, see, for example,
[ ]. It was used in [ | to obtain a variational principle for block operator matrices
with bounded off-diagonal entries.

Definition 4.20. Let 7 = <%1 %3) be a closed block operator matrix on the Hilbert space

H = H1 @ He with domain D(7") = D(T1) ® D(T12). Assume that the operators T2 and Tb; are
closed and that 717 is T2;-bounded and that Thg is Tho-bounded. For () € D(T), 2 # 0, y # 0,
consider the matrices

(z,Tnz) (z,Ti2y)

S a1 P
e W, To1z)  (y,To2y) 2
[l ly]] vl

with eigenvalues

z\ 1 [ (z,Tux)  (y, Tooy) (z, Tuz) (v, Tooy)\* | 4(z, Ti2y)(y, To12)
At = 5 7 T > T 2 2 + 2 2
2 Eal [yl ||| [yl ]I [lyll

(4.18)
and define the sets

AL(T) = {Ai(i) . 2 € D(Ty), y € D(Tha), x,y;é()}.

The quadratic numerical range W?(T) of T is defined as the set of all complex numbers ) that are
eigenvalues of some 7 ,, that is,

WHT) = |J  0p(Tey) = A(T)UA(T).

z€D(Ta1)*
yED(Ty2)*

Another way to define the quadratic numerical range would be to consider the operator valued
mapping

W.: 9 .= (C X D(Tgl)X X D(Tw)x — MQ((C), ()\,x,y) = IZ?L“,y - )‘a
where, as usual, D(T;;)* := D(Tj;) \ {0} for 4, j = 1, 2. In analogy to the point spectrum of
an operator valued function, the point spectrum of this mapping can be defined as o,(W) :=
{Nz,y) € ®:0 € op(W(Az,y))} € D. The quadratic numerical range of 7 is then the
projection of o,(W) onto its first component.

It is easy to see that Ay () does not depend on the norm of the vectors z and y. It therefore
suffices to restrict the definition of Ay () to elements (3 ) € D(7) with |z]| = ||y|| = 1.

In the following we characterise p(z), defined in (4.14), in terms of At (y). Recall that p(z) was
the unique zero of the function A — o () if it exists and p(z) = —oo otherwise.

Lemma 4.21. Assume that the conditions of proposition 4.17 hold. Then for all x € D(T5;) \ {0}
with p(x) # —oo we have

p@)zamb+@):yepam\m§. (4.19)

If in addition x € D(S1(p(x))), then the supremum is attained, thus we have

plz) = max{)\+ <z’> : yeD(Tlg)\{O}}‘ (4.20)
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Proof. Fix x € D(TY},) \ {0}. Since Ta; = T5; and the operators T7; and Thy are symmetric, (4.18)
shows that A4 () is real for all y € D(T32) \ {0}. For the proof of the assertion, we first show that
p(x) > Ay (y) for all y € D(T12) \ {0}. So fix y € D(Th2) \ {0} and, for simplicity, set Ay := Ay ().
If A4 < ¢, then nothing has to be shown since co < p(z) by assumption. Now assume Ay > co.
Since p(x) is the unique zero of the monotonously decreasing function of, it suffices to show
o7 (Ay) = s1(A4)[x] > 0. By definition, A1 is an eigenvalue of the complex 2 x 2-matrix 7, thus

0 = flz|*lyll* det(Zay — A+)
= ((z, Tuz) = Aell2l®) (9, Tooy) = Aellyll?) = (, Tiay)(y, Tirz)

= (y, (Toa — Ap)y) si(Ap)[z] + (v, (To2 — As)y) (Tigz, (The — Ay) ' Tha) — | (y, Tl*zw)r- |
4.21

For A > ¢y the operator (A —Thg) is strictly positive and the same holds for the induced sesquilinear
form (u,v) — (u, (A — Tag)v) for u, v € D(Tre). For this form, we have the following generalised
Cauchy-Schwarz inequality

|, A= To2)v) > = | (A= Too)2u, (A= Ta2)20) | < ||(A = To)2u||” || (A = Tio) 20|
= ( )\ T22 )( ,()\—TQQ)U)

for all u, v € D(Th2). Since y € D(T12) C D(T22), we can use this inequality to estimate the last
two terms in (4.21):

(4, (To2 = Ap)y) (Thaw, (Taz — Ay) "' Tiha) — |(y, Tire)|?

= (v, (Toa = A )) (T, (Toz — As) ™' To) — |(4, (A = Taz) (Mg — To2) ™' T |
(v, (A = To2)y) (Tiow, (A — Ta2) "' Tiox) — (v, (A — Taa)y) (Tiow, (Ay — Tao) ™' Thox)
= 0.

v

Because the factor (y, (To2 — Ay)y) in the first term of (4.21) is negative, it follows that the
second factor, s1(A4+)[z] = of(A+), must be nonnegative, and thus we have proved the inequality
pr) > suphs (3) : y € D(T1a) \ {0}}.
If z € D(S1(p(x))), then we can choose an element y such that p(z) = Ay (). To this end, define
y = (Tae — p(z)) "I, This vector is well defined and it lies in the domain of T} since by
assumption z € D(S1(p(x))). If we use

(y: (To2 = p(@))y) (Tiaz, (Toa — p(2)) "' Tax) = |(Thhz, y)|* = 0 (4.22)

we obtain in analogy to equation (4.21)

[ ly]1* det(Zay — p(2)) = (y. (T22 — p(2))y) s1(p(2))[z] = 0.

This implies that p(z) is an eigenvalue of 7, ,. Together with A_ () < Ay (y) < p(z) it follows
that p(z) = Ay () which proves (4.19) and (4.20) in the case x € D(S1(p(z))).

It remains to show (4.19) in the case z ¢ D(S1(p(z))), i.e., for elements x € D(T};) such that
(Tye —p(x)) 1 Tjyx ¢ D(Th2). For fixed z € D(T},) \D(S1(p(w))), there exists a sequence (2, )nen C
D(S1(p(x))) such that

wn o and (Thy — N 2Thm, — (Toy — N 2Tha,  n— oo,

since in the proof of proposition 4.3 we saw that D(S1(p(x))) is a core of (Ths — p(x))_%Tl*z. Set
Yn = (Toy — p(x)) 1 TiHx,, n € N. Because both (The — p(z))~! and Ths — p(z) are bounded,
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the limites y := lim v, and lim T},z, exist and are not zero; otherwise it would follow that
n—oo n—oo

x € D(S1(p(z))) in contradiction to the assumption on x. Moreover, since T7; is relatively bounded

with respect to 175, also the limit lim 772, exists. Therefore, all terms in
n—oo

s1(p(2))[zn] = s1(p(2))[z] + 51(p(2))[2n — 2, 0] + 51(p(2)) [T, 20 — 2] + 51 (P(2)) [T — 2]
= 2 (xn —z, (T —p(m)):rn) + (xn -z, (T — p(x))(zn — w))
=2 (Thy(wn — ), (Toz — p(2)) ' Tiywn) — (Tiy(wn — ), (Thz — p(2)) " Tiy(zn — 2))

converge to zero for n — co. As in (4.22), we obtain

(Yns (To2 — p(@))yn) (T, (Toz — p(x) " Tizn) — |(Tiatn, ya)|? = 0. neN,

which implies

|2nl 1ol det(Za, y, —p(2)) = (yn, (To2 — p(2))yn) s1(p(2))[2n] — 0, n— oo.

Since neither x,, nor ¥, tend to zero, it follows that

(p@) =2 (3)) (@) = As (5)) = det(Tepyn —p(2)) — 0, n—oo.  (423)
Each entry of

R <($n, T (zn — ) + (2n —z, Tnz) (20, T12(Yn —y)) + (20 — =, T12y))
T TRy (Yn> Thio(@n — ) + (Yn — ¥, T1%)  (Yn, To2(yn — ) + (Yn — ¥, Ta2y)

_ <($n, Ti1(xn — ) + (xn — 2z, Thz) (Tiszn, yn —y) + (T (2, — ), y)>
(Yn, Tio(xn — ) + (Yn — ¥, T12%)  (Yn, To2(yn — y)) + (Yn — Y, T22y)

converges to zero for n — oo, hence we have 7,

n,Yn

— T, in norm. Thus the eigenvalues A+ (Z:)
converge. Now, if p(z) > sup{)\+ (gyc) sy € D(TH) \ {0}}, then there exists an & > 0 such that
p(x) > At <f~/> +¢ for all y € D(T},) \ {0}. Since the functional Ay depends continuously on both

its independent variables, there exists an N such that ‘)ur <ny> -t (zz ) ’ < 5 and for all n > N.
Thus we have

pe) = (2] = po - x (F) o () - ae (B) 2 em5 = 5

Because of p(x) — A_ (x”> > p(x) — Ay (x") it follows

Yn Yn

2

()\_ <§:> - p(x)) ()\+ <§:> - p(x)) > % n> N, (4.24)

in contradiction to (4.23). O

Remark 4.22. From (4.19) it is clear that if Ay () > ¢ for some y € D(T2), then also p(z) > cs.
Vice verse, if there is an o € D(T},) such that z € D(S1(p(x))) and p(z) # —oo, then it follows
from (4.20) that there exists a y € D(T12) such that Ay (y) = p(x) > ca. O

Now we can state the main theorem of this section, which is essentially a corollary of the previous
lemma and theorem 4.19.
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Theorem 4.23. Suppose that the assumptions of theorem 4.19 hold, that is, suppose that conditions
(71), (B1), (A1), (A2), (D1) and (D2.a) are fulfilled, that Ty, is surjective, that (ca, Ae) # 0 and
that there is a Ay € (c2, Ae) such that dim £_ 5)S1(Xo) < 0o. Additionally assume that the domain
of S1(\) does not depend on A, i.e.,

D(Sl(/\)) = D(Sl), A E (CQ,OO).

Then the eigenvalues of T in (c2, \e) are given by

. x
An = min max  max /\+< >
LED(S1) zeLl* yeD(Ti2)* Yy
dim L=n+ng
(4.25)
= min max sup )\+<x>, 1<n<N,
LCD(TYy)  zeLX yeD(Tiz)* Y
dim L=n+n(
where we have adopted the notation of theorem 4.19. O

Proof. From theorem 4.19 it follows that all eigenvalues of 7 greater than cy are given by

e min max p(x 1<n<N
n min - max p(z), <n <N,
dim L=n+n(

where D is any linear manifold with D(S;) € D C D(s;). From proposition 4.17 we know that
the forms s1(\), A € (c2,00) are closed and that D(s;(\)) = D(T};). Fix n > 0 and a subspace
L C D(sy) with dim L = n + ng. Then there exists an x € L with p(x) # —oco. Lemma 4.21 and
the remark thereafter yield

x x
max p(r) = max p(xr) = max sup Ay < > = max sup At ( ) .
TELX p(zfijoo p(ffijoo y€D(T12)* Y T€LX yeD(Typ)x Y
If we have even L C D(S7), then the supremum can be replaced by the maximum. O

In the next section we use theorem 4.23 to estimate the eigenvalues of the angular operator A with
modulus greater than |am|. We know that for the angular operator the spectrum of 71277, consists
of discrete simple eigenvalues only. So we specialise theorem 4.23 to a class of operators for which
the product 71277, has only discrete point spectrum o, (T1277,) € (0,00), and all eigenspaces are
finite dimensional.

Remark 4.24. Assume that 7y = (T?*Q T62> with domain D(7y) = D(T55) @ D(T12) € Hi @ Ha is
closed and that T2, and T7,T12 are strictly positive. Then 0,(7y) = {A € R : A2 € 0,(T12T75)}-

Proof. For A € 0,(Tp) \ {0} we have \? € o,(T12T,) N 0p(TiyTi2) because if (5) is an eigenvector
of 7y with eigenvalue A, then f € D(T12175), g € D(1,T12) and f, g # 0 and it follows that

Ti2TF, 0 (T12T, =2 f
0= (To+N(To—N(}) = (( 0 T1*2T12> - %) (i;) - ((T}ZTE_,\2)9)~
On the other hand, if p # 0 is an eigenvalue of 77,712 with eigenfunction g, then it is also an

eigenvalue of 1277, with eigenfunction Ti2g9. For o0 = +1 we define f = J;F% Ti2g. Then we have
that (7o — o\/1t) (5) = 0, hence +,/J1 are eigenvalues of 7. O

The next theorem can be regarded as a perturbation result for the eigenvalues of the block operator
matrix (T?*z T62) under the unbounded perturbation (Tél T(2)2 )
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Theorem 4.25. Let T = (g}; g;) with domain D(T12) ® D(Ty) € H1® Ha be a selfadjoint block
operator matriz such that the conditions (71), (B1), (Al), (A2), (D1) and (D2.a) hold. Then Ti;
s bounded with respect to T7y; let o and a1 such that

[Tzl < afz| + a1zl r € D(T15).

Further, let T}, be bijective and assume that there exists a number b > 0 such that ||T}5z| > b||z||
for all x € D(TY,). Moreover, assume that for all X\ € (c2,00) the Schur complement

S1(N\) = T — A= Tio(Toe — N7 MYy, D(S1(N) = {2 € D(T},) : (Tas — N) " Tjhx € D(T1o)}

is selfadjoint and that D(S1(\)) =: D(S1) is independent of X\. Additionally suppose that there
exists a Ao € (c2,00) such that dim L_ )S1(Xo) < oo. If the spectrum of the operator Ti2TT,
satisfies

O'(T12T1*2) = 0'p<T12T1*2) = {l/j : j < N} with 0<uvy <y <. ..

where the eigenvalues are counted with their multiplicities, then the block operator matrix T has
discrete point spectrum A1 < Ay < ... AN in (c2, Ae). More precisely, with ng as in theorem 4.19,

that is, ng = inin dim £(_o0)S1(A), the eigenvalues A, of T in (ca, Ae) satisfy the estimates
>co

(6%
Ao S 5 Tnrng + \/un+n0+i(a21\/m+HT22||+a)2 +3(@+e), 1<n<N, (426)

A > VUning + 3(c1 — [ To2l]), 1<n<N. (4.27)

Proof. All assumptions of theorem 4.23 are satisfied. In particular, the index shift ng is finite.
To prove inequalities (4.26) and (4.27), we estimate the right hand side of (4.25). For the proof
of (4.26) note that D(T»2) = H2 and that

(i) [(z, Tuz)| < [lz|[|Tuzl] < |zl (allzl] + a2l Thzl), = € D(TT),
(i) (y, Tr2y) < ellyll’, y €M,
(ii)) (v, To2y)| < [To2llllyll*  y € Ho,
(iv) |(y, Thow)|* < lyl? 1T52l?, = € D(TYy), y € Ha.
With the help of these inequalities we find for all = € D(T},), y € D(T12) with x #0, y # 0

M(z) L[ (@ Tur) | (4 Toy) |, \/((Mw) <y,T22y>>2+4r<y,Tf2x>\2

y 2\ =P 1yl (el ly[I? [E IRl

(@.Tua) | (v, Toy) \/ (s o), 1 Tmy)\)? 4 4. Tl

S —
2\l T P EE ly]? BRIk
o1 || T o1 || T 24| T2
B e u+\/<a+ g ) 2
2 ] =] fa

The right hand side is independent of y and monotonously increasing in ||775z||. For given n € N
let %, be an n-dimensional subspace of the spectral space E[,,l,l,n](TlngQ). Then for every = € %4,
we have that || T},z||? = (z, Ti2Tj7) < vullz|?.
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Observe that D(s1) = D(T12)*, thus the minimax principle (4.25) shows that

. T x
Ap = min max  sup A4 ( Y > < max sup  Ap < y )
LCD(Ty9)* LX D(To) % X D(Tio) %
dimo2) weL* ye (T12) 2€ 2, YEP(Th2)

T el ] ]l 2

1 ao || Tz oo || T,z 24|12
< e L as ey ol u+\/< 21| Ty ||+”T22”+a> | 4Tl

1
< 5 (a + c2 + Q21y/Vntng + \/(0521\/ Vntno T HTQZH + a)2 + 4Vn+n0>

which proves (4.26). In order to show (4.27), we choose a particular element y € D(T12). Since by
assumption 77 ! exists and is bounded by b=, also szl exists and is bounded by b~!. For every
x € D(T7},) the element y(z) := T5'x exists and lies in D(T}3). Therefore, again by (4.25),

. T
Ap = min max  sup >\+< >
LCD(TH,)  zeL* yeD(Ti2)* Y
dim L=n+ng
1 T T 2 T
> min max sup <(ac, 153;) + . 2;:1/) + @, 12y)’) (4.28)
LeD(ryy)  welx yeD(Ti)< 2\ |1l 1yl 2| [yl

dim L=n+ng

v

min max 1((x, Tl;x) (T, x’?;??TlZ z) 27(1% ) >
seprgy we 24 el IT'alP Tt ]
dim L=n+ng

) 1/ (x, Tz 1o
> win max 2 (LD rgte )
rco(ry,) TELX 2 [Eaf
dim L=n+ng
1 : 1 -1
> L (c1 = [[Te2l]) + min  max [Tz~ |z (4.29)
LCD(TY,) el
dim L=n+ng

For every n-dimensional subspace L, C D(T5,), also the subspace Tjy' Ly, € D(T},T12) is n-dimen-
sional. Hence it follows that

min max |75z 7|z = min max -4
pemin mas (T el = min s el 7]
dim L=n+n(
= min_ max [|¢]|7" | Twg].
LQD(T12T12) §€LX
dim L=n+ng

T2 0
eigenvalues v; < vy < ... of T12717,. On the other hand, the variational principle of theorem 4.23

By remark 4.24, the squares of the nonzero eigenvalues of Ty = < 0 Tf?) = <? (I]) To ((I] é) are the

applied to if) shows that

T
Vin = Ay = min max X 7“'% 12))
LD ) geLX yeD(Tp)* [yl I€]]
< . |(T12€, T128)| . [ T12¢]|
< min max ————> /0 — mi max
LeD(T,112) geLx || Th2&|| ||€]] LeD(T},T12) geLx  |[€]|

dim L=n dim L=n
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Inserting into (4.29) yields

An > %(Cl - ||T22||) + /Vning-
]

In theorem 4.25 we saw that we can estimate the eigenvalues of the block operator matrix 7 by
the eigenvalues of T12T7,, that is, by the eigenvalues of (T?*Q T(l)z). In the calculations leading to

formulae (4.26) and (4.27) we have used that the operator T1; is semibounded. For the angular
operator, however, 171 is even bounded so we can improve the estimate.

Corollary 4.26. In addition to the assumptions in theorem 4.25, let T11 and Tsy be bounded. Then
there are real numbers c1, ¢ , c; and cy such that

allzll* < (2, Tuz) < of |2l zeHr and |yl < (4 T2y) < e2llyllP’, y € Mo

Let ng = min dim £(_0)51(A). Then the eigenvalues of the block operator matriz T in (ca, Ae),

A>co
enumerated such that co < A1 < Ao < ..., can be estimated by
A < \/vn+n0 + 1Tl + 1T22l)? + 5(cf +¢2),  1<n<N, (4.30)
Ao = Vnimg +3(c1+¢3), 1<n<N, (4.31)
where 0 < v1 < vy < ... are the eigenvalues of T12175, see theorem 4.25.

Proof. First, we improve the estimates of A\; from above. If we use (v, T11z) < ¢f ||z?> and
|(x, Ty12)| < || Th1]| ||=]|?, @ € Hi, instead of (i) of theorem 4.25, we obtain

At <‘z> = % ((x, Tiiz) + (y, Tooy) + \/((m, Tuz) — (y, Tooy))? + 4|(v, Tf‘zﬂf)’Z)

1 *
< 5l +e)+ \/i(IITMH + 1 To2)? + ([T

for all () € D(T) with ||z]| = |ly|| = 1. Also the upper bound for Ay () can be improved if we
use (y, Troy) > ¢, in (4.28). Now a reasoning analogous to that of theorem 4.25 completes the
proof. O

The estimate (4.30) for the eigenvalues can be further improved if we use the fact that all the
terms of the formula for A involving 771 and Th2 are bounded. To this end, we use the following
auxiliary lemma.

Lemma 4.27. For ai, as, by, by, v € R with a; < by and as < by we define the function
filan,bi] x [ag, ba] = R, f(s,8) =s+t+ /(s — )2 +~2.
For fized t, the function f is monotonously increasing in s and vice versa. In particular,
flar,a2) < f(s,t) < f(b1,b2), (s,t) € [a1,b1] X [ag, ba].

Proof. Partial differentiation of f with respect to yields

_ _ )2 2 _ _
z?f(s’t) . s—t o V=297 s — ] - -
S

(s =12+~ — (s =12+~
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If we apply this lemma to the functional Ay (§) with v = 2|(z, Tjyy)|, s = (z, Tiiz) € (c1, ¢f ) and
t = (y, Troy) € (c5 , c2) it follows that

1 _ _ . T
5(014—02 "’\/(01_02)2"‘4’(T1233, ?J)|2) = >\+<y>

1
< (o +ar i — e+ 4The nR).

Now we can use these estimates to improve the result in lemma 4.26. Note that the estimate (4.31)
remains unchanged. We finally arrive at the following theorem.

Theorem 4.28. With the above assumptions and notation the eigenvalues of T in (ca2, Ae) are
given by

A < \/un+n0 +1(cf —e)? +3(cf +e)  1<n<N, (4.32)
A > Uning + 31+ ¢3), 1<n<N\. (4.33)

The index shift ng is given by ng = inln dim £(_,0)51(A)-
>c2

Remark 4.29. In the case of bounded 7111 and Ths, also methods from standard perturbation
theory yield estimates for the eigenvalues of 7', see lemma 3.9. For all eigenvalues A, of 7 we

obtain the estimate
_ T11 0
0 T

In the formula above, there is no need to determine an index shift ng. On the other hand, since

== v (3 n)|

Ty 0| _ -
[ )| = mostimul i7ealy = st .ol 1

the sign of the operators T1; and Ty are not taken into account. O

Eigenvalues in some left half plane

So far, we have used the Schur complement S; to characterise eigenvalues of 7 to the right of cs.
For a block operator matrix 7 with domain D(7) C H; @ Ha, consider

0 I 0 I —T: -T:
I 0 ( ) I 0 —T9 —T11
in Ho @ H1 with domain D(T(

that 0(7) = —o(—7) = —o(
o(T)N (—o0, c1) = —(a(T)) N (—e1, ).

= ( ) D(T). Since T7) is unitarily equivalent to —7, it follows
7)) which implies

Assume that 7 () satisfies conditions (B1), (A1), (D1) and (71), i.e., we assume
(Bl(*)) T»; is a closed operator from H; to He with T4, = Tio;

(Al(*)) D(T12) € D(T22) and Ty is symmetric in Hy and semibounded from above, i.e., there
is a constant ¢y € R such that

(x, Thox) < CQ”QQ’HQ, x € D(Th2);
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(Dl(_)) D(T51) € D(T11) and T is symmetric in ‘H; and semibounded from below, i.e., there
is a constant ¢; € R such that

(x, Ty1x) > 01Hx||2, x € D(T11);

furthermore, 71 is closed with (—o0,c1) C p(T11).

Ty, —-T
(T10) T = ( 22 21), D(T) = D(T12) & D(To1) € Ha & Hy.
~Ti2 —T11

Then the Schur complement Sg_) of T() is well defined for \ € (—c1,00); in particular, we have

ST = ~Toe = A= (<Ta) (=11 = V) (- Ti2)
= *(TQQ — (*)\) — Tgl(TH — (*)\))_lTlg) = *SQ(*)\), A > —cy.

If in addition 7 is selfadjoint and the Schur complement Ss is a holomorphic operator function
such that Sa(\), A < ¢1, is selfadjoint, then SY) has the same properties, and consequently (see
corollary 4.9),

o(T)N (=00, 1) = —(a(TO) N (=c1, ) = —0(S\7)) = o(S),

so the spectrum of 7 to the left of ¢y is given by the spectrum of Ss.
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4.2 The variational principle for the angular operator A

In the following we return to the angular operator A, formally given by

oA — —(I’I?’L cos 1 dq9 + s1n19 + aw sin ¥ on (O 7T)
dﬁ+smﬁ+awsmﬁ am cos 7

Since in this section no other Hilbert space than .Z2((0,7),dd) and products thereof occur, we set
H = Z?%((0,7),dd).

In section 2.1.2 we have seen that for k € R\ (—1,0) the operator A™" in the space H x H defined
by A™1f = 9 f with domain D(A™™) = C§(0, 7)? is essentially selfadjoint. In this case, its closure
is given by the block operator matrix

A = (;{? g), D(A) = D(B*) & D(B) (4.34)

where D is the operator of multiplication by the function (0,7) — R, ¥ +— amcos® and B is the

1
first order differential operator d% + :{L@ + awsind. The operator B with domain

D(B) = {f € H : f is absolutely continuous, B, f € H}

is closed; further properties of the operator B have been derived in section 3.3.2.
If not stated explicitly otherwise, it is always assumed that k£ € R\ (—1,0).

The aim of this section is to apply the variational principle of section 4.1 to the angular operator A
in order to obtain upper and lower bounds for its eigenvalues. For this task the Schur complements
Sy and Sy of A play a crucial role, see (4.2). For A € R\ (D) they are given by

D(S1(\) ={fe€D(B*) : (D-\N"'B*f € D(B)}, Si1(\) == =D —-\X—B(D -\ !B,
D(S2(\) ={f €D(B) : (-D—-\)"'Bf e D(B*)}, Sy(\) := D—A—B*(-D-\)"!

The Schur complements are investigated in appendix B with methods from spectral theory for
linear differential operators.

4.2.1 Application of the variational principle

In the following, we consider the family S; for A € (Jam|, c0) only.

Lemma 4.30. The angular operator fulfils conditions (71), (B1), (A1), (A2), (D1) and (D2.a) of
the preceding section, in particular, we have

c1 = —lam| < (z, —Dx) <l|am|=:1¢], z€H (A1)
¢y = —lam| < (z, Dz) < lam|=: cy, r€H, (D1")
=Dl = Dl = lam], (D2.a/)
and 0(D) = 0(=D) = 0¢s5(D) = [—|am|,|am|]. For all X\ € (lam|, o0), the form
D(si(\) =D(B),  siNIf.9] == (f, (=D —N)g) — (B*f, (D~ X' B"g), (4.35)

is symmetric, semibounded from below and closed. Further, the operator Si(\) is the selfadjoint
operator associated with s1(X\), and its domain is independent of A, more precisely, we have

D(Si(\) = D(BB*), e (Jam]|,o0). (4.36)
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Proof. Since D is the bounded operator given by multiplication with the continuous, nowhere con-
stant function am cos ¥, ¥ € (0, ), the assertions concerning the spectrum of D and relations (A1),
(D1") and (D2.a") are clear. Hence conditions (A1) and (D1) are satisfied with ¢y = |am/| and
c1 = —|am|, and (A2) and (D2.a) hold because D is bounded with ||D| = |am|. Conditions (71)
and (B1) hold because we have already shown in section 2.1.2 that the angular operator (4.34) is
selfadjoint for every a € R. Since o(D) = [—|am|, |am|], the sesquilinear forms s1(\), A € (|am|, c0),
are well defined, and, by proposition 4.11 and lemma 4.12, they are symmetric, semibounded from
below and closed. Proposition 4.16 implies that for A € (Jam|, co) the operator Si()) is the selfad-
joint operator associated with s1(\).

To prove (4.36), fix f € D(BB*) and \ € (Jam|, 00). We have to show that (D — \)"1B*f € D(B).
Since both (amcos®¥ — \)~! and B*f are absolutely continuous, we have

B(D— N Bf(9)

(i k+ 3
dv ' sin®

o d k+3
dy ' sind
d k+3

-+ —
dd sin

+ awsin 19) (am cos — )\)*1( + awsin ﬁ)f(z?)

o d okt
= (amcost — \) 1(@4- sin192

+ awsin 19) ( + awsin 19) f(9)

+ (%(am cos ) — )\)_1> (—% + ];Ig

+ aw sin 19) f()

= (D~ N BB ) + (S5 (amcosd — X)) B(9).

Observe that the first term on the first line is the formal differential expression associated with B.
Since, by assumption, f € D(BB*) and since both (D — \)~! and %(am cos — \) "1 are bounded
operators on H, it follows that (D — A\)~'B*f € D(B), and consequently f € D(S1(\)).
Conversely, assume f € D(S1())) for some A € (Jam|,o0). Since the function amcosd — X is
differentiable on (0, ), we have

BB f = — (% + ];Ig +awsing ) B*f(9)
= (% + ];1_3 + awsin 19) (amcos — \)(amcos? — \) (—(%9 + l;:rj + awsin 19>f(19)
= (amcos? — \) (% + 121:1_19% + awsin 19) (amcos® — \) ™! (—% l;:j + awsin ﬁ)f(l?)
+ (%(amcosﬁ — )\)) (amcos® — \) 7! (—% + 1;1_19% + aw Sinﬁ)f(ﬁ)
= (D-NB(D - \)"'B*f(9) + (%(amcosﬁ - A))(D — N7 IB*F(0).
Since D — X and %(am cos ¥ — \) are bounded operators on H, it follows that the function above
is also an element of H, hence we have B*f € D(B), implying f € D(BB*). O

Recall that the spectrum of the angular operator consists only of isolated simple eigenvalues without
accumulation points in (—o0,00), see theorem 2.14. We also know that the eigenvalues depend
continuously on the parameter a. Hence we can enumerate the eigenvalues \,, n € Z\ {0},
unambiguously by requiring that A, is the analytic continuation of \,, = sign(n) (k + % — % + n)
in the case a = 0. Since all eigenvalues are simple, it follows that A, < A, for n < m.

For fixed Kerr parameter a we define m+ € Z such that

< A2 < A1 < _|am| < Ay < -0 < /\m+ < |am|< /\m++1 < )\m++2 < ...
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ie., o(A)N[=lam|,|am|] = {N\, : m_ <n < m4, n# 0} and the number of eigenvalues of A in
the interval [—|am/|, |am|] is given by

# (0(A) N [=lam], [am|]) =

my —m_ if 0 € [m—,m4],
my —m_+1 if 0 ¢ [m—_, m4].

Observe that m and m_ depend on the physical parameters a, m, w and k.

Remark 4.31. Since the operator B = ( BO* g ) coincides with the angular operator in the case
m = 0, its spectrum also consists of discrete simple eigenvalues only. Further, 0 € p(B), see
corollary 3.20, and the spectrum of B is symmetric with respect to 0, see corollary 2.18. In the
following, we always order the eigenvalues p,, n € Z\ {0}, of B such that

S e £ <0 < < ope < (4.37)

then the spectrum of BB* is given by o(BB*) = {v, = u2 : n € N}, see also remark 4.24.
Furthermore, we have ||[B~!|~! = p;. With the enumeration (4.37) the eigenvalues of B and A in
the case m = 0 coincide. Estimates for the eigenvalues v, are given in section 4.2.2. O

Now we are ready to apply the theorems of the preceding section to characterise the eigenvalues
)\m++n7 n € N.

Theorem 4.32. Let ng = dim £(_n0)S1(Xo) for some Ao € (Jam|, Am,+1). Then the eigenvalues
of the angular operator A to the right of |am| are given by

: T
Ami4n = min  max max Ay , n € N. (4.38)
LED(BEY) el X yeD(B) y
1m =n 710

Furthermore, the eigenvalues can be estimated by

VVnotn — lam| < Amign < VPnotn + laml, neN, (4.39)

where Vpipn, = ;L?H_no are the eigenvalues of BB*.

Proof. By lemma 4.30, the angular operator satisfies conditions (7'1), (B1), (A1), (A2), (D1) and
(D2.a), and the domain of the operators S;(\) does not depend on A for A € (Jam|, 00). Further,
B* is surjective because 0 € p(B), so we have

Oess(S1) = Oess(A) N (Jam|, 00) =0

by corollary 4.9. Formula (4.38) now follows from theorem 4.23 with ca = |am| and A\, = co. Since
D is bounded and

—lam| [l2|* < (2, Dz) < lam||a]?, =z €N,

application of theorem 4.28 with co = ¢ = |am| and ¢; = ¢; = —|am| yields the estimates (4.39).

By theorem 4.23 we have ng = R (llrnirll )dim L(—00,0)S1(A). Since (Jam|, A, +1) € p(S1) and the
e(jam|,00

index shift ng is constant on p(.S7), also the assertion concerning ng is proved. O

Note that the index shift ng does not depend on the choice of A\g € (|am|, \p,, +1) but, of course, it
depends on the parameters a and m.
The following lemma gives a sufficient condition for the index shift to be nontrivial.
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Lemma 4.33. If there exists an eigenvalue u of A such that
2 ]am| — )\m++1 < pu < )\m++1; (440)

then we have ng > 1. If in addition Ay, 11 < 3|am|, then there is at least one eigenvalue of A in
[—lam], |am]].

Proof. Recall that A, 41 is the first eigenvalue of A which is greater than |am|, hence we have
p < lam|. If we also know A, 41 < 3|am|, then (4.40) shows that p > 2|lam| — Ay, 41 > —|am].
Hence we have that the eigenvalue p of A lies in [—|am|, |am]].

It remains to be shown that ng > 1. Recall that ng = AHTin |dim E(_OQO)Sl()\) and that the right
>|am

hand side is constant on the resolvent set of A and increasing with increasing X\. Hence it follows that
ng = n(A) == dim L 0)S1(A) for all X € (Jam[, A\, +1). Let D be an arbitrary linear manifold
such that D(S1) € D C D(s1) independent of A. In | , lemma 2.5] it has been shown that ng is
equal to the dimension of every maximal subspace of N (\) = {z € D : s1(\)[z] < 0} U {0}. Since
D(s1) = D(B*) does not depend on A, it suffices to show that there exists x € D(B*),  # 0 such
that s1(A\o)[z] < 0 for some \g € (|am|, Ay, +1) because then x spans a onedimensional subspace
in M(X\g). Since p is an eigenvalue of A, there exists an element (3 ) € D(B*) & D(B) such that

(A=) (5) =0, i,
(=D — p)x + By =0, B*x 4+ (D — p)y = 0.

In particular, we have (D — \)"!B*z = —(D — A\)"YD — p)y = —y + (u — \)(D — X\)~'y and
(B*z, y) = (z, By) = (x, (D + p)x). Thus for every A > |am)|

si(N)[z] = (z, (=D —Nz) — (B*z, (D — \)"'B*z)
= —Az[} = (z, Dx) + (B*z, y) — (p = N ((D = \) ' Bz, )
= (=) (=3 + [[yl3) = (n = 2> (D =Ny, y).

Since A > |am| = ||D||, we have 0 < —((D — A) 'y, y) < (A — |am|)~!|jy[|2. Furthermore, we know
from lemma 2.17(iii) that x(¥) = y(r — ) for all ¥ € (0,7) which implies ||z|l2 = ||y|l2. Thus we
have

si(N)[2] < Jlz]I3 (X = Jam]) ™ (= X) (1 + X = 2|am]).

Set Ao := Amy 41 — 3(1 + Am 11 — 2|am|). Then it follows from (4.40) that Ao € (lam|, Am_ 41).
Furthermore, we have u — Ao < 0 and p+ A — 2|am| = 3(p + Ap, +1) — |am| > 0 by (4.40). Thus
it follows

s1(M0)[z] < [l2]13 (Ao — lam]) ™ (1 — Xo) (1 + Ao — 2[am]) < 0. O
Recall that v,, n € N, denote the eigenvalues of BB*.

Lemma 4.34. (i) If there exists jo > 2 such that

VVnotjo — VVnotjo—1 > 2|am| and VVnotjotl — \V/Vnotio > 2lam], (4.41)
then ng = m.

(i) If |B*7Y|7t > 2|am]|, then the angular operator A has no eigenvalues in [—|am|,|am|] and
we have ng =0 and my = 0.
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Proof. (i) From standard perturbation theory, see remark 3.12, we know that
sign(n)/Vin — lam| < Ay < sign(n),/v),[ + |am], n € Z\ {0}. (4.42)

Hence (4.41) implies that the angular operator A has exactly one eigenvalue in the interval

[\/Vnotjo — lam|, /Unotjo + lam|]. Since by (4.41) and (4.39) both An,4j, and A, 4j, lie in
this interval, it follows that ng = m_.

(ii) Assume that ||[B*~!||~! > 2|am|. Then we have /vy > 2|am| for the smallest eigenvalue vy of
BB*. From the estimate (4.42) we obtain that

A1 < —/v1 + Jam| < —|am|. and A > \/v1 — |am]| > |am]|

Hence the angular operator A has no eigenvalues in [—|am|, |am|] which implies m = 0.
For A > |am| define the set N'(\) as in the proof of lemma 4.33. Since ng is equal to the maximal
dimension of subspaces of N'(X) for A € (lam|, Ay, 41), it suffices to show that N'(A\) = {0} for A
close enough to |am|. To this end fix an arbitrary x € D(s;) = D(B*). Then it is easy to see that
for all A > |am)|

s1(A)[z] (z, (=D = N)z) — (B*z, (D — )\)_IB*CL')
> (=lam| = A) [[]|3 + (lam| + X) 7" | B*z|3

> (lam| + X7 23 (187172 = (A + am])?).

Since by assumption ||B*7!||7! > 2|am|, we have s1()\)[z] > 0 for all z € D(B*) \ {0} if \ is
sufficiently close to |am|. O

Recall that for fixed parameters a, m and w, we have |k1|im |B~!|| = 0 by lemma 3.34. Hence, if
—00

the norm of the wave number k is large enough, then the angular operator has no eigenvalues in
[—|am|,|am|] and the index shift ng vanishes.

4.2.2 Estimates for the eigenvalues of BB*

In the minimax principle in theorem 4.32, the eigenvalues of BB* appear in the formula for the
eigenvalues of the angular operator A. The operator BB* is the selfadjoint realisation of a formal
second order differential expression, so Sturm’s comparison theorem allows us to find upper and
lower bounds for the eigenvalues of BB*.

Definition 4.35. A formal differential expression 7 is called a Sturm-Liouville differential expres-
sion on (0, ) if it has the form

TU = i<£9(pi9u> +qu> on (0,m) (SL)

where p, ¢ and r are measurable functions of ¢ on (0, 7) such that p, ¢ are real functions, p has
no zeros, r is positive almost everywhere on (0,7) and |r| and [p~!| are locally integrable on (0, 7)
(cf. section 2.1). The differential equation 7u = 0 is called a Sturm-Liouville differential equation
on (0,7).

It is well known that for every real A there is a unique solution of the initial value problem
(T=ANu=0, u(o) = uo, p(Yo)u'(Yo) = u

for given ¥y € (0,7) and arbitrary initial values ug, u; € R, see, e.g., [ , chap. 2].
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Fix A € R and let u be a nontrivial real solution of (7 — A\)u = 0. Then there are real valued
differentiable functions p and § such that

p(0)u' () +iu(¥) = p(9) e, ¥ € (0,7).

The transformation from u and pu’ to the new variables 6 and p is known as Priifer substitution,
see [ , chap. 13]. Although the phase function § is determined only modulo 27, we can always
choose it such that it is differentiable. Obviously, u vanishes at a point ¥y € (0, 7) if and only if
0(Yy) € {nm : n € Z}. Furthermore, ¢ and p satisfy the differential equations

1

§(9) = o) cos? () — (q(¥9) — \) sin? 6(09), ¥ € (0, ),
J(9) = (p(lﬁ) +(8) — X) sind() cosd(d), 9 € (0, 7).

Consider two Sturm-Liouville differential equations

d d d d
_ 2 (M 2, 1,10 — _ 2 (2,2 2,2 —
d19<p U )—l—q U 0, dﬁ(p u )+q u 0 (4.43)

on the interval (0, 7). For solutions uY and w2 we denote the corresponding phase functions by
6 and 6@, respectively. If pi» — p2 and ¢2 — ¢V are either positive or negative and if the sign
of (61 — §¢?)) is known at one point ¥y € (0,7), then Sturm’s comparison theorem allows us to
compare the phase functions on the whole interval (0, ).

Theorem 4.36 (Sturm’s comparison theorem). In (4.43), let p{ > p > 0 and ¢V > ¢,

(i) If there exists a ¥y € (0,7) with 62 (0y) > 51 (W), then 52 (9) > 5V (9) for all ¥ € (Yo, 7).

If there exists a ¥y € (0,7) with 52 (09) > 61 (1), then 52 (9) > 60 (9) for all ¥ € (Yo, 7).

(ii) If there exists a 9 € (0,7) with 6@ (¥y) < 60 (), then 6@ (9) < 61 (9) for all ¥ € (0,1).
If there exists a 9o € (0,7) with 62 (9g) < 61 (W), then 62 () < 5 (9) for all ¥ € (0,y).

(iii) If there exist ?90, 191 € (0, ) with 62 (%) > 61 (9g) and ¢ (9) > ¢'2 (9) for all ¥ € (9o, 91),

(
then 6 (0) > 50 (09 for all ¥ € (Yo, ).
(

(iv) If there exist 9o, V1 € (0,7) with 62 (%) < 61 (9g) and ¢ (9) > ¢2 (9) for all ¥ € (91, 9),
then 62 (9) > 50 (9) for all ¥ € (0,7).

For a proof, we refer the reader to | , theorem 13.2]. If the solutions uY and w2 have only
finitely many zeros in a right neighbourhood of 0, then the phase functions 6’ and 6% can be
continuously extended to 0 and (iii) holds also for ¥y = 0. Analogously, if the solutions have only
finitely many zeros in a left neighbourhood of 7, then the phase functions can be continuously
extended to 7w and and (iv) holds also for ¥g = .

If every solution u of 7u = 0 has infinitely many zeros, then the equation is called oscillatory.
Now we use the comparison theorem to compare the eigenvalues of selfadjoint differential operators
associated with Sturm-Liouville differential expressions (SL). The next theorem is an application
of theorem [ , theorem 14.10].

Theorem 4.37. On (0,7) we consider the Sturm-Liouville differential expressions

d . d d . d
o 4 omd o 4 emd o
t wl T and t wl T

with p<1) > p<2> and q<1> > q(2>‘
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For j = 1,2, let RY) be a selfadjoint realisation of vV in £2((0,7),dV) with separated boundary
conditions with discrete point spectrum only which is bounded from below. Further, we assume

that all eigenfunctions ¥V of v and 2 of v'2 can be continuously extended to 0 and m by
D(0) = 0 (7) = 0 and 2 (0) = 2 (7) = 0. For j =1,2 let

)\§3> < )\éﬁ < e < Aj@m

be the sequence of eigenvalues of RY) where N4 € NU {c0}. If N = 0o, then the sequence above

has to be understood as the infinite series )\§j> < )\éj> <...
Then for all integers n < N, N2 we have

A2 < D,

Proof. Let w,@ be the (up to a constant factor unique) eigenfunction of RY) with eigenvalue )\ﬁ?.

By | , theorem 14.10] we know that the mth eigenfunction ¢,<72> has exactly m — 1 zeros in the
interval (0, 7). If we denote the corresponding phase functions by §(4, 1/1,<%>, )\éﬂ)) and choose them
such that they are zero at ¥ = 0, we obtain

5(0, ¥ AR = 80, ¥, A

m

<2)) -0
" ’ 4.44
é(m, w%), Aﬁ,?) = (m, LZJ,@, )\5,23) = mm ( )

for all integers m < N, N Now fix n € N with n < N, N Then for all )\é,? with

A2 > Al it follows ¢\ — A > ¢ — A2 Now (4.44) together with statement (iii) in the
comparison theorem 4.36 and the note thereafter yields

nro= 8(m, o, M) < 8(m, w2, AR = ma.

m
By the above inequality, we have that )\7@ > )\511> implies n < m. Hence n > m implies )\i,? < A§3>
and the theorem is proved if we choose n = m. ]

Next, we use the preceding theorem to estimate the eigenvalues of BB*. The selfadjoint operator
BB* is associated with the Sturm-Liouville differential expression

d k+3 . d k+3 . a2
b = (@—F g +awsm19><—@+ g +awsm19) = —w—l—q(ﬂ), v e (0,7).
with
k4 1)2 = (k+ 1) cosw
q(v) = (k+5)" = (k4 35)cos + a?w?sin® ¥ + aw cos ¥ + 2(k + Haw, v e (0,m). (4.45)

sin ¢

Remark 4.38. The operator BB* fulfils the assumptions on R and R® of theorem 4.37 for
kEeR\ (-1,0).

Proof. Tt follows from lemma B.2 in the appendix with m = 0 that for & € R\ (-2, 1) the differential
expression b is in the limit point case both at 0 and at 7, hence for a selfadjoint realisation of b no
boundary conditions are needed. If k € (—2, —1], then b is in the limit point case at 0 and in the
limit circle case at m; if k € [0,1), then b is in the limit circle case at 7 and in the limit point case
at 0. In both cases all selfadjoint realisations of b are given by separated boundary conditions.

Since the operator BB* is positive, its spectrum is bounded from below. Furthermore, B~! is com-
pact by lemma 3.22, hence BB* has discrete point spectrum only. From the subsequent lemma 5.1
it follows that for £k € R\ (—1,0) all functions in the domain of B* converge to 0 for ¥ — 0 and
¥ — m, in particular, all eigenfunctions of BB* can be extended continuously to the points 0 and
7w with value 0. ]
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Our goal is to find suitable potentials ¢ > ¢ and ¢ < ¢ such that there are corresponding
2
selfadjoint realisations R+ of by = —ddw+<& that satisfy the assumptions on the operators R{Y) and

R®@ of theorem 4.37, respectively. Then the eigenvalues of Ry yield estimates for the eigenvalues
of BB*.

We define the following test potentials
(k+3)2—(k+1)cosv

W) = I +Q_, 9e(0,7), (4.46)
sin
¢"m(9) = — +Q4, Ve (0,m), (4.47)
sin“ 7
with
Q- = 2(k+ 3)aw — |awl, (4.48)

a2+ 1420k + Haw if 2aw ¢ [—1, 1],
0, = 1120kt 3) £l (4.49)
2(k + 3) aw + |aw| if 2aw € [-1, 1].

Theorem 4.39. Let {v,, : n € N} be the spectrum of BB* enumerated as described in remark 4.31.
Then the following estimates hold.

max{0, (|k+3|—3 —I—n)2 +Q} < v < (k+i -4 —|—n)2 + Q.. (4.50)
Proof. Define the Sturm-Liouville differential expressions
+ d? +
'C< ) = —w+q< ) on (0,71')

and their corresponding realisations R in .£2((0, rr), d¥) with domain D(R™)) := D(BB*). Note
that R‘) — BB* and R{™) — BB* are bounded and that for w = 0 we have RH = R{-) = BB*.
Thus it follows from remark 4.38 that also the operators R{E) satisfy the conditions on R} and
R®) of theorem 4.37. Furthermore, we have for all 9 € (0, 7)

a’w?sin? ¥ + aw cos ¥ + 2(k + 2)aw > aw?+ 1 +2(k+ 1) aw + 19rr%in]{—(aw cost — $)?}
€l0,m
= a’w?+ 1 +2(k+ %) aw — (law| + 1)?
= 2(k+ %) aw — |aw|
-0,

a*w?sin® ¥ + aw cos ¥ + 2(k + 3)aw < a?w? + 1 +2(k + 3) aw + ﬂm[aomx]{—(aw cost — 3)?}
€|0,m

0 if 2aw ¢ [—1, 1],

2 2,1 1
= a*w*+ 7+ 2(k+ 3)aw —
i+ 2k ) {(\aw|—§)2 if 2aw € [—1, 1]

 Jarr 2k aw  if 20w ¢ [-1, 1],
|2k + 1) aw + |aw| if 2aw € [-1, 1]

= Q,

thus it follows that ¢{~) < ¢ < ¢{+).
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(&) (£)

Finally, we have to determine the eigenvalues of R'\*/. The computation of the eigenvalues of R
is similar to the computation of the eigenvalues of the angular operator in the case a = 0, see
section 3.1. We have to solve the differential equations

QL — ,,> (W) = 0, 9 € (0,7) (4.51)

> (k+3)?—(k+1)cosd
dv? sin? ¥

with functions 1) € D(R*)) = D(BB*), that is, with functions satisfying the integrability condition

/W(ﬁ)\zdﬁ < .
0

If we apply the transformation of the independent variable
r = 1(1+cosd), ¥ € (0,7),
then differentiation with respect to ¥ becomes % =—z(1-1) (%; the ansatz
v(r) = 2°(1—2)%p((z))  with  a:=Lk+1 B=1k+1/+1
yields the equivalent differential equation
z(1—2)v"(2) + 2o+ 1 — (14 2a+28)2)v'(z) + (v — Qi — (e + B)?)v(z) = 0, z € (0,1);

and the integrability condition becomes

1
/|v(m)\2x(2a+1)(1—x)(Qﬁﬂ) dz < oo.
0

Note that this system is identical to (3.13a) with A\? substituted by v — Q4. We already saw in
lemma 3.3 that for v — 24 > 0 this equation has a solution satisfying both the differential equation
and the integrability condition if and only if

v—0s € {(k+1i-1+n)®:neN}
The corresponding solutions are the Jacobi polynomials
v(x) =F(—(n—1), n+ k| + |k +1]; |k| + 1; x).

In the case n = 1 this polynomial reduces to a constant function implying that the corresponding
eigenfunction vy (9) = 2*(1 — 2)PF(0, 1+ |k| + |k + 1|; |k| + 1;2) has no zero in (0,). Since the
mth eigenvalue of R‘*) has exactly m — 1 zeros in (0, ), it follows that he smallest eigenvalue is
v = (k+ 3+ 42+ 04

Thus all eigenvalues of R™®) are given by
vi = (k+3—3+n)?+0Qu, n€N.

Application of theorem 4.37 yields v, < v, < v;I. Furthermore, since BB* is a strictly positive
operator (see, e.g., lemma 3.30), we have v, > 0 for all n € N. O
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4.2.3 Explicit bounds for the eigenvalues of A

As before, A, denotes the analytic continuation of the eigenvalue A, = sign(n)(|k + 3| — 3 +n) in
the case a = 0. The following theorem combines theorems 4.39 and 4.32.

Theorem 4.40. Let A\, 4y be the nth eigenvalue of the angular operator A greater than |am.
Then

max{|am|, Re<\/(lk + 3= 3 +mno +n)2 +Q_ — ’am|)}

< Appgn < \/(\k—I—%\—%+no+n)2+ﬂ++\am|, n € N.
The quantities
Q- = 2(k+ 1) aw—|awl,
2(k + 1) aw + |aw| if 2aw € [—1, 1],

BT ot e if 200 ¢ -1, 1]
1 2 ’

have been introduced in (4.48) and (4.49); the inder shift no = min dim £(_ )S1()\) has been

A>|am]|
defined in theorem 4.19.

That the upper bound is always real is proved in remark 4.43 at the end of this section. A
result similar to theorem 4.40 follows directly from standard perturbation theory as explained in
section 3.2 even without the need to determine ng. For convenience, we state this result in the next
theorem.

Theorem 4.41. Let A\, be the nth eigenvalue of the angular operator A with the ordering described
above. Then for alln € N we have

Re(y/(k+ 31— 5 +n)"+0 ) ~lam| < A0 < /(k+3 =5 +0)° + 94 +]am].
The functions Q_ and Q4 are the same as in theorem 4.40.

Proof. In theorem 4.39 we have already provided estimates for the eigenvalues of BB*. Since B
and B* are invertible, the spectrum of B = ( 2. B) is given by 0,,(B) = {+\/vn : vn € o(BB*)}.
Now, application of analytic perturbation theory to the operators B and A with m as perturbation
parameter yields /v, — [am| < A, < /Uy, + |am)|. O

In the following, we denote the lower bounds in theorems 4.40 and 4.41 by Al and AlLSPT) and the
upper bound by A and AwSPTL that is,

Al— max{\am], Re<\/(]k +3-3+ n)2 +Q_ — \am]) }, (4.52)
ALSPT] Re(\/(|k +i—14n)’+o ) ~ |am, (4.53)
A= ASPTL \/(\k + =1 4n)’ 10, +aml. (4.54)

The next lemma follows immediately from 4.34.
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Lemma 4.42. (i) If there exists jo > 2 such that

U

no+jo

A >0 and A A

no+jo+1 notjo = 0, (4.55)

then ng = my..

(i) If )\[11] > |am|, then the angular operator A has no eigenvalues in [—|am|, |am|] and we have
ng =0 and my = 0.

Note that we have

lim AW, Al = —2\am|+jvlgnm\/(|k+%!+N+%)2+Q_—\/(yk+%!+N—%)2+Q+

N—oo

= —2|am|+1;

therefore, (i) of lemma 4.42 holds whenever |am| < 1.

It should be noted that for large k the bounds A and A“ are approximately linear in the wave
number k. The offset £|am/| is due to the fact that the additive term am cos v (_01 (1)) arising in the
angular operator is treated as a perturbation.

Remark 4.43. The upper bound )\[# lis always real.

Proof. Assume that 2aw € [—1,1]. Since n > 1 and ng > 0, the radicand in )\gJ | can be estimated
by

(k431 =5 +no+n)"+Qp > (k+3+ ) +2(k+ 3) aw + |aw]

=
> (k+3+3)2—lk+3] = [k+32+1>0

If 2aw ¢ [—1, 1], then the radicand is also positive which can be seen from

(k43 + 3+ a2 + 1+ 2k + L) aw

= (k43143 +(aw+k+3)"+ 1~ |k + 3P

= [k+i+1+(aw+k+1)? >0 O

k43— +no+n)°+0Q
2 2

v

Observe that for a = 0 we obtain ng = 0 from lemma 4.34 and hence
A= M = Lop 1 -y, a1,

which coincides with the exact formula for the eigenvalues A,, obtained in section 3.1.2 in the case
a = 0. Hence it can be expected that at least for small a the estimate presented in theorem 4.40
are better than those obtained in sections 3.3.3 and 5.2.
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Chapter 5

An alternative lower bound for the
modulus of the eigenvalues of A

The bounds for the eigenvalues of the angular operator derived in the previous chapters all contain
an additive term +|am/|. In this chapter we establish another lower bound for the modulus of the
eigenvalues of A that does not depend on am.

In the first section, we investigate the behaviour of functions f € D(B*) and g € D(B) in a
neighbourhood of 0 and 7. Then we introduce certain semibounded sesquilinear forms which give
rise to a new lower bound for the modulus of the eigenvalues of the angular operator A. To this end,
A is subjected to a unitary transformation such that, under certain assumptions on the parameters
k, a and w, the intersection of the spectra of the operators on the diagonal of the transformed
operator is empty. Operator matrices of this type have been investigated in | ]. All entries
of the transformed operator matrix are unbounded. However, the gap between the spectra of the
diagonal entries provides a lower bound for the modulus of the eigenvalues of A.

5.1 Unitary transformation of A

5.1.1 Characterisation of the domains of B and B*

Recall that the angular operator

-D B %

A= (30 B) P = o) e D)

is selfadjoint on the Hilbert space .Z2((0,7),dd)?; the operator D is a bounded multiplication

operator and B is a closed differential operator of first order (see (3.1)), formally they are given by
d k+3

D = 9 B=—
am cosy, dv + sin

+ awsin ¥, ¥ € (0,m).

In the following lemma we describe the behaviour of functions f € D(B*) and g € D(B) in a
neighbourhood of the endpoints of the interval (0, 7). We show that for & € R\[—1, 0] these functions
tend to zero at the endpoints at least of order v4J and /7 — 9, respectively. For k € {—1,0} the
same asymptotic behaviour is proved in the subsequent remark 5.2 for functions f, g such that ({;)
is an eigenfunction of A. In the proof of lemma 5.1 we use (3.45a) to estimate the quotient of
tangent functions; recall that this estimate, and alternatively estimate (3.45c), has been used in
lemma 3.30 and lemma 3.34 to estimate the norm of || B~!||, thus entering the lower bound for the
eigenvalues of A obtained in theorem 3.35. Although, in general, estimate (3.45c) gives a sharper

101
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lower bound for the modulus of the eigenvalues of A, it cannot be used to obtain a result similar
to that of lemma 5.1.

In the following lemma we again attach a subscript k to the operators B and B* to indicate their
dependence on the wave number k.

Lemma 5.1. For k€ R\ [-1, 0] let f € D(B;), g € D(By). Then we have

[f@)] < e(k) Dk, w) [ Bifll2 v (m — 9), 0 € (0,m), (5-1a)
g < (k) T(k,w) [ Brgll2 vVI(m —9), 0 € (0,7) (5.1Db)

with T'(k,w) € R from lemma 3.30 and
93 (12k+1]-2)
V(2 +1]-1)

For k = 0 and arbitrary € > 0 there exist constants C. . and C. such that for all f € D(Bj) and
g9 € D(By)

clk) =

1f)] < Cee | BifllaVm =093, |g(¥)| < C:||Boglla VO (x —0)275, D€ 0,m). (52

Also for k = —1 there exist constants C. . and C. such that for all f € D(B*,) and g € D(B_1)

1F(0)] < Ce|BE1flla VI (= 9)275, |g(0)] < Ce||Boaglava—99275, 9 € (0,7). (53)

Proof. The case k € {—1, 0} is treated separately at the end of the proof.

First we prove (5.1a). For k > 0 and f € D(B;) the Cauchy-Schwarz inequality shows for arbitrary
¥ € (0,m)

™

1
F@) = 1B ) = \W) / w(t)BZf(t)dt‘
9
- 9N k+3i
aw(cos t—cos ¥) tanf | o
< ﬂ/ . () 1Bl
<

T/ an £ 26+ 3
Sup{eaw(costfcosﬂ) :O<19§t<7T} | By fll2 (/(t %) dt) .
an 5
2
9

53

any < U (see (3.45a)) yields

tan 5

Application of the estimate

M

™ 1
L TR Bl (9VF)?
D) < T(k,w) || B flls %2 /t%l dt| = ”“(1—() ) V.
[F@) < T(k,w) By fll2 YT -
v
The well known equality 2¥ —1 = [](z — ey) for natural numbers v yields
j=1
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Hence we can continue the estimate of |f(1)], using |% — e%| <2forj=1,...,2k—1:
) < LENBle s Qﬁl 7_62;;5 2T (kw) B T
S VA S Vo '

For k < —1 the assertions are obtained analogously if we use equation (3.45b) instead of equa-
tion (3.45a) to estimate the term containing the tangent function:

0 = 1B B0 = | Zs@(t)BZf(t) ]
< T(k,w) ] / (E“ﬁ) B dt'

IN

f/tan |2k+1| fomog) el N
D(k,) !B}if||2< / (E ) Lk ) 151l (/ (=) dt)
0 0

_ T(k,w) | Biflla vV =0 ( > L+ |2k+1|
VR 1

* [2k+1]—1
L(k,w) || By fll2 v — 9 7= i
2k +1] -1
2HHD Dk, w) | B S
m(12k+ 1| —1)

N |=

[

Jj=1

I(m — ).

Next we prove (5.1b). For k > 0 and g € D(By)

9
9(0)] = |B;'Big| = ‘ L v dt'
0

A 1
tan L\ *t2
< /eaw(cosﬁ—cost)( 129) |Bkg(t)| dt
2
0

1
2

9
< Sup{eaw (cos¥—cost) . ()<t§19<7r} ”BkgHQ /( 19
3
0
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t
2 < I=C (see equation (3.45b)) yields

The estimate

=

v
9| < T(kw) uBkgum—m’f*%( / (ﬂ—t)_zk_ldt)
0

1
Lk, IBrgllz 5 ( (77—19)2k>2
2k T 2k
2k—1

_ I(k,w)||Brgll2
= HeBale /56— H

2*=2 T(k,w) | Bugll2
- 2k

[ SIS

2imj

I — ).

The calculation for k < —1 is similar.

It remains to prove the assertions for k € {—1, 0}. We consider the case k = 0 only. For k = —1, the
result can either be obtained by similar calculations or they can be derived by symmetry arguments,
cf. remark 3.29. So we assume k = 0 and fix € > 0.

Since 0 < tang < tan% < 1forall 0 < ¥ <t<m, it follows immediately that

3
2

Ftan? \32
If(@)] < T(0, )IIBofH2</tan2 dt) < V2T(0,w) | B; fll2 VT — 9,
[
(5.4)

0 1
tand 2
9] < 1O Bogle [ 222at)" < VEDO.0) |Bugll V7,
2
0

hence there are constants C,, and C such that lf(9)] < C~’*||B(’)‘fH2\/7T — v and |g(¥)] < C~’|]Bog||2\/5
for ¥ € (0,7). Since for every a € (0,7) the functions

(0,a]: 9 — (71—19)%75 and [a,m): ¥ — R
are strictly positive, it suffices for the proof of (5.2) to show that the limites 119irr%)(19*1+2€]f(19)]2)

and éim ((m —9)~12|g(09)|?) exist and are finite.

A straightforward evaluation of the integrals in (5.4) leads to

t
2

) < T 1537 / RRE ) = VA0 Bl (- ten § s )%
U

1

U
tan & 2
l9(9)] < T(0,w) || Bogll2 (/tan’zg dt) = V2T(0,w) || Bog]l2 (— cot & ln(cosg))%.
9 2
Since
142 9 L tang oo
lim 9~ tan 5 In(sin?) = lim (9 In(sind)) = 0,
9—0 9—0 U (5.5)
t 2 '
lim (7 = 9) 1+ cot § In(cos #) = lim € Z ((x = ¥)* In(cos ) = 0,
— - T —

the assertion is proved. O
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For £ = 0 the limites in (5.5) do not exist, hence a decay, e.g., of arbitrary functions f € D(B*)
of order V0 for ¥ — 0 and k = 0 cannot be obtained with the methods applied in the proof of

the lemma. However, with the theory of ordinary differential equations, we can prove the following
remark.

Remark 5.2. Let k € {—1,0} and ¥ := (5) be an eigenfunction of A. Then both f and g decay
of order \/¥(m —3) at ¥ =0 and ¥ = 7.

Proof. We show that for every eigenfunction ¥ of A there exists a positive number ¢ such that

¥ (9)]| < er/I(m —9); here || - || denotes the usual norm on C2. To this end, we first rewrite the
differential equation (A— A)u = 0 in the equivalent form oj03(A—A)u = 0 such that the differential
operators are placed on the diagonal of the new block operator matrix; explicitly

0 = o103(A—ANu
(0 1 1 0 0 % k+ 0 1 —amcost awsind
- <1 0) (0 —1> (<_(ﬁ9 0) T (1 0) + < aw sin ¢ amcosﬁ) /\> v
d .
- 0 k+1 /(=1 0 —awsint? —amcos? 0 -1
— dv ) —
<<O d%)—i_smﬁ (0 1)+<—amcosﬁ aw sin ¢ > /\<1 O))u

Now we show that for k € {—1,0} there is at least one solution that decays like v/9) near 0. The
decay like /7 — 1 in a neighbourhood of 7 can be proved analogously. Note that

bl (=1 0\ kel (=1 0\ | /ktl kel (=1 0O
sin 0 1 - 0 0 1 +(sin19_ 19) 0o 1)

where the second term on the right and side is analytic in a complex neighbourhood of 0. To ease
notation, we define the function

(k5 k3 (1 O —awsintg —amcos?d) | (0 -1
T() = (Sinﬂ 19) 0 1 + —amcostd  awsind A 1 0

in a sufficiently small neighbourhood of 0 such that T is analytic. Now we apply a transformation

N | =

such that the eigenvalues of the matrix in front of the singular term s 72

We assume k = 0 and set Up(d) := (§9). (For k = —1 an appropriate transformation matrix is
U_1(9) = (}9).) We obtain

0 = Uy'oros(A )\)UoUo_lu

d 1
L0 —(k+35)+1 0 1
— dv 2 T

d 1
4 —k+3 0 _ B
_ a0 - 2 ultu, | Ut
<(0 d%>+19< 0 k+%>+ 0 O) 0 B

Since k = 0, both diagonal entries in the coefficient matrix of % are equal to % Evaluation of the
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third term gives

U T = (o —(amcosﬁ—A))

0 0
k1 ket -1 0 —aw sin Y 0 _ 0 0
+ (Sinﬂ 9 ) 0 1 + —am¥ cos? awsind¥ A 9 0
l 0 _(am_)\) +am(lfcosﬁ) 0 1
9 \0 0 9 0 0
k3 k+d -1 0 —aw sin ¥ 0 B 0 0
+ (Sinﬁ 9 ) 0 1 T —am¥ cos? awsinY A 9 0

_. % (8 R A)> +To(9). (5.6)

Sl

Note that Ty is analytic in a sufficiently small complex neighbourhood of 0. Summarising the
transformations above, we find that the equation (A — A)u = 0 is equivalent to

d
TU 'u = <<dOﬂ 2 > +1T +T0(19)> Uslu = 0 (5.7)
d9
kel
with the constant matrix 773 = k(;r 2 (ZTI)\) and the matrix function T defined in (5.6).
2
According to | , chap. 4, theorem 4.1], a fundamental system W of the differential equation

Tw = 0 is given by
W) = P@)Y

where P(9) =1+ Y P;¥ is an analytic function and
i=1
Ty . —logd9 Ty _ q—% 1 0 0 (am—)\) logﬁ
0 =e _192<<0 1>_|_<0 0 )

Thus a particular solution ¥ of the differential equation (A — A)u = 0 in a neighbourhood of 0 is

given by
wao = aowen() = o (39)+ 6 ) )

— 95U, P() (é) _ 95U, <(1)) 95U S Py <(1)>

J=0

1 s ( (1 5 i (1
(o) +22(() 02 o))
]:

where Py =: (pij)i j=1,2. Since the second term is analytic in a neighbourhood of 0 and tends to 0

(NI

=

for ¥ — 0, there is a constant ¢y such that || Uy(9)|| < ¢ |19%| in a neighbourhood of 0. Analogously,
we find a solution ¥, of (A — A)u = 0 and a constant ¢, such that | U, (9)| < ex|(m — 19)%| in
a neighbourhood of m — . If X is an eigenvalue of A with eigenfunction ¥, then we must have
U = dy ¥y = d; ¥, for some constants dy,d; € C because A is in the limit point case both at 0
and 7. Combining the estimates for the decay of ¥y and ¥, we conclude that there must be a
constant ¢, such that ||¥(9)| < c¢y/Y (7 — ) for all ¥ € (0, 7). O
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Remark 5.3. If we estimate the integrands in the proof of lemma 5.1 by means of exponential
functions (that is, if we use (3.45¢) instead of (3.45a) and (3.45Db)), we can show that elements
of D(B*) and D(B) decay like the square root only for one endpoint of the interval (0,7). For
instance, for £ > 0 we obtain

O [f@)] < F(j;]!ilfif”e(2k+1>W(e<2k+1)<w>_1);7 f e DB,

D) IBoll | ko
V2k+1

—~~
—
=
S
—~
53
=
N

, g € D(B). O

5.1.2 The transformed operator Ay

As already mentioned at the beginning of this chapter, there is a unitary transformation that trans-
forms the angular operator into a block operator matrix whose diagonal entries have nonintersecting
spectrum. For the angular operator in the form

9 d | k3 in Y D B
A= —]:L’rriCOS do + sin ¥ + awsin = (_ * > ,
_% + S;:g + aw sin ¥ am cos? B* D

only the off-diagonal entries are unbounded. The operators —D and D on the diagonal are bounded,
but their spectra are not separated, they even coincide:

o(D) = o(=D) = [~[am], |am]|].

Transformation of A with the unitary matrix U = \}5 (_f ﬁ) leads to

k+3
Ay = UAU™! = [ sin9
—%+amcos19 —(l€+

sin

(5.8)

2 4 awsin )

+ aw sin ¢ %—i—amcosﬁ _ (—Dy By
o B, Dy)’

where

By == $(B-B*)+D = %—l—amcosﬂ,

1
Dy = —%(B + B*) = —(:;;39 + awsinﬁ).

Recall that this transformation was applied already earlier in section 2.2. Since A is selfadjoint

and U is unitary, the operator Ay with domain

D(Ay) =UD(A) = {(Z i_ ;) :feD(BY), ge D(B)} (5.9)
is also selfadjoint. Although the angular operator A is a block operator matrix, it is not clear
whether the operator matrix Ay is also a block operator matrix since its domain is not given
explicitly as a direct sum of two submanifolds. In fact, the next remark shows that for k € {—1, 0}
the block operator Ay is not a block operator matrix.

Remark 5.4. For k € {—1, 0} the operator Ay is not a block operator matrix.

Proof. We have to show that for wave numbers k € {—1, 0} the domain D(Ay) = UD(A) of Ay
cannot be written as a direct sum D(Ay) = Dy @ Dya with Dy, Dya € ZL2((0, 7),dd). We



108 5.1. Unitary transformation of A

show the assertion for £ = 0 only; the case k = —1 follows similarly. Let x be a smooth function
on (0,7) with values in [0, 1], such that

X =

1 in a neighbourhood of 0,
0 in a neighbourhood of 7.

1
We consider the vector valued function x¥; with Wy (9) = t(9) (§) and () := (tan g) 2. Recall
that Wy, already defined in (2.16), is a solution of the differential equation 2A¥ = 0 and that it

lies left in .#2((0,7),dd). Hence x¥; lies in the domain of A, implying that U(x¥;) = %Xt (H)

lies in the domain of Ay. On the other hand, Dy (xt) diverges of order 973 for ¥ — 0, hence it
is not square integrable. Consequently, the vector valued function xt (}) cannot be an element of
the domain of A;; which proves the assertion. O

Although in general Ay is not a block operator matrix, the minimal operator Ar(}‘in, defined by
D) = ooy = v{ (1) fgecrom) = D)

(1) - ()

always is. We have already shown that A™" is essentially selfadjoint and that A is its selfadjoint
extension (see section 2.1.2). Therefore also A™ is essentially selfadjoint with closure Ay .

For k € R\ [-1,0], we associate sesquilinear forms with the entries of Ay as follows:
oyfu,v] = (u, Dyv), u, v € D(dy) (5.10)
bylu,v] := (u, Byv). u, v € D(by). (5.11)
As domains we choose either D(0y) = D(by) := D(B) or D(oy) = D(by) := D(B*).

Remark 5.5. (i) For k£ € R\ [-1,0], the forms are well defined with either domain; in fact, if we
use equation (5.1b), it is easy to see that for all k € R\ [—1,0] and u,v € D(B)

1 _
Pulu,v]| = |(u, Dyv)| = ‘/(awsinﬁur gﬁg)u(ﬁ)v(ﬁ)dﬂ‘
0

sin ¥

1
< (k)2 (k,w)?||Bul | Bv| /(aw sin o) + ’“*5)19(77 ) Y < o
0
Since the integrand is bounded, we have proved that the form 9y with domain D(B) is well defined.
Using this result and v € D(B) we also find that

bulu, v]| = |(u, Buv)| = |(u,(B+ Dy + D)v)|
|(u, Bu)| + [(u, Dyv)| + |(u, Dv)| < |ull [[Bv]| + [ov[u, v]| + [am][|lu] o] < oc.

A

For u,v € D(B*) similar considerations show that 9y and by with domain D(B*) are also well
defined.



Chapter 5. An alternative lower bound for the modulus of the eigenvalues of A 109

10 aw = —H
0 aw = —0.5

8 aw =05

6

4

2

0 7r _ ; 9
o 1 2 T g
—4

Figure 5.1. The plot shows the function § of lemma 5.6 for k = 0 and aw = —5, —0.5, 5.

(ii) Also in the cases k = —1 and k = 0 the scalar products
(u, Dyv) and (u, Byv)

are well defined if v and v are components of eigenfunctions of Ay because in that case they also
show a decay proportional to y/¥(m —9) at ¥ = 0 and ¥ = 7, see remark 5.2. O

k+i
sin ¢

In order to determine the spectrum of the operators + Dy = F(aw sind +
range of the function

) we have to find the

k+3%
sind

§:(0,m) — R, §(¥) = awsind + (5.12)

Sample plots of § for the values kK = 0 and aw € {—5, —0.5, 5} are shown in figure 5.1.

Lemma 5.6. The function § is not bounded from above if k > 0 and not bounded from below if
k < —1. In either case it has a global extremum §(Yy) at ¢y given by

o = with 6y := 6(Yg) = k—i—%—i-aw if epaw < \k—i—%\,

T
2
aw

sintg = p with  dp := §(Yg) = 2ep aw(k—i—%) if epaw > \k+%|,

D=

where ey, := sign(k + 3).
Proof. Assume k > 0. Then it is easy to see that

1%12%5(19) = 1%13;5(19) = 00. (5.13)

Since ¢ is continuously differentiable on (0, 7), it is necessarily bounded from below. Its derivative

dé cos¥(awsin® ¥ — (k + 1))
— () = 2 5.14
d19< ) sin? ¢ (5.14)
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shows that for aw < k—i—% there is only one local extremal point, namely ¥ = 7, and the behaviour
of § at the boundary points 0 and 7 shows that the extremum is a global minimum.

For aw > k + % there are three extremal points of §, given by ¥ = § and 2 # o3, such that

1
sinty = sindg = kLQ. In order to find the global minimum of § we evaluate the function § at

the points 91,11 and 93:

5(91) = aw+k+ 1,

5(02) = 6(05) = 24 faw(k+ 1)

§(91)? = (aw+k+3)? = a®?+ (k+3)?+ 2aw(k + 3) = (aw — (k + 3))% + daw(k + 3)
> daw(k + 1) = 6%(V2).

and compare them:

By the assumption on aw and k we have that 6(91) > 0 and §(J2) > 0, therefore it follows that ¢
is minimal for ¥¥o and t}3. The case k < —1 can be treated analogously. ]

The preceding lemma allows us to locate the spectrum of Dy.

Corollary 5.7. For epaw < —|k+ %| the spectra of Dy and — Dy intersect, more precisely we have
o(Dy) No(=Dy) = [-|k+ 5 +awl, [k+ 3 +aw]] # 0.

For aw = —egxlk+ 5| = —(k + 3) they have ezactly the point 0 in common and for epaw > —|k + 3|
the spectra do not intersect.

Proof. Since — Dy is the operator of multiplication by the function J, its spectrum is the closure
of the range of § which, by the previous lemma, is [dp, co) for £ > 0 and (—o0, dg] for k£ < —1.
If g = 0, then the spectra of Dy and —Dy have exactly the point 0 in common; this is the
case if and only if aw = —(k+3). If k > 0 and §p < 0 or k < —1 and & > 0, then we have
o(Dy)No(—=Dy) = [—|dol, |do]]. From the previous lemma it follows that the first case occurs if
and only if k > 0 and aw < —(k+1), the second case holds if and only if k < —1 and aw > —(k+3).
In all other cases the spectra of Dy and —Dy do not intersect. Using the expressions for §g of the
previous lemma yields the assertion. O

Corollary 5.8. Assume k > 0 and aw > 0. Then we have
(~Dyz,z) > k+3, z € D(Dy), |z = 1. (5.15)
For aw >k + % we even have
(=Dyz,z) > 2(k+3), r € D(Dy), |z| = 1. (5.16)
Similar results hold for k < —1 and aw < 0.

Proof. For k > 0 this follows from (—Dyz, z) > &||z||? for all x € D(Dy). For k < —1 we use
(—Dyz, ) < &||z|? for all z € D(Dy). O
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5.2 A spectral gap around zero

Having located the spectrum of the operators on the diagonal of Ay, we are now in a position to
establish a lower bound for the absolute values of the eigenvalues of Ay and consequently of A
since the spectra of A and Ay coincide.

In the case exaw > —|k + 3| the following general theorem provides a lower bound for the modulus
of the eigenvalues of Ay. In the case epaw < —|k + %|, however, the theorem does not apply to the
angular operator because the ranges of the functions ¢ and —§, and therefore the spectra of —Dy;
and Dy, intersect.

Theorem 5.9. Let H = H&H be the direct sum of a Hilbert space with itself and let T = (%i %3)

with domain D(T) C 'H be a selfadjoint block operator matriz such that T11 and Ty are symmetric
and that Tyy = 17,. Further, suppose that for i,j = 1,2 there ewist sesquilinear forms t;; on 'H with
domain D(t;;) 2 D(T;;) such that t;[u,v] = (u, Tj;v) for all w € D(t;) and v € D(Ty;), and that

for all eigenfunctions (%;) of T we have V; € D(t;;); in addition suppose t;; = t2, Finally, let

E; == {¥, € H : there exists a Uy € H such that ($;> is an eigenfunction of T }.

(i) Suppose that there are numbers s > sa such that

tll[\Ill] > 51 ||\I/1”2, tQQ[\IJQ] < 89 ”\I/2H2, \:[11 € FE; \ {0}, \I’Q € Fy \ {0}
If \ is an eigenvalue of T with eigenfunction (g;), then
A > s and ||Pq] > [Py or A< sz and ||Yqi| < |[P2]. (5.17)

(ii) Suppose that there are numbers s1 < so such that

tll[\Pl] < 5 ||\If1||2, tQQ[\I/Q] > 89 ||\I/2||2 U, € Ey \ {0}, Uy € By \ {O}
If \ is a eigenvalue of T with eigenfunction (g;), then

A< s1oand ||Pq > [[Pe or A > sy and ||¥i < [[P2]. (5.18)

Proof. We prove (i) only, assertion (ii) follows analogously. Let (g;) be an eigenfunction of 7°

with eigenvalue \. We write the eigenvalue equation (7 — A)(g;) = 0 as a system of coupled

linear equations
TV — AV +T1pWy = 0,
Tl*z\l’l + TooWy — AWy = 0

If we take the scalar product of ¥ with the first row of the above system, and that of W5 with the
second row, we obtain the following linear system

t11[ 1] — AT |12 + t12[ ¥y, Us] = 0,

., (5.19)
toa[Wa] — A[|Wa " + t]5[V2, ¥4] = 0

By assumptions, all terms in this system exist. The terms t1[¥;] and too[Us] are real, therefore
also t12[¥1, Us] and t]5[¥a, W] must be real which implies t12[¥;, Wa] = t12[V1, Vo] = tf5[Va, ¥4].
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Note that system (5.19) is no longer a system of equations for vectors in some Hilbert space, but
a system of linear equations for real numbers.

If &1 =0, it follows that )\”\I/2H2 = tQQ[\IJQ] < 89; for W9 = 0 we have )\”\I/1H2 = tQQ[\Ifl] > s1. Now
we assume ¥ # 0 and Uy # 0. With t12[U;, Ua] = t75[V2, V4] it follows from system (5.19) that

t1[U1] — toa[Wo] = A (1] — [[L2]*) = o. (5.20)
Observe that ||¥q|| # ||P2]|, otherwise we have the contradiction
0 = t11[W1] — to2[Wa] > (s1—s2) [ L4]* >0.
Hence it follows from (5.20) that
t11[ V1] — toa[ Vo]

A:

[ = [|Wal* °
Assume that || U] > ||Ws||. Using t11[¥1] — toa[¥a] > 51 || 1|2 — s2 || ¥2||, we obtain
U112 — o] Wy | — 59) || ¥y]?
) o sl 1||2 o Tl (s 252) I 2||2 > s,
W] = ([ W W] = ([ W
Analogously, we can show A < sg if ||| < || P2 O

The previous theorem, applied to the transformed angular operator Ay, yields a lower bound for
the modulus of the eigenvalues of the angular operator A.

Theorem 5.10. Let )\ be an eigenvalue of the angular operator A. Then

eplaw+k+3) = |aw+k+ 1 if aw € [~|k+ 1], |k+ 3],
Al > g = (5.21)
2y/aw(k + ) if eraw > |k + 3.

Corollary 5.11. For egaw > 0 and all eigenvalues \ of A we have

Al > |k+ 3] (5.22)
For egaw > |k + 3| we even have

Al > 20k + 3. (5.23)

Note that for a = 0 the estimate provided in (5.21) coincides with the one obtained in (3.75) by
the off-diagonalisation of the angular operator.

Proof of theorem 5.10. Recall that e = sign(k + %) In remark 5.5 we have seen that for all eigen-
functions (%) of Ay the numbers dy[u], 0y[v] and by[u, v] exist, thus Ay satisfies the assumptions
of theorem 5.9. If epaw > —|k + %], then the function ¢ representing the multiplication operator
—Dy is either nonpositive or nonnegative and takes on its extremal value §y exactly once in (0,}),
see lemma 5.6. Consequently, the spectra of —Dy and Dy are separated or have only the point 0
in common. If k& > 0, then §(¢) > dg > 0, ¥ € (0,7), with §(9) = dy for exactly one ¥ € (0, ).
Hence for every eigenfunction () of Ay with u # 0 it follows that

ol = (u,~Dow) = [ SODE D > &l
0

Application of theorem 5.9 (i) with s; = —sg = ¢ yields that A > s; = dy for all eigenvalues of Ay.
If we insert the explicit expression for ¢y given in lemma 5.6 we obtain |A| > Ag for all eigenvalues
of Ay. Since A and Ay are unitarily equivalent, the assertion is proved for k > 0. If £ < —1, the
assertion follows analogously, if we use theorem 5.9 (ii). O



Chapter 6

Comparison of the eigenvalue bounds

6.1 Negative eigenvalues

In chapter 3 and chapter 5 we obtained lower bounds Ag and Ag for the modulus of the eigenvalues
of the angular operator. Hence —Ag and —\¢ are upper bounds for the negative eigenvalues of A.
In section 4.2 we used a variational principle to obtain an exact formula for the eigenvalues of A that
are greater than ||D|| = |am|. From that formula, upper and lower bounds for the eigenvalues have
been derived. Since also the operator —.A satisfies all the assumptions of the relevant theorems for
the variational principle, they can be applied to —A thus resulting in a formula for the eigenvalues
of A that are less than —| — D|| = —|am)|.

For convenience, we summarise the estimates for the negative eigenvalues in the following theorem.

Theorem 6.1. All negative eigenvalues A of the angular operator A are bounded from above by
A < min{-Ag, —Ag} (6.1)

with the estimates Ag from theorem 3.35 and \g from theorem 5.10. For the nth eigenvalue \p,_ _p
smaller than —|am| we have

N L T S R

min{—|am|, Re(—\/(\k+%|—%+n0+n)2+97+\am|>}, neN, (6.2)

with Q4 given in theorem 4.40 and the offset ng = /\<mi‘£1m| dim L 50)S1(A).

Proof. The estimates in (6.1) follow from theorems 3.35 and 5.10 which provide lower bounds for the
modulus of the eigenvalues of A. In order to obtain relation (6.2) we consider —.A4; let SY) (A) denote
the Schur complement of —A. Observe that —A satisfies the assumptions needed for the variational
principle with the same constants ¢y, cf, ¢, , ¢2 as A so that formula (4.39) gives estimates for the
eigenvalues of —A to the right of || — D|| = |am|. Since X is an eigenvalue of —A if and only if —\

is an eigenvalue of A, estimate (6.2) with the index shift ng = ng(—.A) = AJanin ‘dim E(,OQO)SY)()\)
>lam

according to theorem 4.32 is proved. It remains to verify the formula for the index shift ng in the

assertion. The Schur complement Sf_)()\) of —A is related to the corresponding Schur complement
of A by

SN = D=X—(=B)(=D - A)"Y=B*) = —(~D+A—B(D+\)"'B*) = —S(-\).

113
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Hence

no = min dimL_ 00,05 (\) = min dim Ly o)S1(—A) = min dim Ly 00)S1(A)-

A>|am| A>|am| A<—|am]|

Analytic perturbation theory yields the following theorem in analogy to theorem 4.41.

Theorem 6.2. For n € N let \_,, be the —nth eigenvalue of A which, if considered as analytic
function of a, is the —nth negative eigenvalue of A in the case a = 0. Then for all n € N we have
that

(k3= 4+n)? 490 —lam| < Ay < —Rey/(k+ 3 - 5 +n)>+ 0 + [am].

Remark 6.3. Another way to obtain the formula for the eigenvalues to the left of —|am| is to use
the symmetry properties of A with respect to change of the physical parameters, see chapter 2.3.
We use the notation A(k,w), A\p(k,w), S1(A; k,w) etc. to express the dependence on the physical
parameters k and w. It is easy to check that Q4 (—(k+ 1), —w) = Q4 (k,w). Using remark 3.29 we
obtain

Si(A; —(k+1),—w) = —RS1(—\; k,w)R.
Since R is unitary, it follows that

no(—(k+1),~w) = min dimL_0)S1(N; —(k+1),~w) = min dim Ly «)S1(\; k,w)

A>|am]| A<—|am|

which is equal to the index shift ny asserted in theorem 6.1. From lemma 2.17(ii) it follows that
An(k,w) is an eigenvalue of A(k,w) if and only if —\,(k,w) is an eigenvalue of A(—(k + 1), —w).
Hence, for the nth eigenvalue A, _p(k,w) of A(k,w) smaller than —||D|| = —|am| we obtain

A —n(k,w) = =Ampgn(—(k+ 1), —w)

> — (U= 41+ 5= 3+ no(—(k+1), =) +0)2 + Q4 (~(k + 1), —w) + [am]

= U+ 3 = 3 p(—(k 1), —w) + )2 + Qy (k) — [am], neN.

Analogously, the lower bound for A\,,__,(k,w) in (6.2) can be derived. O
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6.2 Comparison of the estimates

In this section we first compare the various analytical bounds for the eigenvalues of A with each
other, then we compare them with numerically calculated values obtained by Suffern, Fackerell and
Cosgrove in | | and Chakrabarti in | ]. Using an ansatz of | | we independently
obtain numerical approximations of the eigenvalues.

Notation

The eigenvalues A, of the angular operator are enumerated such that they are the analytic contin-
uation of the exact eigenvalues A, = |k + 1| — 1 4+ n in the case a = 0, see lemma 3.3.

All numerically obtained values are marked with a superscript num. For the values provided by
Suffern et al. | |, a subscript S, for those of Chakrabarti | ], a subscript C' is added.
Evaluating the series ansatz for the eigenvalues suggested in | ] we obtain numerical values
for A, cf. the section 6.2.2; these values have no additional subscript.

The analytical bounds obtained in theorems 4.40 and 4.41 are denoted by A0 and A and ALSPT]
and A\wSPT] respectively. So we have

)\E}o—&-n < /\m++n < )‘Eg-f—n? _A[ulJr S )\m,—n < _)\[l]_+ ’ HEN,
nO n no n
AP <, < AT SPT o < PT e,

with the index shifts ng = minys |, dim £_ 0)S1(A) and ng = miny._ g, dim L ) S1(A), see
theorems 4.40 and 6.1.

Further we recall that we have the lower bounds Ag and Ag of theorems 3.35 and 5.10: For all
eigenvalues \,, n € Z \ {0}, of the angular operator we have

|An] > max{Ag, A\g};
note, however, that \g is not defined for all k, aw and that A might be negative for large values
of |am|.
6.2.1 Analytic lower bounds for the modulus of the eigenvalues

Each of the bounds Ag, )\[Cl;n] and )\[Ce,Xp} from theorem 3.35 and the subsequent remark, and Ag
from theorem 5.10 is a lower bound for the modulus of the eigenvalues of the angular operator A.
Hence for every eigenvalue A of A we have

Al > max{Ag, ALY AP o1 (6.3)

Since the explicit formulae for Ag and Ag depend on the interval in which aw lies, we set

M = —lam| +20(w) e 6D fawy — (k4 1)),
/\g) = —lam| + C™ (W) Jawv — (k+ 3)I,

/\8) = |aw+k+ 3/,

/\8) = 2y/aw(k +3) ;

further recall that

lin ex
NP = —Jaml 4+ iy (b + 31+ 1) AS™ = —lam| + g [k + 31
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k<0 k>0
aw € Ao AQ aw € A AQ
1
(_007 k4 %) /\g) )\8) (—oo, th) /\8) not defined
1
(b+3, —(+3) | A A (552, —(k+ 1)) G not defined
1
(—(k+3), HTQ) )\(02) not defined (—(k+3), k+3) )\(G2) )\8)
1

((kt2), ) )\g) not defined (k+3, o) )\(G2) )\8)

Table 6.1. Bounds for the modulus of the eigenvalues A of the angular operator A.

with C(w) = el®(¢+=¢-)I see theorems 3.35 and 5.10. The formulae for Ag and A\ are summarised
in table 6.1.

Unfortunately, the estimates above only give a lower bound for the modulus of the eigenvalues of
A; they do not distinguish between positive and negative eigenvalues A\. For Ag, this is due to
the fact that we had to solve an equation for |A|. For A\¢ it follows from the symmetry of the gap
between the spectrum of Dy and — Dy with respect to 0. The only exception where the sign of A
plays a role is lemma 3.38. Numerical results, however, show that for a # 0 the eigenvalues \ are
not symmetric with respect to 0.

Which of the given estimates is the better one depends on aw and am. As we have already observed,
in the case a = 0 the bounds Ag and A\g coincide. For a # 0 the lower bound \g will in general
yield better results provided that it is defined since for fixed k£ the lower bound Ag is decaying
exponentially with increasing |a|. On the other hand, if we fix a and let k grow, then A\ is given
by Ag = k + 1 + aw, whereas A grows like C'(w)~!(k + 3) with C(w)~! < 1 only.

For fixed k and w the lower bound Ag may even become negative for large m or large a due to the
term —|am| that arises because of the perturbation nature of the estimate. Nevertheless, for aw
such that \g fails to exist, Ag still provides a lower bound for the modulus of the eigenvalues if
|am| is small enough.

U

Another lower bound for the modulus of the eigenvalues of A is given by ;" where it is nonnegative,
see theorem 4.40.

In figures 6.1 and 6.2 the lower bounds are plotted as functions of the Kerr parameter a with the
wave number k, mass m and frequency w fixed. The bound )\[1” is plotted only for those values
of a where the index shift ng is zero according to lemma 4.34 (ii). Interestingly, if the physical
parameters are chosen m = 0.025, w = 0.75 and k = 0, see figure 6.1, then for each of the lower
bounds Ag, )\[g{p], Ag and )\[11] there is an interval where it provides a better lower bound than the
other three bounds.

However, it seems that for large |am| the bound Ag generally provides the best lower bound for
the modulus of the eigenvalues of A provided that A\g is defined.
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1.6

1.4 k=
m = 0.025
w=0.75
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Figure 6.1. Lower bounds for the eigenvalue of A with smallest modulus for k, m and w fixed.Note that
for k = 0, for each of the plotted estimates there is an interval for a where it provides a larger lower bound
for the modulus of the eigenvalues of A than the other three bounds: for a < —1.06900 the bound Ag

yields the best result; for —1.06900 < a < —0.642408, )\[Cixp] gives the sharpest lower bound; then, for

~

—0.642408 < a < 0.66667, )\[1” is the best lower bound; finally, for 0.66667 < a, the best lower bound is
provided by Aq.
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k=
m = 0.25
w=0.75

0.5

6 a=
m = 0.25
5 w=0.75

—4 -3 —2 -1 0 1 2 3 4 5

A ALl Ve, Al

Figure 6.2. Lower bounds for the modulus of the eigenvalues A of A for m = 0.25 and w = 0.75 fixed.In the
first graph, the bounds are plotted as functions of a for k = 0 fixed. The second graph shows the bounds as
functions of k£ with a = 1 fixed. Note that physically only the values for integral values of k£ make sense.
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6.2.2 Comparison with numerical values

In the following we compare the various analytic bounds for the eigenvalues of the angular operator
A proved in this work with numerical values from the papers [ | and [ ]. When using
the estimates ALSPT) and A[SPT] from theorem 4.41, the main problem is to prove that for given
physical parameters the first positive eigenvalue is the analytic continuation of the first positive
eigenvalue in the case a = 0. For the bounds A\ and Al from theorem 4.40 we additionally have
to determine the index shifts m, and ng.

Comparison with numerical values in [ |

Suffern, Fackerell and Cosgrove [ | obtained numerical approximations of the eigenvalues of
the angular operator by expanding the solution of the angular equation in terms of hypergeometric
functions, resulting in a three term recurrence relation for the coefficients in the series ansatz. Then
A is expanded with respect to a(m — w) and a(m + w) as

A= Z Crsa T (m — w) (m + w)*

8

with the coefficients C,. s obtained from the recurrence relation. Observe that in | | the authors
denote the wave number by m (in our terminology it is denoted by k), and that, due to the form
of the differential equations in the cited article, their eigenvalues (which we denote here by )\gf::m])
differ from the eigenvalues given in this work by a factor —1.

Instead of using the coefficients C) s, it is also possible to find a numerical approximation for A from
the continued fraction equation for A given in | | directly. We find that the eigenvalues Anum]
computed in this way with a short Maple programme differ at most slightly from the tabulated
values in | | for small n; for higher values of am, aw and n, however, there are significant
differences. For instance, for am = 0.25, aw = 0.75 and k£ = 0 Suffern et al. list the fourth

positive eigenvalue as /\glzm} = 4.13127, whereas an evaluation of the recurrence relation for A gives

)\Ewm] = 4.13969. The results in | | seem to favour the latter value for A, cf. in particular
the appendix in the cited article. In the following, the numerical values )\[gzm], )\?TZ] are all taken

from tables in the article | .

For fixed values of am and aw, tables 6.2 and 6.3 contain the numerical values for the first positive
and first negative eigenvalues tabulated in | ] and the analytical bounds Ag and Ag obtained
in theorems 3.35 and 5.10, together with the lower and upper bounds )\[11 I and )\[1“] from theorem 4.40
for wave numbers k = —5, ..., 4. For all physical parameters under consideration, apart from the
case am = 0.25, aw = 0.75, k = —1, we always have epaw > —|k + %| so that Ag is defined;
furthermore,

1B = vim > Re(\J(k+31+37+02 ) > 2lam|

where v is the first eigenvalue of BB*, see theorem 4.39, so that we have ng = 0 and m4 = 0 by
lemma 4.34 (ii). Therefore, the first positive eigenvalue is indeed the analytic continuation of the
first positive eigenvalue in the case a = 0. The case am = 0.25, aw = 0.75, £ = —1 is discussed in
the subsequent remark.

Remark 6.4 (am = 0.25, aw = 0.75, k = —1).

(i) In this case, the bound Ag is not defined because of eyaw = —0.75 < —% = —|k + 1|.
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(ii) Theorem 4.39 yields no positive upper bound for || B~}|| so that we cannot use lemma 4.34 (ii)
to conclude ng = my = 0. However, since |am| < 1, it follows from lemma 4.42 (i) that
ng = my. By theorem 4.41 we still have

—0.25 < o1 — |am| < A < o1 + Jam| < 1.28078 (6.4)

where Aq is the analytic continuation of the first positive eigenvalue in the case a = 0 and 14
is the first eigenvalue of BB* which we have estimated according to (4.50) of theorem 4.39.
The lower bound can be further improved if we use ||[B~!||~! = /1 and observe that for the
given physical parameters estimate (3.72a) from lemma 3.34 yields a positive lower bound
for ||[B~1||~!. Thus we obtain the sharper estimate

—0.13843 < —\/u1 — |am| < A; < /o1 + Jam| < 1.28078.

(iii) Even a positive lower bound for A\; can be obtained by means of analytic perturbation theory if
a is treated as the perturbation parameter. For a = 0 we have A, = sign(n)(|k+3|—3+n) = n;
hence for the given physical parameters we obtain from lemma 3.9 that

n—0.75 <\, < n+0.75, n € Z\{0}. (6.5)

(1]

In particular it follows that 0.25 < A;. For all other values of n, however, the bounds \;’ and

)\EL } obtained from the more elaborate estimates in theorem 4.40 (where m plays the role of
the perturbation parameter) yield tighter bounds than the formula above as can be seen in
table 6.4.

Combining (6.4) and (6.5) we obtain 0.25 < A\ < 1.28078. O

Remark 6.5. In some cases, the bounds can be further improved. For am = 0.005 and aw = 0.015
and k € {5, ..., 4} we have o(A)N[—|am/|, |am|] = 0 because of [A\11| > )\[ll] = /vi—|am| > |am]|.
Furthermore, |[B7!||7! = /o1 > |am| so that the assumption of lemma 3.38 is satisfied. Hence it
follows:

(i) For k=0, ..., 4 we have (—||B7!||~!, —|am|) N o(A) = 0 by lemma 3.38, hence
Aa < BT = AT~ fam]
(ii) For k= —5, ..., =1 we have (—||B~!||7, —|am|) N o(A) = 0 by lemma 3.38, hence

A > BT = A4 jam),

Analogously, for am = 0.25, aw = 0.75 the upper bound for A_; can be improved if k=0, ..., 4
and the lower bound for A; can be improved if k = -5, ..., —2.
Note, however, that for £k = —1 the assumptions of lemma 3.38 are not fulfilled. O

The discussion in remarks 6.4 and 6.5 shows that it is very hard to decide a priori which analytic
bound gives the sharpest bound for the eigenvalues of A. It seems that often a combination of the
various estimates yields the best result.

It can be seen from the tables that in most cases the estimate )\[ll] yields the sharpest lower bound.
On the other hand, figures 6.1 and 6.2 suggest that for increasing am and aw the estimate Ag
provides a better lower bound for the smallest positive eigenvalue than A does.

In tables 6.2 and 6.3 we have also listed the numerical values, denoted by )\[lnum] and )\[_nlJ m], that
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we have obtained by solving the continued fractions directly since they seem to be more reliable
than the values originally given by the authors in [

In figures 6.3 and 6.4 the numerical values )\g ?m] and /\[num] together with the analytical bounds
+Ag and £)g as functions of k are plotted.

Figures 6.5 and 6.6 show the upper and lower bounds )\[1” and /\[1u] for the lowest eigenvalues as

functions of the wave number k together with the numerical values /\[ff m] and A[lnum] from tables 6.2
and 6.3.
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am = 0.25, aw =0.75

do g Al gy e gy
k= -5 2.96570 3.75000 3.93330 4.29756 4.29756 -4.34936 -4.34936 4.61606
—4 | 2.15294 2.75000 2.91228 3.30870 3.30870 -3.37371 -3.37370 3.65037
-3 | 1.34019 1.75000 1.87132 2.32657 2.32658 -2.41349 -2.41348 2.71221
—2 1 0.52743 0.75000 0.75000 1.35984 1.35980 -1.48903 -1.48898 1.85078
—1 < 0 undefined (0.25000) 0.44058 0.44025 -0.67315 -0.67284 (1.28078)
0 | 0.59808 1.22474 0.75000 1.59764 1.59745 -1.47645 -1.47627 1.85078
1] 1.41083 2.25000 2.09521 2.65654 2.65651 -2.57663 -2.57661 2.90754
2| 2.22359 3.25000 3.21410 3.68229 3.68229 -3.62219 -3.62218 3.93273
3| 3.03634 4.25000 4.27769 4.69685 4.69684 -4.64856 -4.64856 4.94707
4 | 3.84910 5.25000 5.31776 5.70622 5.70622 -5.66583 -5.66583 5.95636

Table 6.2. Analytic bounds and numerical approximations for the first positive and first negative eigenvalue

of A. The estimates Ag and g from theorems 3.35 and 5.10 are lower bounds for |Ai4]. )\[ll] and )\[1“] from

theorem 4.40 are upper and lower bounds for Ay;. The values )\g”l”n] and )\g”ff] for the first positive and

the first negative eigenvalue of A are taken from | ]. We have obtained the numerical values A[lnum]

and )\[flu m] by approximating a solution of the continued fraction equation for A\. Note that for k=0, ..., 4
the upper bound for A_; can be further improved, while for k = —2, ..., —5 the lower bound for A; can be
improved, see remark 6.5. For kK = —1 see the discussion in remark 6.4.

am = 0.005, aw = 0.015

k= —51]4.46556 4.48500 4.97998 4.98591 4.98591 -4.98682 -4.98682 4.99299
—4 | 3.46969 3.48500 3.97997 3.98611 3.98611 -3.98723 -3.98723 3.99373

—3 | 247383 2.48500 2.97996 2.98643 2.98643 -2.98786 -2.98786 2.99498

—2 | 1.47797 1.48500 1.97994 1.98700 1.98700 -1.98901 -1.98901 1.99749

—1 ] 0.48211 0.48500 0.97989 0.98834 0.98834 -0.99170 -0.99170 1.00500

0] 0.50376 0.51500 0.99500 1.01167 1.01167 -1.00836 -1.00836 1.01989
11]1.49962 1.51500 2.00249 2.01300 2.01300 -2.01101 -2.01101 2.01994
2] 249548 2.51500 3.00498 3.01357 3.01357 -3.01215 -3.01215 3.01996
3| 3.49134 3.51500 4.00623 4.01389 4.01389 -4.01278 -4.01278 4.01997
4| 448720 4.51500 5.00699 5.01409 5.01409 -5.01318 -5.01318 5.01998

G Ao Al vl I 07 Al

Table 6.3. Analytic bounds and numerical approximations for the first positive and first negative eigenvalue
of A. The estimates Ag and Ag from theorems 3.35 and 5.10 are lower bounds for |A41]. /\[ll] and )\[lu] obtained

in theorem 4.40 are upper and lower bounds for A+;. The values )\g”fm] and )\gbu;'{L] are the first positive and

the first negative eigenvalue of A calculated numerically by Suffern et al. [ , |, while we have obtained
the values )\[lnum] and )\[ff m] by approximating a solution of the continued fraction equation for A. Note
that for k =0, ..., 4 the upper bound for A_; can be further improved, while for k = —1, ..., —5 the lower

bound for A\; can be improved, see remark 6.5.
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Figure 6.3. The plot shows the lower bounds Ag and Ag for the absolute value of the eigenvalues of A
and the numerical values for the first positive and the first negative eigenvalue from | ] in the case
am = 0.25 and aw = 0.75. The bound Ag is not defined for k € (—1.25, 0). For —1.35 < k < —0.5 the
bound A is negative, so it is replaced by zero in this interval.
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Figure 6.4. The plot shows the lower bounds Ag and Ag for the absolute value of the eigenvalues of A
and the numerical values for the first positive and first negative eigenvalue of A from | ] in the case
am = 0.005 and aw = 0.015. The bounds Ag and Ag are very close to each other so that they seem to
coincide in the plot above. The bounds have not been plotted in the interval (—1,0) because for wave
numbers k in that interval the angular operator is not uniquely defined as a selfadjoint operator.
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8
—075 4 D]
aw = U. AS7_1
2 AL
0 A

-2

—4

—6

-8

-5 -4 -3 -2 -1 0 1 2 3 4
wave number k
[num]

Figure 6.5. The plot shows the numerical values A s+1 for the first positive and the first negative eigenvalue

of | ] for am = 0.25 and aw = 0.75. They are enclosed by the analytic upper and lower bounds i)\[lu}

and £\ which are plotted as functions of k. Note that for —1.65 < k < —0.23 the estimate for ||[B~|~
obtained from theorem 4.39 is not large enough to guarantee ny = 0 by lemma 4.34 (ii), so the analytic
bounds are plotted only for —1.65 < k and k > 0.
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Figure 6.6. The plot shows the numerical values )\gﬁ’?] of [ ] for the first positive and the first negative

eigenvalue of A for am = 0.005 and aw = 0.015. Here the analytic upper and lower bounds :I:)\[lu] and j:/\[ll]

enclose the numerical values so tightly that in this resolution they seem to coincide.
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]

Finally, we compare higher eigenvalues )\glzm given in | | with the analytic bounds )\,[f I and

)\E]. In tables 6.5 and 6.4 we have listed the analytical bounds /\%] and )\7[;4 forn =1, ...,5 with the
numerically obtained eigenvalues in the cases am = 0.005, aw = 0.015 and am = 0.25, aw = 0.75

]

where the wave number k& € {—1,0} is fixed. The numerical results )\[Srzzm] and )\gmfg are taken

from | |, the numerical values Almeml and /\[f;:m} have been obtained by solving the continued
fractions equation for A. The data of these tables are visualised in figures 6.8 and 6.7.
For the case am = 0.25, aw = 0.75, k = —1 we refer to remarks 6.4 and 6.5.
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am = 0.25, aw =0.75

k=0 Al Alpum] - ][]y ] ALY

n=1 0.75000 1.557)764 1.59745 -1.47645 -1.47627 1.85078
2 1.75000 2.22587 2.28748 -2.23549 -2.24221 2.60850
3 2.75000 3.17408 3.18894 -3.16265 -3.16640 3.50000
4 3.75000 4.13127 4.13969 -4.12446 -4.12658 4.44076
) 4.75000 5.10533 5.11069 -5.10083 -5.10217 5.40388

n =1 (0.25000) 0.44’1058 0.44025 -0.67315 -0.67284 (1.28078)
2 1.33114 1.84225 1.88562 -1.87948 -1.89090 2.26556
3 2.48861 2.90717 2.92395 -2.92301 -2.92728 3.26040
4 3.55789 3.93475 3.94370 -3.94336 -3.94562 4.25780
) 4.59768 4.94973 4.95529 -4.95513 -4.95653 5.25625

Table 6.4. For am = 0.25, aw = 0.75 and k = 0, —1 the numerical values )\[;TZ] and /\gfzm] and the lower

and upper bounds )\%] and )\W from theorem 4.40 are shown. For k = —1, n = 1, we refer to remark 6.4.

am = 0.005, aw = 0.015

E=0] AU Alpeml - ] [l I ALl
n=1]099500 1.01167 1.01167 -1.00836 -1.00836 1.01989
2 | 1.99500 2.00435 2.00437 -2.00369 -2.00369 2.01249
3| 2.99500 3.00273 3.00274 -3.00245 -3.00245 3.01000
4399500 4.00180 4.00200 -4.00184 -4.00184 4.00875
5| 4.99500 5.00158 5.00158 -5.00148 -5.00148 5.00800
k=—1| A [ puel EREEER\Duml - SRR\
n=1] 097980 098834 0.08834 -0.99170 -0.99170 1.00500
2 | 1.98749 1.99567 1.99570 -1.99636 -1.99636 2.00500
3| 2.99000 2.99730 2.99731 -2.99759 -2.99759 3.00500
4399125 3.99803 3.99803 -3.99819 -3.99819 4.00500
5| 4.99200 4.99845 4.99845 -4.99855 -4.99855 5.00500

Table 6.5. For am = 0.015, aw = 0.025 and k = 0, —1 the numerical values )\gtn;] and )\gﬁm] and the

lower and upper bounds )\%] and )\%‘] from theorem 4.40 are shown.
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k=-1, am = 0.25, aw =0.75 k=0, am =0.25, aw = 0.75
5 5
4 4
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n n
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Figure 6.7. Higher eigenvalues. For am = 0.25 and aw = 0.75, the plots show the numerical values )\gﬁrz],
n=1,...,40f | ] and the analytic bounds A1 and Al provided by theorem 4.40 as functions of n for

the wave numbers k = —1 (left plot) and k = 0 (right plot), see table 6.4.
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k=—1, am = 0.005, aw = 0.015 k=0, am = 0.005, aw = 0.015
) )
4.5 4.5
4 4
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1 2 3 4 ) 1 2 3 4 )
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Figure 6.8. Higher eigenvalues. For am = 0.005 and aw = 0.015, the plots show the numerical values
Agﬁrz], n=1,...,4, of | ] and the analytic bounds Al and AU provided by theorem 4.40 as functions
of n in the case k = —1 (left plot) and k = 0 (right plot), see table 6.5. The analytical bounds A and Al
are so close to the numerical values /\ngZ] that they seem to coincide in this resolution.
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Comparison with numerical values in | ]

In | ], Chakrabarti computed numerical values for the squares of the eigenvalues A\ of the
angular operator A. Observe that, due to the form of the angular equation, the eigenvalues )\[gum}
given by Chakrabarti and the eigenvalues obtained in this work differ by sign, i.e., eigenvalues
)\[gzm] for fixed a, m, w and k correspond to —\, in this work.

The author expands the solution of the angular equation in a series of spin-weighted spherical
harmonics which leads to an expansion of A in terms of aw and 7. In the article the two smallest
positive eigenvalues in the case k € {0, —1} and the smallest eigenvalue in the case k € {—2, 1} are
calculated for aw = 0.1, 0.2, ..., 1.0 and 7} =0, 0.2, ...,0.8, 1.0. The resulting numerical values

for A\ are claimed to be reliable up to at least four digits.

For aw = 0.2 and aw = 1.0 the square roots of the original values )\[gum} of | | are presented

in tables 6.6 and 6.7, together with the numerical values A" that have been obtained by solving
the continued fractions equation for A (see the preceding discussion concerning the numerical values

in [ D).
For k =0 and aw > 0, we have Q_ = 2aw(k + }) — |aw| = 0. Hence it follows from theorem 4.39
for £ = 0 and all parameters am and aw under consideration that

1B = vim 2 (k- s e 12400 = 1

In table 6.6 we have |am| < 0.2 so that ng = m4 = 0 by lemma 4.34 (ii).

For table 6.6 this conclusion holds for |am| < 0.2 only. However, for all am of the table it follows
from theorem 4.41 that Ay > [|[B~!||7! —|am| > 0 and that A_; < —||B~!||7t —]am| < 0. Moreover,
theorem 5.10 implies that (—Ag, Ag) No(A) = 0 with A9 = \/aw(k + 3) ~ 1.41121 > |am|. Hence
for all am under consideration the first positive eigenvalue is greater than |am| and it is the analytic
continuation of the first positive eigenvalue in the case a = 0. Although we could show that m4 =0
we cannot prove that also ng = 0; therefore we use the bounds A-SPTI and A=SPT] in table 6.7
for aw = 1.0 since there is no need to determine the index shift ng for these bounds. Note that in
table 6.6 we have Al = ALSTT! ang Al — A[SPT]

From the tables and from their graphical representation in figure 6.8 it can be seen that Chakrabarti’s
values are still within the analytical bounds. However, they differ significantly from the numerical
values that we have calculated with the help of the recursion formula for the eigenvalues given
in [ ]; for example, for am = aw = 1.0, the values differ even in the leading digit.

It should be mentioned that in the case am = aw the numerical values for A have been computed
according to an exact formula, see | .
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n=1 n=2

am Al A[gﬁm] Al Al Al A[ggm] Al Al
0.00 || 1.000000 1.136135 1.136116 1.183216 || 2.000000 2.058001 2.058002 2.097618
0.04 || 0.960000 1.124034 1.148441 1.223216 || 1.960000 2.055153 2.061228 2.137618
0.08 || 0.920000 1.112156 1.160994 1.263216 || 1.920000 2.052685 2.064837 2.177618
0.12 || 0.880000 1.100499 1.173773 1.303216 || 1.880000 2.050594 2.068830 2.217618

0.16 || 0.840000 1.089061 1.186776 1.343216 || 1.840000 2.048877 2.073209 2.257618
0.20 || 0.800000 1.077840 1.200000 1.383216 || 1.800000 2.047530 2.077973 2.297618

Table 6.6. The table shows the analytic bounds A and A for the two lowest positive eigenvalues and
the numerical value A\"*™] obtained by solving the continued fractions relation for A. The numerical values

)\[C"um] are taken from [ ].

k=0, aw=1.0

am )\[IZ,SPT] )\[g’q{m] A[lnum} )\[lu,SPT] )\[Ql,SPT} )\[g’gm] )\[znum] )\[2u,SPT]

0.00 || 1.000000 1.720028 1.720243 1.802776 || 2.000000 2.362204 2.364111 2.500000
0.20 || 0.800000 1.677631 1.766714 2.002776 || 1.800000 2.347623 2.386963 2.700000
0.40 || 0.600000 1.639603 1.818185 2.202776 || 1.600000 2.341359 2.418308 2.900000
0.60 || 0.400000 1.605706 1.874453 2.402776 || 1.400000 2.343150 2.458034 3.100000
0.80 || 0.200000 1.575667 1.935199 2.602776 || 1.200000 2.352702 2.505900 3.300000
1.00 || 0.000000 1.549193 2.000000 2.802776 || 1.000000 2.369680 2.561553 3.500000

Table 6.7. The table shows the analytic bounds A»SPT] and A*SPTI for the two lowest positive eigenvalues
and the numerical value "™ obtained by solving the continued fractions relation for A\. The numerical

values )\[gum] are taken from | -
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n=1 n =2
3 3
2 2
1 1
0 0
0 0.00 0.08 0.12 0.16 0.20 0 0.00 0.08 0.12 0.16 0.20
am am

n=1 n =2
3 3
2 2
1 1
0 0
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
am am
Ao ALSPT] 1.9 Al - 1.9
AQ AP =12 g =1,2
Table 6.8. The plots show the numerical values )\[gf:lm], n = 1,2, given in | ] and the numerical

values ,\ZL “m] obtained by solving the continued fractions relation for k¥ = 0 and aw = 0.2 and aw = 1.0,
respectively. In addition, the analytical bounds )\Q’SPT] and /\Llf SPIT are plotted. Since Ag is a lower bound
for the modulus of eigenvalues of A, it is displayed only where it is nonnegativ. For increasing |am|, the
bound Ag becomes the sharpest lower bound of all analytic bounds under consideration.
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Appendix A

The variational principle of | ]

The results in chapter 4 are based on a general variational principle for selfadjoint operator functions
proved by Eschwé and Langer in | |. For convenience, we state here their main theorem.

First, let us fix the notation used in the theorem. Let H be a Hilbert space, A C R an open,
half-open or closed interval with endpoints —co < a < 8 < oo and

S:A— Z(H)

a selfadjoint operator function, i.e., for every A € A, the operator S(A) with domain D(S()\)) is a
selfadjoint operator in the Hilbert space H. Let

A — inf 0638(5) if Uess(S) 7& @,
‘ 3 if  0ess(S) =00

and define A’ := {A € A : XA < A.}. To the operator valued function S we associate a function s
with values in the sesquilinear forms on H

s(M)[u,v] = (u, S(A)v),  D(s(A) := D(S(A)).
In theorem A.1, the following conditions are used.

(i) Either D(S(X)) does not depend on A or for all A € A the form s()) is closable with closure
5(\) and there exists a linear manifold D of H such that

(ii) The function S is continuous in the generalised sense, i.e., in norm resolvent topology. Further,
the function ¢® is continuous for all z € D.

(iii) For every x € D\ {0}, the function o” is decreasing at value zero on A.

(iv) There exists a A\g € A such that dim £(_ 0)5(Xo) < 0.
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If conditions (i)—(iii) hold, then, for fixed = € D, there is at most one p(z) € A with o*(p(x)) = 0.
If o® has no zero, we set

(2) 00 if o®(A) >0 forall \eA,
x) =
P —oo if o%(A\) <0 forall \eA.

For A € A, let n(A) := dim £_ )S(A) and Ny := {z € D : s5(\)[z] < 0} U {0}. It can be shown

(I , lemma 2.5]) that n(\) is equal to the dimension of any maximal subspace of N.
If B ¢ A, we define Ng := |J N and denote by n(3) the dimension of maximal subspaces of N g.
AEA
For n € N set
fn = inf sup p(z).
LCD  geLX
dim L=n

As usually let L* = L\ {0}. Finally, for a supplementary result, the following condition is used.

(v) For every A € A and € > 0 with A + ¢ < 3, there exists a 6 = §(\, &) > 0 such that we have
the implication

0<o%\) <6 foran €D with ||z| =1 = (A +¢) <0.

Theorem A.1 (][ , theorem 2.1]). Assume that the conditions (i)—(iv) hold and suppose
that A’ is not empty. If « € A/, then we set ng := n(«); otherwise there exists an o/ € A" such
that (o, ) C p(S) and we set ng :=n(a’). In both cases, ng is a finite number.

The spectrum of S in A, o(S) N A/, consists only of a finite or infinite sequence of eigenvalues
AL < Ag < -+ < Ay, counted according to their multiplicity, with N € NU {oco} given by

n(Ae) —no otherwise.

N — {n(ﬁ) —ng + dimker S(53) if B€A and o.s5(S) =10,

Then the eigenvalues N, of S in A’ are given by

Ap = = min max p(x).
mo Hn np  max (o)
dim L=n+n(

If N = 00, then lim A\, = A..
If N < 00 and c.55(S) = 0, then p, = oo forn >mny+ N.
If N < 00, Ae < B and assumption (v) is fulfilled, then p, = \e for n >mng+ N.



Appendix B

The Schur complements of A

In section 4.1 we gave formulae for the eigenvalues A\ in some right half plane of selfadjoint block
operator matrices 7 = (%*; %3) with D(T) = D(T},) ® D(Ti2) C Hi @ Ha satisfying certain
assumptions on the entries 7j;. The main tool was to associate with 7 the operator valued function
S1, the so-called Schur complement, such that the spectrum of S7 and that of 7 coincide in some
right half plane. To the function S; we then applied the variational principle [ , theorem 2.1].
To obtain the Schur complement, we have first introduced the minimal Schur complement

D(S™™(N) = {z € D(T}y) : (Tha — \)'Tyx € D(T12)},
Sﬁmm]()\).f = (T11 — )\ — T12 (T22 — )\)_ITI*Q)I'

for A € (c2,00) € p(Ta2) and then used the theory of sesquilinear forms to construct selfadjoint
extensions S1(\), the so-called Friedrichs extensions.

Observe that in the special case of the angular operator the above mentioned construction leads to
uniquely defined selfadjoint Schur complements Si(A), A € (Jam/|, 00), for all wave numbers k£ € R
although in section 2.1.2 we have shown that the minimal angular operator A™® with domain
D(A™D) = C°(0,7)? is essentially selfadjoint only for k € R\ (—1,0).

In this section we investigate the Schur complement of A from the point of view of spectral theory
of differential operators. To this end, we consider the formal differential expression G1(\) on (0, )
associated with the Schur complement; for A > |am]| it is defined by

S\ = =D - A—B, (D -\)"1B_
_ 4, k+3 : “1(_d , k3 -
= —amcosv — \ — (@ + o5 T acusnn?)(amcosvﬁl - ) <—@ + a5t awsm19)

(B.1)

where ® is the formal operator of multiplication by am cos? on (0, 7). To &1(\) we associate the
following operators and forms that are minimal from the point of view of the theory for differential

operators:
D(SP™(N) = (0, 7), ST =GV, (B.2)
D(s{™(N)) = C§°(0,m), STV g) = (f, ST) (B.3)

= (f, (=D =X)g) = (B[, (D - X)"'B").

Observe that SP®()\) C Sﬁmin](/\). In lemma B.4 we show that the Friedrichs extensions of both

operators are equal. From the theory of linear differential operators it is well known that all
selfadjoint extensions of SM™(\) are given by restrictions of the maximal operator SP®*()\) =
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Smin(\)* in terms of boundary conditions. In the second part of this chapter we identify the
boundary conditions that correspond to the Friedrichs extension of ST"()\). We show that for
k € R\ (=2,1) there is no need to specify boundary conditions since in this case ST()) is
essentially selfadjoint. For k € (—2,—1] U [0,1), one boundary condition is necessary while for
k € (—1,0) we need two coupled boundary conditions to obtain the Schur complement S;(A), cf.
lemma B.7.

The minimal Schur complement S®

The formal differential expression &; associated with the Schur complement of A has already been
given in (B.1). In the subsequent calculations, however, we often use the following differential
expression, defined for A > |am/| on the interval (0, 7):

TIN) = GIA)+D+A = —B,(D - \)B_

= —<—d% + :;:1129 + aw sim?) (amcos® — \)~t (d% + :;:1%9 + aw sim?) (B4

with the associated minimal operator and sesquilinear form
D(T™(N)) = C§°(0,m), NS =TV = ST+ (D +Nf, (B5)
D(F™ () = CF(0,7), R N[f, 9] = — (B*f, (D= N)"'B%) (B.6)

= s (NI, 9]+ (f, (D + Ng).

The operators S{nin and T {nin are symmetric and their adjoint operators are the maximal operators
D(S1™(A) = D(IT"™(N))
= {f € Z%(0,7),dV¥) : f, f absolutely continuous, &;(\)f € £?((0,7),d?)},

SN =61\ T =%,

see | , chap. 3. . _

Obviously, we have ST ()\) € SI™™(X) C S1()\) and T ()\) € T/™(N) € Ty(\), A > |am]|. In
the following we study the question whether the minimal operator SP"()) is already essentially
selfadjoint. Since the operator —(D 4 )) is bounded, it suffices to consider the operator T/ ())
instead of S™in(\).

Remark B.1. The formal differential expressions &1(\) and T1(\) are of the form (2.13) with
r(¥) = 1, p1(¥) = (amcos — )71

k+3

po(¥) = %((amcosﬁ — A)(Sinﬁ + awsin§)> + (amcos? — )\)<k’+%

sin ¥

2
+ awsin 29) + po(V),

where py(¥) = 0 for T1(A) and po(¥) = —amcos® — A for S1(N). O

As in section 2.1.2, we use Weyl’s alternative to investigate the selfadjoint realisations of the
differential expression Tj(\).

The (essential) selfadjointness of T/"(\) depends on the behaviour of the solutions of T1(A\)u =0
at the points 0 and m, so the next lemma is crucial for our question.

Lemma B.2. For A € p(D)NR = R\ [—|am|, |am|] a fundamental system of the differential
equation Ty (N\)u = 0 is given by {1, h}, where () = e~ % (tan g)k‘% is a solution of B_u =0,
cf. lemmata 2.8 and 3.21, and h solves the differential equation

(© _A)_l%*h = ¥
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with (1Y) = e““’COSﬁ(tan ) (k+3) being a solution of Biu = 0 (see lemmata 2.8 and 3.21). For ¢
and h the following equwalences hold:

Y lies left in Z2((0, ), d?) = k>,
¢ lies right in Z2((0, 7), dv) = k<0,
h lies left in £2((0,7),dd) = k<1,
h lies right in £2((0,7),dd) = k> —2.

Proof. 1t is clear that ¢ and h are solutions of T1(\)u = 0. They are linearly independent because
B_h # 0 but ¢ lies in the kernel of %6_. The assertions concerning v have been shown in the proof
of lemma 2.8, so we give a proof only for the behaviour of h. By definition, h solves the differential
equation

< d + k + 3

49 n
If we apply the ansatz h(9) = c(9)p(9)~! and use the relation ¢(99)~' = 1(99), we obtain the
differential equation

+ awsin 19>h(19) = (amcos? — A)p(9), v € (0,m). (B.7)

d
% c(¥9) = (amcos? — \)p?(¥), v € (0,7)
for the function c. In the following, we consider the behaviour of h at the point 0. We have to
distinguish several cases.
Case 1. Let k € (—oo, —3]; then a solution of (B.7) is given by

U
h(1) 1/ (amcost — \)p%(t) dt, 9 € (0,m). (B.8)
0
There is an M; > 0 such that [am cost — \| e®(2c0st=cos®) < Nf for all ¢, o E (0 ). For k < —3
and t € (0, ) the function (tan £)~2*~1 is nondecreasing, hence 0 < (tan 5)~2~1 < (tan ’29) Zk—1
holds for 0 <t < < 7. This shows that for any d € (0, 7)
d d 9 2
/h(f})]Qdﬂ = /w(ﬁ)—Z (/(amcost—)\)go2(t) dt) dv
0 0 0
e 9 2k+1 : £y —2k—1 2
< M? - ~
i [ (o §)" ([ (n )™ )
0 0
a 9\ —2k—1 ; 2
< M? -
_M1/<tan2> (/1dt> dd < oo
0 0
and, consequently, h lies left in £2((0,7),dd).
Case 2. Let k € (—3,1), hence 2k + 1 > 0; then a solution of (B.7) is given by
h(9) = @)™ /(am cost — N)@?(t) dt, 9 € (0,7). (B.9)

0
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in?
Now, if we fix d € (0, 7) and use the inequalities 0 < tang = :;; < 200 7 for 0 <9 < d <7 and
2 2
t
0< (tani)~! = :jg < % for t € (0,7), we obtain for k& # 0

d d 2
2k+1 —2k—1
/\ (W)*dy < M? / tan (/(tant) dt) do
2
0 0 Y

T

2
< M 92k+1 721 3¢ | e
(2c0s 4 2k+1

9

d
_ M3 m2CE D 21 (= _ 9n—2hyg=2k | g=1k) 4
(2k)2(2 cos 4)2k+1 )
d
< 0Q.

_ M w?CRHD m W okya ok 92 L g-okr2
(2k)2(2cos $)2k+1 | 2k + 2 —2k +2 0

The case k = 0 furnishes technical problems only. We can show by a direct calculation involving
the logarithm that the integral on the left hand side is finite also in this case. Hence, for every
k € (—3,1), the function h lies left in .Z2((0,7), d?).

Case 3. Let k € [1,00); also in this case (B.9) is a solution of (B.7). Now we show that the
function h does not lie left in .#2((0,7), d?). To this end we fix some dy € (0, 7). Since [A| > |am)|
by assumption, there is a constant M, > 0 such that |am cost — \| e®(200st=cos?) > Nfy for all
t,¥ € (0,7). Therefore we can estimate

do dO

/|h(19)|2d19 = /
0

0
d() d() 2
M? /(tang)%H (/(tan e k= 1dt> dv.

0 9

T 2
()72 </(am cost — \)@%(t) dt> dv
v

v

In lemma 3.24 we have seen that the function (0,7) — R, = — % is monotonously increasing,
B (2k+1)
hence (tan %) @k+) > <d Ltan ‘120) t=k+D) for all t € (0,dp). It is well known that the

function (0,7) — R, z % is continuous and converges to 1 for x — 0. Hence there exists a
d € (0,dp) such that

tan 2 1 sin 2 1
2 > -2 > = 9 € (0,d).
5 a1 Tw (0,4)
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—2(2k+1)
If we set M = M2 (dal tan d—;) we obtain
do d d 2
/|h(19)|2d19 > zw/(mgf)”ﬂ+1 (/t‘%_ldt> dv
0 9
v d
_ (Qk)z /(tan g)ZkJrl(dek _ 1972Ic)2 dy9
0
d —2k
_ M 0\2k+19—4k _ 9 -2k tan 0 g4k 9)2k+1 49
= one (tan 5) — —= tan § — (tan 5) .
0

Obviously, the integral over the last two terms converges since they are bounded in (0, d), whereas
the integral over the first summand diverges, which implies that the function h does not lie left in
Z2((0,7),dd).

It remains to consider the behaviour of solutions of A at the point 7. To this end we use symmetry
properties of the function h. We attach subscripts k and a to the functions so that we can distinguish
between solutions for different wave numbers k and Kerr parameters a. As already pointed out in
remark 3.29, for k € R the function ¢ satisfies

Pra(V) = pop—1,—a(m =), ¥ e (0,7).

In the case k < —% this yields

T—10
Pra(n = 9) = ~pra(m— )" [ (ameost = N, (0) d

0

= g — ) / (am cos(m — t) — \gh o(m — ) dt
9

() / (—amcost — \g? 1 _o(t) dt = h_y1_a(D).
9

A similar computation shows that hyo(m — -) = h_j_1,_q holds also for k& > —%. Consequently,

hi q is square integrable at 7 if and only if h_;_; _, is square integrable at 0. Since the square
integrability does not depend on the value of a, it follows from the above considerations that A lies
right in .£2((0,7),d?) if and only if k > —2. O

The foregoing lemma shows that h € D(T7***())) for all k € (—2,1) and that ¢ € D(T7"**(A)) for
all k € (—1,0). It also provides information about selfadjoint extensions of the minimal operators
Smin()\) and TMin()\).

Lemma B.3. Let A € p(D)NR = R\ [ —|am|, |am|]. For k € R\ (=2, 1) the operators T/™™(\) and
Smin(\) are essentially selfadjoint. For k € (—2,—1]U[0,1) all selfadjoint extensions of the oper-
ators T™(\) and ST"()\) are one-dimensional restrictions of TI**(\) and ST*()\), respectively,
while for k € (—1,0) they are two-dimensional restrictions.

Proof. Tt follows from lemma B.2 that the differential expression T1(A) is in the limit point case at
0 if and only if £ € R\ (—1,1) and that it is in the limit point case at 7 if and only if k € R\ (-2, 0).
Thus the assertions are direct consequences of | , theorem 5.7]. t
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Recall that Si(A) is the Friedrichs extension of SNy for A > |am|. Although SPm(\) C
Sﬁmm]()\), the next lemma shows that their Friedrichs extensions coincide.
Lemma B.4. The Friedrichs extensions of S™®(\) and of the Schur complement S1(\) are equal.

Proof. First we show that for A € p(D) "R = p(—D) N R the forms sP®(\) and ""()\) are
symmetric, semibounded and closable. The symmetry of ST?()\) implies that

SN [u,0] = (u, SPN) = (SP(Nu, v) = (v, SFR(Nu) = sPE(N)[v, ]

for all u,v € D(s1"())), hence the form is symmetric. Next we show that the form sign(\)s?"())
is bounded from below. Since |A| > ||D|| = |am| by assumption, it follows that (|]\| — sign(\)D)™*
is a positive operator, thus we have for all u € D(sF"()))

sign(\)si(\)[u] = sign()) (u, (=D = Au) — sign(\) (u, B(D — )\)_IB*u)
= —(u, (sign(A\)D + |A|) u) + (B*u, (N = sign(/\)D)_lB*u)

v

—(IAT+ D1 [l

Since the above calculation also implies that the operator ST ()) is semibounded, it follows that
the form 5™ ()\) is closable, see | , chap. VI, corollary 1.28]. The corresponding assertions
for the form t{()\) can be shown analogously.

In the following we denote the closures of sP"(\) and t/"()\) by s1(\) and t;()\), respectively.
Obviously, we have D(t;(\)) = D(s1(N)). Now we show that the domains of the closed forms are

given by
D(s1(N) = D(t(N) = D(B").

Since s1(A) is the closure of s/ ()\), an element u € £2((0,7),dd) lies in D(s1()\)) if and only if
there is a sequence (uy)nen C D(sP™(N)) = C5°(0, ) such that u, — u and s7(\)[uy — U] — 0
for m,n — co. In £2((0,7),dd), the operators —D — X and (D — \)~! are bounded and either
strictly positive or strictly negative for A € R\ [—|am|, |am|]. Hence it follows that

51(A\) [ — U] = (tn — U, (=D — N)(un — tm)) — (B*(un — um), (D = X) "' B*(un, — up)) — 0
for m,n — oo is equivalent to

(B*(up — um), B*(up —um)) = ||B*(un — um)||? — 0, m,n — oo.
Since B* is closed, this is equivalent to u € D(B*).

Comparing with lemma 4.30, we find that s;(\) = 55min](/\). Since the Schur complement Si(\)
is defined as the selfadjoint operator associated with the closure of 51" ()), it follows that Sy ()
is also the selfadjoint operator associated with the closure s1()\) of s{%(\). Hence the Friedrichs

min

extension of ST""()) is equal to the Schur complement S;(A). O
The lemma shows that the domain of the forms is independent of A and thus justifies the definitions

D(t) = D(s;) = D((\) = D(s:())) = D(BY).

Of course, assertions analogous to those from lemmata B.3 and B.4 hold for the minimal operator
Siin()\). They are summarised in the following lemma.
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Lemma B.5. For A € p(—D)NR =R\ [~|am|, |am|], the formal differential expression
Ga(\) = DA —B_(-D - \)"'B,

is in the limit point case at 0 if and only if k € R\ (—2,0); it is in the limit point case at 7 if and
only if k € R\ (=1,1). Therefore, the operator

D(SF™(N) :=C3°(0,m),  SENf = G2(N)f (B.10)

is essentially selfadjoint if and only if k € R\ (—2,1).
The Schur complement Sz(\) and the Friedrichs extension of SY*(X\) coincide. The domain of the
corresponding closed form is given by

D(sy) = D(ty) = D(ty(\)) = D(s2(\)) = D(B).

Remark B.6. For k € (—2,—1]U[0,1) the block operator matrices

S1(N) 0 and -D— A 0
0 D-2A 0 Sa(A)
with domain C°(0, 7)? are symmetric, but not essentially selfadjoint; this means that their domains
are not large enough. However, the products

(é B(D;)\)1> (SléA) D(i)\> <(D_){)_1B* ?) (B.11)

(B*(—DI— A ?’> <_D0_ " Sl(zA)> (é v _IA)lB> (B.12)

with domain C3°(0, 7)? are essentially selfadjoint since they are equal to the minimal operator Amin,
This corresponds to the fact that for £ € (=2, —1] U0, 1) the ranges of B and B* are large enough
to guarantee the essential selfadjointness of the products. For example, fix some k € [0,1). Then
there are two linearly independent solutions &;, j = 1,2, of &1(A)u = 0 which lie both left in
Z%((0,7),dd). Formally, we can define the vectors

=P £ -
=] <_(©_)‘;_1%—§j>7 J —1727

which satisfy the differential equation

wonm = (3O 20) (oo D)7 -0

Since A is in the limit point case at 0, it follows that at least for one j € {1,2} the function =;
cannot lie left in .£2((0, ), dd). O

Boundary conditions

If k € (—2,1), then the operators ST™()\), A > |am|, are not essentially selfadjoint, hence it follows
from the theory of linear differential operators that there are infinitely many selfadjoint extensions
each given as a restriction of S7"**(\) in terms of boundary conditions.

For simplicity we work with the differential expression T;(\) instead of &;(A). Then all results are

easily carried over to the Schur complement since 73 () is a selfadjoint extension of T/ ()) if and
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only if S1()\) := —(D + \) + T1 () is a selfadjoint extension of S™®()\). Also the corresponding
boundary conditions are the same.

For 9 € [0, 7] and functions u,v € D(T{"**(\)) let
[u, v]y == (D =N (w —u'v)(¥) = (amcosd — \) " (u(@)'(9) — o/ (F)v(d)), 9 € (0,7).

For ¥ = 0 and ¥ = 7 this definition has to be understood as the limit of [u, v]y for ¥ — 0 and
¥ — 7 respectively. By [ , theorem 3.10], this limit always exists. Furthermore, let

[u, v]f = [u, v]; — [u, v]y, ¥, 7 €0, 7.
For u, v € D(T1"**(\)) Green’s formula
[, 0] = (T (Nw, v) = (u, T (M)

holds. These square bracket expressions contain information about the behaviour of functions when
subject to integration by parts and therefore we can use them to characterise selfadjoint extensions

of the minimal operator T7""(\). By | , theorem 5.8, all selfadjoint extensions of T/™"(\) are
given by
D(T7"(N) = {ueDI"™(N)) : [0x, ulr = 0} if ke (=2,-1],
D(TY*(N) = {u € D(T™™(N)) : [no, ulo = 0} if k €10,1),

DI (N)) = {u € DITP™(N) « [, ulo — [d, uls =0, j=1,2}  ifke (-1
(Ty A) = {u e DI™N) = [m, ulo — [0, ulx =0, j=1,2}  ifke(-1,0)

where 79, 7, are non-vanishing real solutions of T;(A)u = 0 and 776» 77%, j = 1,2, are solutions of
T1(A)u = 0 such that nj +nt and n2 + 72 are linearly independent modulo D(T™"()\)) and that

[ 1) = [0, R0 = 0, =12

Lemma B.7. The Friedrichs extension S1()\) of ST™(X) is given by
i) S1(\) = ST"(\) = TY"(\) =D —X  withny =hifk e (-2,-1],

(i) S1(A) = SPP°\) = T°N) =D —X  withno=h if k € [0,1),

(i) Si1(A) = SPII(N) = TR\ DX with b =l = and nd = 2 = h if
ke (—1,0).

Here 1p and h are the functions from lemma B.3, i.e., ¥(¥) = e_a“’COSﬁ(tang)k+% is a solution of
B_u =0 and h is solution of (D — \)"1B_u = ¢.

Proof. We show that 77" (X\), T7*(\) and Tfé’ng’n’l”n?’(/\) are the Friedrichs extensions of T/m()\).
Then the corresponding assertions for S ()\) follow from the boundedness of —D — \. Lemma B.2
shows that the differential expression ¥1()) is quasi-regular at 0 if and only if k € (—1,1) and that
it is quasi-regular at 7 if and only if £ € (—2,0). Moreover, we know that h € D(T{"**(\)) for all
ke (—2,1) and ¢ € D(T"**(\)) for all k € (—1,0). From B_v = 0 and the definition of i in (B.7)
it follows that

1 1
P9 = —B_y+ (f;; + aw sinz?)zp(vﬁ‘) = (:;:129 + aw sinﬁ)zp(ﬁ),
W) = —B_h(9) + ("jﬂ +awsind)h(9) = —(amcosd — N+ (’“*19 + awsind ) h(9),



Chapter B. The Schur complements of A 143

Hence we obtain
[l = (amcosd) — X) " (A(9)4' (9) — B (9)(9))

= (amcos? — )\)_1( (’H% + aw Sinﬁ) h(9)y ()

sin ¥

+ (amcos 9 — N)p(9)(9) — (’“.*5 + awsind ) h(9)6(9))

sin ¥

=1

for all ¥ € (0,7) and then also for ¥ = 0, m. Now we show that the functions h and ¢ do not lie
in the domain of the closure of T/%()). Note that for k € R\ (—2,1) we have h ¢ £2%((0,7),d?)
and that for k € R\ (=1,0) we have ¢ ¢ £?((0,7),dd), hence 1, h ¢ D(T™"(\)) in these cases.
For the remaining cases, we slightly modify the proof of | , theorem 5.4]. Let k € (—1,1)
and fix a function ¥y € D(T1(A)™**) such that ¢ = ¢ in a neighbourhood of 0 and ¥y = 0 in a
neighbourhood of 7. Such a function exists since 9 lies left in .£2((0, ), d?) and it follows that

[h, dolg =1  and [k, 3], =0

for ¥ in a neighbourhood of 0 and 7 in a neighbourhood of 7. If we assume h € D(TF"())) then
Green’s formula and the fact that T/(\)* = Tin(\) C T18%()\) show that

~1 = —[h, Yo = [h %olg = (1" (Nh, o) — (h, T (N)tho)
= (™), h)o — (T (N)"h, wo) = 0.

a contradiction. If k& € (—2,0), we use a function ¢, € D(T{"**(\)) such that ¢ = 0 in a

neighbourhood of 0 and %, = % in a neighbourhood of 7 to obtain a contradiction as above.

Analogous considerations show that ¢ ¢ D(T™n(\)) for k € (—1,0). Now we consider the three
cases of the lemma.

(i) Assume k € (—2,1]. Since all selfadjoint extensions are one-dimensional restrictions of T7***(\)
and since we have already shown that h ¢ D(T7®())), it suffices to show that h lies in the domain
of both selfadjoint extensions 77(A) and T7*(\). The latter inclusion is obvious. To show the first
one, we note that h € D(t1(\)). Since for all u € D(t1(\)) we find

t ()\)[U, h] = (U, ‘Il ()\)h’) = O)
the function h lies in the domain of the Friedrichs extension T3 (\) and T7(A\)h = 0 holds.
(ii) For k € [0,1) the assertion follows analogously.

(iii) In the case k € (—1,0) the selfadjoint extensions of T/ ()) are two-dimensional restrictions

of Tfax()\). We have already shown that h, ¢ ¢ D(T™®()\)) and that the functions h and ¢
are linearly independent. As in the first and second case, it follows that these functions lie in
D(T1(N)); further, they also lie in D(Tfp’h’w’h()\)). Hence it remains to prove that h and 1 are

linearly independent modulo D(Ti™"(\)). Just as in the beginning of the proof we can show that

no linear combination of these two functions lies in D(T/"()\)) which completes the proof. O

Remark B.8. For k € (—2,—1]U[0,1) we can show h ¢ D(T1"())) also without using Green’s
formula. We have seen in lemma 3.30 that for k£ € R\(—1,0) there are C(w) # 0 and §(k,w) # 0 such
that the inequalities | Bf| > C(w)d(k,w)||f||, f € D(B), and ||Bg|| > C(w)d(k,w)lgl|, g € D(B*),
hold. Now assume h € D(T™"())). Because of T/ (\) C Ty () it follows that h lies in the kernel
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of T/in()). Hence there exists a sequence (un)nen € D(TR(N)) = C5°(0,7) such that u, — h
and T (XN)u, — 0. Obviously, (D — A)"!B*up)nen € CP(0,7) € D(B*). This leads to the
contradiction
0 = lim [|[T™"(Nu,|| = lim ||B(D — \)"'B*u,|
> C*w)d(k,w)?* D = A" lim [Jun]| = C*(w) (k@) [|D = X7 [[A]] > 0. o

It should be observed that in the case k € (—1,0) the Friedrichs extension is given by coupled
boundary conditions, although there exist selfadjoint extensions of ST"()\) with separated bound-

ary conditions.
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Notation

The following table lists some frequently used symbols and their usual meaning together with the
page of their first occurrence.

General notation

~E

—~ —~
~ ~

complex conjugation

Gauf} bracket; [z] ;= max{n € Z : n < x}

scalar product in C™ with the convention (z,y) = 37", T;y; for
z,y e C™,

scalar product in Hilbert spaces; for .Z2-spaces of C™-valued
functions it is defined as usual by (f,g) = [ (f, g) (z)dz

A, B,... operator matrices

A B, ... linear operators

A* adjoint operator

Amin minimal operator associated with a formal differential expression
A, B, ... formal differential operators

a,b, ... sesquilinear forms or formal differential expressions
Coe(0,m) space of smooth functions with compact support in (0, 7)
¢ (H) space of all closed operators on a Hilbert space H

D(A) domain of the operator A

ker(A) kernel of the operator A

H general (usually complex) Hilbert space

I, I, identity operator

L := L\ {0} for linear spaces £

Z(H) space of all linear operators on the Hilbert space H

Z£%((0,1),dx)

space of square integrable functions on (0, 1)
= {1, 2, 3,...}, the natural numbers

o, O Landau symbols; a function f is of order o(g) for x — =z if
f(x)/g(x) — 0 for z — xo; a function f is of order O(g) for
x — xo if f(z)/g(z) is bounded for x — xg

rg(A) range of the operator A

W(A), W(a) numerical range of the operator A or the sesquilinear form a

W2(A) quadratic numerical range of a block operator matrix A

p(A) resolvent set of the operator A

o(A) spectrum of the operator A

0d(A), Oess(A) discrete spectrum, essential spectrum of the linear operator A

op(A) point spectrum of the linear operator A
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150 Notation
The angular operator and its associated operators

A untransformed angular part of the coupled system in the Kerr- 10
Newman background

A =2 11

9((d) untransformed angular part of the decoupled Dirac equation in 11
the Kerr-Newman background

A transformed angular part of the decoupled Dirac equation in the 17
Kerr-Newman background

A0, AT restriction of 2 to (0, ¢] and [c, 7) respectively 20

QK%, ATy formal differential expression, unitarily equivalent to A°, A™ re- 22
spectively

Ay, bounded part of 2 17

Ay = A — Ay, singular part of A 17

Amin minimal operator with domain D(A™") = C§(0, ) associated 19
with 2

Amin minimal operator associated with 2, 17

A0 grmin minimal operators associated with °, AT 20

A the angular operator, defined as the closure of A™" and maximal 19
operator associated with 2, A = (;39 g)

Ay = A — A, singular part of A 17

Ap bounded part of A 19

A maximal operator associated with 2, 19

AL, AT selfadjoint extensions of A" and A™™® respectively 21

Ay operator unitarily equivalent to A 107

B, = (2", %5") 16

B, selfadjoint realisation of B, 46

B = By 20, 46
Other operators, functions and parameters

B formal differentialul operators, formally adjoint to each other, 20
B = i% =+ f;;g + aw sin ¥

B, B_=B* closed diﬁ'ere?tial operators, adjoint to each other, 20
B=4+ ];;?9 + awsin ¥

By entry of the block operator matrix Ay, By = % + am cos 107

b formal differential expression associated with BB* 95

by sesquilinear form, by [u, v] = (u, Byv) 108

c(k) 102

Ct 51

C(w) 53
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D formal multiplication operator, ® = am cosv 10

D multiplication operator, D = am cos ¢ 27

Dy entry in Ay, Dy = — (I;I% + aw sin 19) 107

iz sesquilinear form, 0y [u, v] = (u, Dyv) 108

Hp = a - p+ Pm, Dirac operator in flat spacetime 28

5?) s = ‘3{3 + ﬁs, Dirac operator in the Kerr-Newman metric 11

3 =L+S , total angular momentum operator 29

R spin-orbit operator 29

R block spin-orbit operator 29

L angular momentum operator 28

el ey entries of 2A, 2 10, 11

my index shift 90

no index shift 79

P parity operator 31

I =1V, momentum operator 28

q potential in BB* 95

¢ ® test potentials for BB* 96

R untransformed radial part of the coupled Dirac equation in the 10
Kerr-Newman background

R, — VR 11

R radial part of the decoupled Dirac equation in the Kerr-Newman 11
background

REP Ry entries in ,‘5\[{, R 10

S spin operator 28

St angular components of \Tf, depending on ¥ 11

S1(N), Sa(N) Schur complements 68, 76

S][.mm]()\), j =1,2 minimal Schur complements 69

S1(A) formal differential expression associated with the Schur comple- 135
ment S ()

ST(A) minimal operator associated with &;(\) 135

s1(\) closure of si™™(\) and s ()) 74, 140

s (N) form associated with SI™™()\) 73

sT(N) form associated with ST"™(\) 135

sign(zx) =z/|z| if x € R\ {0} and sign(0) =0

T1(N) formal differential expression 136

Tmin()) minimal operator associated with T1(\) 136

t1(A) closure of t"()) 140

R ()) form associated with 7% ()\) 136

X4 radial components of \/I\l, depending on r 11

a =(97) 28

5 =(%5) %

Y+ 51

Y5 = (IOQ 102) 29

I'w), T'(w, k) 54, 55

A(r) 9
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d(k,w) 53, 56
5(9) phase function 22, 94
Lhn variational characterisation of the eigenvalues of the angular op- 79

erator A
thn eigenvalues of B 91
Un = u2, eigenvalues of BB* 84
Po 51
X(r,0) 9
of function associated with s; 7
oj, 7=1,2,3 Pauli spin matrices 28
T formal differential expression, Sturm-Liouville differential ex- 15, 93
pression
Olul> ¢ solutions of (B4 — p)¢p, = 0 and B = 0, respectively 47
T spinor with four components 10
V), ¥ solutions of (B_ — u)@b[u] =0 and B_1¢ = 0, respectively 47
Q4 terms in the test potentials for BB* 96
v = (O, Oy, 0.), nabla operator 28
Physical quantities and eigenvalues
a Kerr parameter (angular momentum parameter) of the black 9
hole
J quantum number for the total angular moment of the fermion; 31
j(j + 1) is an eigenvalue of J2
J» eigenvalue of J, 31
k wave number 11
M mass of the black hole 9
m mass of the fermion 10
Q charge of the black hole 9
K =k+ % 32
K eigenvalue of the spin-orbit operator K 31
A eigenvalue of the angular operator A 11
An analytic continuation of the nth eigenvalue A\, = (|k:+% — % —I—n)
of A in the case a =0
)\,[i], )\[# } lower and upper bound for the nth eigenvalue of the angular 98
operator A
)\%’SPT], )\%‘ SPT] lower and upper bound for the nth eigenvalue of the angular 98
operator A
G, )\[Cl;m], )\[g{p] lower bounds for the modulus of the eigenvalues of the angular 65
operator A
AQ lower bound for the modulus of the eigenvalues of the angular 112
operator A
T4 black hole horizons 9
w energy eigenvalue 11
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Index

angular momentum operator, 28 Priifer substitution, 22, 94
angular operator, 19
QNR, 80
block operator matrix, 19 quadratic numerical range, 80
bounded-holomorphic family of linear opera- quasi-derivative, 15
tors, 37 quasi-regular, 16

Boyer-Lindquist coordinates, 9
resolvent set of an operator function, 71

comparison theorem, 94 right in, 16

defect index, 68 Schur complement, 43, 69, 76, 135
Schur factorisation, 43
sesquilinear form, 72

closure of, 72

extension of, 72

numerical range of, 72

restriction of, 72

sectorial, 72

family of linear operators
bounded holomorphic, 37
holomorphic, see holomorphic family
selfadjoint, 37

Friedrichs extension, 77, 140

Green’s formula, 142

spectrum
holomorphic family discrete, 71
of type (A), 37 essential, 71
of type (a), 73 spectrum of an operator function, 71
of type (B), 73 spin matrices, 28

spin operator, 28

spin-orbit operator, 29

Sturm’s comparison theorem, 94
Sturm-Liouville differential equation, 93

Jacobi polynomials, 36

Kerr-Newman metric, 9
extreme Kerr-Newman metric, 10

Kerr-Newman parameter, 10 total angular momentum, 29

Landau symbol, 39
left in, 16

limit circle case, 16
limit point case, 16

Weyl’s alternative, 16

m-sectorial operator, 73
minimal operator, 15

numerical range
of a sesquilinear form, 72

oscillatory differential equation, 94

parity operator, 31
perturbation theory, 37
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