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Chapter 1

Introduction

In general relativity, the stage of physics is a four-dimensional differentiable manifold with a
Lorentzian metric (M, g), the spacetime. Events in spacetime are points in M . Spacetime, how-
ever, is not an immutable stage for physical action to take place, but is itself part of physics. The
relation between the geometry of spacetime and the energy contained in it is given by Einstein’s
equation

Rab − 1
2 RGab = 8π Tab, (1.1)

where the left hand side is the so-called Einstein tensor, which involves the metric g and derivatives
thereof, and hence describes the geometry of spacetime. The right hand side is the stress-energy
tensor arising from the energy distribution in spacetime. System (1.1) is a nonlinear partial differen-
tial equation for the components gµν of the metric g. A differentiable curve γ in spacetime is called
timelike if g(ξ, ξ) < 0 for all tangent vectors ξ on the curve (if the metric g has signature (−+++)).
A spacetime is called stationary if it admits an isometry Φt whose orbits are timelike curves. It
has been shown that all stationary electrovac solutions of Einstein’s equation are given by a three
parameter family, the so-called Kerr-Newman metric. If the Kerr-Newman metric describes the
spacetime outside a black hole, then the three parameters M , Q and a in the Kerr-Newman metric
have the physical interpretation as the mass M , the electric charge Q and the angular moment per
mass a = J/M of the black hole. That the field outside a stationary black hole is determined by
three parameters only has been summarised by J. A. Wheeler in the statement that “a black hole
has no hair”. For this and other results on black holes and general relativity we refer primarily to
[Wal84], [FN98] and the references therein.
In this work we consider a spin-1

2 particle in the Kerr-Newman background metric. Such particles
are described by a four component spinor Ψ subject to the Dirac equation. In Kerr-Newman
spacetime, the Dirac equation is a coupled system of partial differential equations which can be
written in the form

(R̂ + Â)Ψ̂ = 0, (t, r, ϑ, ϕ) ∈ (−∞, ∞)× (r+, ∞)× (0, π)× (−π, π), (1.2)

see [Pag76] and [Cha98]; the explicit form of the differential expressions R̂ and Â is given in (2.5).
A priori it is not clear how this formal differential expression can be implemented in an operator
theoretical context. Physical considerations imply that this operator should act on an L 2-space
since the solutions Ψ̂ are to be interpreted as the possible wave functions of a fermion. Taking into
account the functional determinant arising from the Kerr-Newman metric, the integration weight
in the L 2-space should be sinϑΣ(r, ϑ) = sinϑ(r2 + a2 cos2 ϑ), see (2.2).
The left hand side of the equation in (1.2) is well defined on the space of all smooth functions
with compact support. However, it is not clear if the operator defined in this way is essentially
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selfadjoint in the L 2-space described above (or any other suitable Hilbert space), thus providing a
unique canonical description of the physical situation.

In this work we follow the approach of Chandrasekhar by applying a suitable ansatz for Ψ̂ such
that the Dirac equation is separated into the following coupled system of differential equations
(see (2.8))

(R(d) − λ)
(
X+

X−

)
= 0, (A(d) − λ)

(
S−
S+

)
= 0; (1.3)

the first one, the so-called radial equation, is an ordinary differential equation with respect to the
radial coordinate r on (r+,∞), while the second one, the so-called angular equation, is an ordinary
differential equation with respect to the angular coordinate ϑ in the interval (0, π). The full solution
of the Dirac equation is then given by

Ψ(t, r, ϑ, ϕ) = e−iωt e−i(k+ 1
2
)ϕ


X−(r)S+(ϑ)
X+(r)S−(ϑ)
X+(r)S+(ϑ)
X−(r)S−(ϑ)


for (t, r, ϑ, ϕ) ∈ (−∞,∞)× (r+,∞)× (0, π)× (−π, π).
The quantity ω is interpreted as the energy of the fermion in the Kerr-Newman metric as measured
by a distant observer. In the special case a = 0, i.e., if the spacetime is spherically symmetric,
the number k ∈ Z is the z-component of the total angular momentum ~J of the fermion. In this
case, the operator associated with A(d) can be identified with the spin-orbit operator K in usual
relativistic quantum mechanics, and the coupling parameter λ is an eigenvalue of K, see section 3.1.

Both the angular equation and the radial equation in (1.3) admit an operator theoretical realisation
in a Hilbert space. It has been shown in [BM99] that the formal differential operator representing
the radial equation gives rise to an essentially selfadjoint operator in a weighted L 2-space whose
essential spectrum comprises the whole real axis. We show that the spectrum of the angular
operator consists only of eigenvalues; so far, only numerical approximations are known in the
literature [SFC83], [Cha84].

The aim of this work is to establish analytical bounds for the eigenvalues of the angular operator A
in terms of the physical parameters a, m and ω. To this end, we first realise the formal differential
expression A(d) in the case k ∈ R \ (−1, 0) as a selfadjoint operator A in a suitable L 2-space and
show that the spectrum consists of isolated eigenvalues only. Then we apply various techniques
that give rise to different kinds of bounds: First, we derive a lower bound for the modulus of the
eigenvalues of A by means of an off-diagonalisation of the angular operator. Then we apply a
variational principle for operator valued functions to obtain a formula for the eigenvalues of the
angular operator A in a certain right half plane which yields upper and lower bounds for these
eigenvalues of A. Finally, for certain values of aω and k, we establish another lower bound for the
modulus of the eigenvalues of A that differs substantially from the bounds derived by the methods
above. The proof relies on the fact that A is unitarily equivalent to a block operator matrix AU
such that the spectra of the diagonal entries of AU do not overlap. Observe that the first two
techniques apply not only to the angular operator, but to a wider class of block operator matrices.
The results of these methods are compared with bounds for the eigenvalues obtained from standard
perturbation theory and with numerical results in the above mentioned papers.
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The thesis is organised as follows. In chapter 2 we investigate the angular equation and its operator
theoretical implementation in a Hilbert space. After a certain transformation of A(d) we obtain the
formal differential expression A on the interval (0, π) which is formally symmetric in the Hilbert
space L 2((0, π),dϑ)2. With A we associate the minimal angular operator

D(Amin) := C∞0 (0, π), AminΨ := AΨ. (1.4)

In section 2.1 we show that Amin is essentially selfadjoint for all wave numbers k ∈ Z (we obtain
this result even for all k ∈ R \ (−1, 0)). The unique selfadjoint extension of Amin is denoted by A;
it has the block operator matrix representation

D(A) = D(B∗)⊕D(B), A =
(
A B
B∗ D

)
(1.5)

with the bounded multiplication operators

D(A) = D(D) = L 2((0, π),dϑ), A = −D = am cosϑ (1.6)

and the closed first order differential operator

D(B) = {f ∈ L 2((0, π),dϑ) : f is absolutely continuous, B+f ∈ L 2((0, π),dϑ)},

Bf = B+f :=
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f.

(1.7)

In section 2.2 we show that the spectrum of A consists only of simple eigenvalues without accumu-
lation points in (−∞, ∞) and that it is neither bounded from below nor from above.

In chapter 2.3 we establish several symmetry properties of the angular operator with respect to the
physical parameters a, m, ω and k that will prove useful in the subsequent chapters.

In chapter 3 we apply an abstract off-diagonalisation method for block operator matrices to obtain
lower bounds for the modulus of the eigenvalues of A. In section 3.1 we consider the case a = 0
where the eigenvalues of A are known explicitly (see lemma 3.3):

σp(A) = {λn = sign(n)(|k + 1
2 | −

1
2 + n) : n ∈ Z \ {0}} if a = 0.

In the rest of this chapter we establish lower bounds for the eigenvalues λ of A in the case a 6= 0, first
by using standard perturbation theory in section 3.2, then with the help of an off-diagonalisation
method in section 3.3. Based on the off-diagonalisation method, corollary 3.18 in section 3.3.1 yields
a lower bound for the modulus of the eigenvalues of block operator matrices of type (1.5) under the
assumption that A and D are bounded and that B and B∗ are boundedly invertible. Remark 3.32
shows that in the special case of the angular operator the same lower bound can be obtained from
standard perturbation theory; however, the off-diagonalisation also yields a lower bound for the
modulus of the eigenvalues if one of the operators A or D is only relatively bounded with respect
to B∗ or B. In section 3.3.2 we apply the off-diagonalisation method to the angular operator.
To this end, we first show that the off-diagonal entries B and B∗ of the angular operator are
indeed boundedly invertible. Using the explicit form of their inverses, we derive a lower bound for
‖B−1‖−1, see lemma 3.30 for a rather rough estimate, and lemma 3.34 for a refined estimate which
is obtained by an iteration process. Another lower bound for ‖B−1‖−1 is provided in section 4.2.2
where estimates for the eigenvalues of BB∗ are obtained by Sturm’s comparison theorem. For
most values of the parameters a, k, m and ω the latter estimate gives sharper lower bound for the
modulus of the eigenvalues λ than the bounds obtained by the iteration method; nevertheless, there
are situations where the bounds obtained by the iteration method are tighter, see, e.g., figure 6.1.
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Finally, we show with the help of the off-diagonalisation method in combination with the special
form of the entries of the angular operator that under certain conditions on am and k there is an
interval that contains no eigenvalues of A.

In chapter 4 we obtain a variational characterisation of the eigenvalues of A to the right of the
spectrum of D by applying the variational principle from [EL04]. From this formula, upper and
lower bounds in terms of the eigenvalues of BB∗ are deduced.
Note that the classical variational principle based on the Rayleigh functional (see, e.g., [RS78])
does not apply here since the operator A is not semibounded. In [GS99] a variational principle for
eigenvalues of operator matrices in a gap of the essential spectrum was proved where the authors
did not assume that the operator was semibounded. However, they assumed that the spectra of
the operators on the diagonal do not overlap, so that, roughly speaking, the given decomposition
of the Hilbert space is close to the decomposition of the Hilbert space into spectral subspaces of
the operator matrix under consideration. In the case of the angular operator, however, the spectra
of the diagonal entries coincide so that the result of [GS99] does not apply either. In recent works,
various types of block operator matrices and their spectral properties have been considered, for a
survey we refer the reader to [Tre00]. In section 4.1 we consider so-called off-diagonal dominant
selfadjoint block operator matrices

T =
(
T11 T12

T ∗12 T22

)
, D(T ) = D(T ∗12)⊕D(T12),

where all Tij , i, j ∈ {1, 2} are closed and T11 and T22 are relatively bounded with respect to T ∗12
and T12, respectively. The term “off-diagonal dominant” refers to the fact that the diagonal entries
are dominated by the off-diagonal entries. Note that the selfadjointness of T implies that the
restrictions of T11 to D(T ∗12) and of T22 to D(T12) are symmetric. Further we assume T11 to be
semibounded from below, and we suppose that there exists a c2 ∈ R such that (c2, ∞) ⊆ ρ(T22).
Observe that we do not require that the spectra of these operators are separated.
For λ to the right of c2 we associate the Schur complement

S1(λ) = T11 − λ− T12(T22 − λ)−1T ∗12, λ ∈ (c2,∞),

with the block operator matrix T . Since the operators T11 and T12 may be unbounded, the domain
of S1(λ) has to be chosen carefully. In corollary 4.9 we show that the spectrum of the Schur
complement and the spectrum of T to the right of c2 coincide if the Schur complement with an
appropriate domain is selfadjoint and if T12 is surjective. A sufficient condition for the existence
of a selfadjoint Schur complement S1(λ) is that T22 is bounded and that T11 is relatively bounded
with respect to T12(T22 − λ)−1T ∗12 with relative bound less than 1. Under these assumptions we
prove a variational principle that gives rise to upper and lower bounds for the eigenvalues of T in
an interval (c2, λe) having empty intersection with the essential spectrum of T .
In the special case where in addition to the above mentioned assumptions we also suppose that
the spectrum of the operator T0 =

(
0 T12
T ∗12 0

)
consists of isolated eigenvalues only, that there is a

bound b > 0 such that ‖T ∗12x‖ ≥ b‖x‖ for all x ∈ D(T ∗12), and that the Schur complement S1(λ) is
selfadjoint with domain D(S1(λ)) =: D(S1) independent of λ, the variational principle gives rise to
the following estimate of the eigenvalues of T in (c2, λe), see theorem 4.25:

λn ≤ α21

2
√
νn+n0 +

√
νn+n0 + 1

4(α21
√
νn+n0 + ‖T22‖+ α)2 + 1

2 (α+ c2) , 1 ≤ n ≤ N,

λn ≥ √
νn+n0 + 1

2(c1 − ‖T22‖), 1 ≤ n ≤ N.

(1.8)

where λn is the nth eigenvalue of the operator T greater than c2. The numbers
√
νn are the

eigenvalues of T0 greater than 0, n0 is an index shift due to the variational principle, the numbers α
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and α21 arise from the relative boundedness of T11 with respect to T ∗12, and c1 is a lower bound for
T11. In the case T11 = 0, T22 = 0 we obtain λn =

√
νn; therefore inequalities (1.8) can be regarded

as a perturbation result for a certain class of off-diagonal dominant block operator matrices with
an unbounded perturbation of one diagonal entry.
The upper bound in (1.8) can be further improved if we assume that both T11 and T22 are bounded.
Under the further condition that T11 = −T22, satisfied by the angular operator, we obtain the
following two-sided estimate, see theorem 4.28,

√
νn0+n − ‖T22‖ ≤ λn ≤ √

νn0+n + ‖T22‖, 1 ≤ n ≤ N. (1.9)

In the case of bounded T11 and T22, also standard perturbation theory is applicable; we compare
the bounds (1.9) with the corresponding results of standard perturbation theory.
Finally, in section 4.2, we apply the theorems of section 4.1 to the angular operator A. All above
mentioned assumptions on T and its entries are satisfied by A. In section 4.2.2 we obtain estimates
for the eigenvalues of B := A −

(
A 0
0 D

)
=
(

0 B
B∗ 0

)
with the help of Sturm’s comparison theorem

applied to the second order differential expression associated with the operator BB∗. Inserting
these bounds into (1.9) we get explicit bounds for the eigenvalues of A to the right of ‖D‖ = |am|
in terms of the physical parameters a, m, ω and k.

A completely different approach to obtain a lower bound for the modulus of the eigenvalues of
A is used in chapter 5. There we apply a unitary transformation U to A to obtain the unitarily
equivalent operator

UAU−1 =: AU =
(
−DU BU
B∗
U DU

)
=

(
k+ 1

2
sinϑ + aω sinϑ d

dϑ + am cosϑ

− d
dϑ + am cosϑ −(k+

1
2

sinϑ + aω sinϑ)

)
, D(AU ) := UD(A)

on the Hilbert space HU := HU,1 ⊕ HU,2 := U(L 2((0, π),dϑ)2). Under certain assumptions on
k and aω the entries ±DU on the diagonal of the transformed operator have separated spectra.
Operator matrices of this type have been investigated in [LT98] and [LT01]. However, all the
entries in AU are unbounded, and it is not at all clear that AU is still a block operator matrix,
that is, that its domain can be written as a direct sum D(AU ) = DU,1 ⊕ DU,2 for suitable linear
manifolds DU,1 ⊆ HU,1 and DU,2 ⊆ HU,2. In fact, remark 5.4 shows that AU is not a block operator
matrix if k ∈ {−1, 0}. Since all the entries of AU are unbounded, we introduce sesquilinear forms
associated with the operators constituting AU . The eigenvalue equation (AU − λ)ΨU = 0 gives
rise to a linear system of equations in R2, cf. the proof of theorem 5.9. The essential assumption
for the proof of theorem 5.10, which is met by the transformed angular operator AU in the case
aω sign(k + 1

2) ≥ |k + 1
2 |, is that the spectra of the diagonal entries of AU do not intersect. The

bound obtained by this method is proportional to
√
aω for aω sign(k + 1

2) sufficiently large and it
is independent of am, whereas all other estimates obtained for the eigenvalues of A in this work
involve a term ±|am| since am is always treated as a perturbation parameter. The drawback of
this estimate is that it holds in the case aω sign(k + 1

2) ≥ −|k + 1
2 | only; otherwise the spectra of

the diagonal entries in AU are not separated.

Finally, in chapter 6, the analytical bounds proved in this work are compared with numerical
values for the eigenvalues of A provided in the literature. Furthermore, we use the continued
fraction equation for the eigenvalues given in [SFC83] to produce numerical values with the help
of a short Maple programme. All numerical values lie within the analytical bounds. A priori, it is
not easy to decide which of the various analytic lower bounds for the modulus of the eigenvalues is
the sharpest; for fixed m, ω and k, figure 6.1 shows that for each of the four different lower bounds
shown in the plot there exists an interval for the Kerr parameter a where it gives a larger lower
bound than the other three.
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Notation

In this work, H always denotes a Hilbert space; for scalar products ( · , · ) on Hilbert spaces H we
use the physical convention (αu, βv) = αβ (u, v). If not stated otherwise, we always assume that
the Hilbert spaces are infinite dimensional. The space of all linear operators in H is denoted by
L (H) and the space of all closed linear operators in H is denoted by C (H). If H is an L 2-space, we
denote the norm on H by ‖·‖2. For formal 2×2 differential expressions we use capital Gothic types
A, B, . . . ; block operator matrices are denoted by calligraphic types A, B, . . . and their entries by
Roman types A, B . . . . The domain of a linear operator A is usually denoted by D(A). Sometimes
we use the notation A(H1 → H2) for a linear operator A with domain in the Hilbert space H1 and
values in the Hilbert space H2.
Sesquilinear forms are denoted by small Gothic types b, d, . . . . Small Greek letters and small
Gothic types are used for one-dimensional formal differential expressions.
Throughout the text, the letters A and A with various super- and subscripts are reserved for the
formal differential expression and operator theoretical realisations of the angular part of the Dirac
equation. To the off-diagonal entries of the angular operator, the letter B is assigned. Sometimes
it is convenient to express the dependence of B on the wave number k explicitly by writing Bk.
For a list of symbols we refer to the appendix, pp. 149.
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Chapter 2

The angular equation

The aim of this chapter is to implement the formal differential expression representing the angular
part of the Dirac equation in the Kerr-Newman background as a selfadjoint block operator matrix
A acting on a suitable Hilbert space. Furthermore, a qualitative description of the spectrum of A
is given, and various symmetries with respect to the physical parameters are investigated.

The so-called Kerr-Newman metric is the most general stationary electrovac solution of the Einstein
equation (1.1); in Boyer-Lindquist coordinates it is given by

ds2 = −
(

∆− a2 sin2 ϑ

Σ

)
dt2 − 2a sin2 ϑ(r2 + a2 −∆)

Σ
dtdϕ

+
[
(r2 + a2)2 −∆a2 sin2 ϑ

Σ

]
sin2 ϑ dϕ2 +

Σ
∆

dr2 + Σ dϑ2.

(2.1)

Sometimes the metric is also denoted by ds2 = gµνdxµdxν , where xµ and xν run through the
spacetime coordinates t, r, ϑ, ϕ; the coefficients gµν of the metric can be read off from (2.1).
The functions ∆ and Σ are defined by

∆(r) := r2 − 2Mr + a2 +Q2 = (r −M)2 + a2 +Q2 −M2,

Σ(r, ϑ) := r2 + a2 cos2 ϑ.

The functional determinant of the metric g is given by

g(r, ϑ) := det((gµν(r, ϑ))µ,ν) = − sin2 ϑΣ(r, ϑ)2 = − sin2 ϑ (r2 + a2 cos2 ϑ)2. (2.2)

Note that in the case a = 0 this expression is the negative functional determinant of the usual polar
coordinates in R3.
The family (2.1) of spacetime metrics depends on the three real parameters M, Q and a. If the
metric describes the spacetime in the exterior of a black hole, then these parameters have the
interpretation as the mass, electric charge and angular momentum per unit mass of the black hole.
We define

r± :=

{
M ±

√
M2 − a2 −Q2 if M2 − a2 −Q2 ≥ 0,

0 if M2 − a2 −Q2 < 0,

so that ∆ > 0 on (r+, ∞) and ∆(r) = 0 if and only if r ∈ {r−, r+}, provided that ∆ has a zero. It
can be shown that in the case r+ > 0 the singularity in the metric at r± is a coordinate singularity
which can be removed by using a different coordinate system. However, the points of spacetime
with r = r+ form a so-called event horizon, i.e., particles can cross the event horizon from the
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outside into the region with r < r+, but nothing can cross the horizon from the inside to the outer
region. Therefore, if the black hole condition

M2 − a2 −Q2 ≥ 0 (2.3)

holds, the true singularity at Σ = 0 is hidden behind the event horizon. In the case M2−a2−Q2 = 0
the metric (2.1) is called the extreme Kerr-Newman metric. If M2 − a2 − Q2 ≥ 0, then the
Kerr-Newman metric for (r, t, ϑ, ϕ) ∈ (r+,∞) × (−∞,∞) × (0, π) × (−π, π) is interpreted as the
spacetime outside of a massive, charged, rotating black hole with mass M , electric charge Q and
angular momentum aM . The parameter a is also referred to as the Kerr-Newman parameter. If
M2−a2−Q2 < 0, then the function ∆ has no zero. Therefore, a spacetime described by (2.1) would
contain a so-called naked singularity which is supposed to be forbidden by the cosmic censorship
conjecture. For more details on the Kerr-Newman black holes and general relativity we refer above
all to the textbook [Wal84] and the monograph [FN98].

In the following we consider a spin-1
2 particle with mass m and charge e in the Kerr-Newman

background. In general, the behaviour of fermions is governed by the Dirac equation, a linear
system of four differential equations. In the Kerr-Newman metric, the Dirac equation is formally
given by the coupled system of partial differential equations (see, e.g., [Pag76], [Cha98])

(R̂ + Â)Ψ̂ = 0 (2.4)

where

R̂ :=


imr 0

√
∆R

t,ϕ
+ 0

0 −imr 0
√

∆R
t,ϕ
−√

∆R
t,ϕ
− 0 −imr 0

0
√

∆R
t,ϕ
+ 0 imr

 , Â :=


−D 0 0 L

t,ϕ
+

0 D −L
t,ϕ
− 0

0 L
t,ϕ
+ −D 0

−L
t,ϕ
− 0 0 D

 (2.5)

and

D := am cosϑ,

R
t,ϕ
± :=

∂

∂r
± i

∆

[
(r2 + a2) i

∂

∂t
+ a i

∂

∂ϕ
+ eQr

]
=:

∂

∂r
± i Ωt,ϕ(r) on (r+,∞),

L
t,ϕ
± :=

∂

∂ϑ
+

cotϑ
2

∓ i
[
a sinϑ

∂

∂t
+

1
sinϑ

∂

∂ϕ

]
on (0, π).

We would like to emphasise that at this stage the Dirac equation is a formal equation only. The
choice of its realisation in an operator theoretical context has yet to be made, see the discussion at
the end of this section and also in section 2.1 where an operator associated to the angular part of
the Dirac equation is established.
It is clear, however, that for massive fermions, that is, for m 6= 0, the formal operator on the
left hand side of (2.4) cannot be formally selfadjoint in any space of square integrable functions
because of the nonvanishing complex multiplication operators on the diagonal of the matrix R̂.
To overcome that obstacle to (formal) symmetry, we multiply equation (2.4) from the left by the
invertible matrix

V0 :=
1√
∆


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


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and we obtain that equation (2.4) is equivalent to

(R̂s + Âs)Ψ̂ = 0, (2.6)

with

R̂s := V0 R̂ =


−iRt,ϕ

− 0 − mr√
∆

0
0 i Rt,ϕ

+ 0 − mr√
∆

− mr√
∆

0 i Rt,ϕ
+ 0

0 − mr√
∆

0 −iRt,ϕ
−

 ,

Âs := V0 Â =
1√
∆


0 −iLt,ϕ+ iD 0

−iLt,ϕ− 0 0 iD
−iD 0 0 i Lt,ϕ+

0 −iD iLt,ϕ− 0

 .

A straightforward computation shows that R̂s and Âs, and consequently Ĥs := R̂s+Âs, are formally
symmetric on the weighted L 2-space L 2((r+, ∞)× (0, π)× (−π, π), sinϑ dr dϑ dϕ)4.

Chandrasekhar showed that this system of partial differential equations can be separated into a
system of ordinary differential equations, see [Cha98]. To this end, we employ the ansatz

Ψ̂(t, r, ϑ, ϕ) =: e−iωte−i(k+ 1
2
)ϕΨ(r, ϑ)

=: e−iωte−i(k+ 1
2
)ϕ


Ψ1(r, ϑ)
Ψ2(r, ϑ)
Ψ3(r, ϑ)
Ψ4(r, ϑ)

 =: e−iωte−i(k+ 1
2
)ϕ


X−(r)S+(ϑ)
X+(r)S−(ϑ)
X+(r)S+(ϑ)
X−(r)S−(ϑ)

 ,

(2.7)

so that the system (2.4) of partial differential equations decouples into the following system of
ordinary differential equations with coupling parameter λ (the superscript (d) labels the operators
“decoupled”):

(R(d) − λ)
(
X+

X−

)
= 0, (A(d) − λ)

(
S−
S+

)
= 0, (2.8)

where

R(d) =

(
−imr

√
∆ R−

√
∆ R+ imr

)
and A(d) =

(
−D L−
−L+ D

)
with

R± =
d
dr
± i

∆
[
ω(r2 + a2) + a (k + 1

2) + eQr
]

=:
d
dr
± i Ω(r), (2.9)

L± =
d
dϑ

+
cotϑ

2
∓

[
aω sinϑ+

k + 1
2

sinϑ

]
(2.10)

are obtained from Rt,ϕ and Lt,ϕ by replacing the differential operators i ∂∂t and i ∂∂ϕ by the multi-
plication operators ω and (k + 1

2), respectively.
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To clarify the structure of Ĥs = R̂s + Âs that accounts for the fact that the Dirac equation can be
separated into a radial and a angular equation, we transform Ĥs with the unitary matrix

V :=
1√
2


0 −i 0 i
i 0 −i 0
0 −1 0 −1
−1 0 −1 0


and obtain that the Dirac equation (2.6) is equivalent to

(
V R̂sV

−1 + V ÂsV
−1
)
VΨ = 0, (2.11)

with the 4× 4-matrices

V R̂sV
−1 =


rm√

∆
− Ω(r) 0 − d

dr 0

0 rm√
∆
− Ω(r) 0 − d

dr

d
dr 0 −

(
rm√

∆
+ Ω(r)

)
0

0 d
dr 0 −

(
rm√

∆
+ Ω(r)

)



=


(
rm√

∆
− Ω(r)

)
I2 − d

dr I2

d
dr I2 −

(
rm√

∆
− Ω(r)

)
I2

 ,

V ÂsV
−1 =

1√
∆


0 0 −D L−

0 0 −L+ D

−D L− 0 0

−L+ D 0 0

 =
1√
∆

(
0 A(d)

A(d) 0

)
,

VΨ =
1√
2


−i (Ψ2 −Ψ4)

i (Ψ1 −Ψ3)

−(Ψ2 + Ψ4)

−(Ψ1 + Ψ3)

 =
1√
2


−i (X+ −X−)S−
−i (X+ −X−)S+

−(X+ +X−)S−
−(X+ +X−)S+

 .

Let
(
S−
S+

)
be a nontrivial solution of the equation for

(
S−
S+

)
in (2.8). Since by assumption the

functions X± do not depend on ϑ, it follows from the Dirac equation (2.11) that

(
d
dr + λ√

∆
−
(
rm√

∆
+ Ω(r)

)
rm√

∆
− Ω(r) − d

dr + λ√
∆

)(
− i√

2
(X+ −X−)

− 1√
2
(X+ +X−)

)
= 0. (2.12)

Application of the unitary transformation W := 1√
2

(
i −1
−i −1

)
shows that the above equation is
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equivalent to

0 = W

(
d
dr + λ√

∆
−
(
rm√

∆
+ Ω(r)

)
rm√

∆
− Ω(r) − d

dr + λ√
∆

)
W−1 W

(
− i√

2
(X+ −X−)

− 1√
2
(X+ +X−)

)

=

(
λ√
∆

+ irm√
∆

− d
dr + iΩ(r)

− d
dr − i Ω(r) λ√

∆
− irm√

∆

)(
X+

X−

)

= − 1√
∆

((
−i rm

√
∆ R−

√
∆ R+ i rm

)
− λ

)(
X+

X−

)
,

which is equivalent to the first equation in (2.8). Remember that the second equation in (2.8) is
satisfied by our assumption on

(
S−
S+

)
.

Conversely, if we have solutions of (2.8), then we obtain a solution Ψ̂ of the Dirac equation by (2.7).

Remark 2.1. Note that for m 6= 0 the differential expression R(d) is not formally symmetric
in L 2-spaces due to the multiplication operator −im on its diagonal. However, it is possible to
write the radial equation (R(d) − λ)

(
X+

X−

)
= 0 as an eigenvalue equation with ω as the eigenvalue

parameter such that the corresponding radial operator becomes formally symmetric, see [BM99].
To this end we extract from formula (2.11) the equation

0 =

(
rm√

∆
− Ω(r) − d

dr + λ√
∆

d
dr + λ√

∆
−
(
rm√

∆
+ Ω(r)

))(− i√
2
(X+ −X−)

− 1√
2
(X+ +X−)

)

=

 rm√
∆
− 1

∆(a(k + 1
2) + eQr)− ω(r2+a2)

∆ − d
dr + λ√

∆

d
dr + λ√

∆
− rm√

∆
− 1

∆(a(k + 1
2) + eQr)− ω(r2+a2)

∆

W−1

X+

X−


which, considered as a mere equation, coincides with (2.12) since only the rows of the matrices are
interchanged. The operator realisations, however, of the left hand sides of both equations differ
substantially because exchanging of the rows of matrix can in general not be achieved by a unitary
transformation.
In order to get rid of the factor in front of the eigenvalue parameter ω, we introduce the new radial
coordinate x defined by dx

dr = r2+a2

∆(r) for r ∈ (r+,∞). The new coordinate x is uniquely defined up
to an additive constant x0; it is given explicitly by

x(r) =


r + 2r+ ln(r − r+)− r2++a2

r−r+ + x0 if r+ = r−,

r +
a2+r2+
r+−r− ln(r − r+)− a2+r2−

r+−r− ln(r − r−) + x0 if r+ 6= r−.

After multiplication of the radial equation above from the left by ∆(r)
r2+a2 we obtain the equation rm

√
∆

r2+a2 − 1
r2+a2 (a(k + 1

2) + eQr)− ω − d
dx + λ

√
∆

r2+a2

d
dx + λ

√
∆

r2+a2 − rm
√

∆
r2+a2 − 1

r2+a2 (a(k + 1
2) + eQr)− ω

 W−1

X+

X−

 = 0

which is an eigenvalue equation with eigenvalue parameter ω for a formally symmetric operator
on the Hilbert space L 2((−∞,∞), dx). The above system is a Dirac system, thus providing a
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convenient starting point for the investigation of the spectrum of the radial part of the Dirac
equation as carried out by Belgiorno and Martellini in [BM99]. In this paper, the authors have
proved that there is a unique selfadjoint operator representing the radial equation and that its
essential spectrum covers the whole real line. ♦

In the next section we show that the angular equation has a representation as an eigenvalue equation
for a selfadjoint operator on Hilbert space with eigenvalue λ.

If there is a number λ such that the system (2.8) can be satisfied by functions X± and S± enjoying
certain integrability properties, then the system consisting of the Kerr-Newman black hole and the
fermionic particle is stable. In this work we establish analytic bounds for the eigenvalues of the
radial operator that might prove useful in the investigation of the full coupled problem (2.8).

The properties that have to be postulated for the solutions S± and X± can be deduced either from
physical or from mathematical considerations. In the first case, one argues that Ψ̂ describes the
state of one particle, hence for every given t it must be square integrable on (r+,∞)×(0, π)×(−π, π)
with respect to the integration weight induced by the metric ds2, see also section 2.1.1. Hence the
angular and radial operators under consideration are supposed to be acting on complex L 2-spaces
with the integration weight induced by the metric. It turns out that with these weights the operators
are formally symmetric.
From a mathematical point of view, given the formal radial and angular equation only, one would
consider the formal differential expressions A and R or transforms thereof on some L 2-spaces
where the integration weights have to be chosen such that they are formally symmetric and admit
selfadjoint realisations. Of course, the integration weights obtained by this procedure coincide with
those obtained by a physical reasoning.

For results on the radial part of the Dirac equation we refer to [BM99] and the recent paper [Sch04]
and references therein. Here, we deal with the angular operator only. The first aim is to implement
the formal differential expression A(d) as a selfadjoint operator A. Then we give a qualitative
description of the spectrum of A in section 2.2.
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2.1 Operatortheoretical realisation of A

In this subsection we collect some basic definitions and facts concerning differential operators, see,
e.g., [Wei87]. We consider formal differential expressions of the form

τf(x) = r−1(x)

{ [n
2
]∑

j=0

(−1)j
(
pj(x)f (j)(x)

)(j)

+
[n−1

2
]∑

j=0

(−1)j
[(
qj(x)f (j)(x)

)(j+1)
−
(
q∗j (x)f

(j+1)(x)
)(j)

]} (2.13)

on an interval (a, b) ⊆ R, where r, pj and qj are m×m-matrix valued functions on (a, b) such that
r(x) is positive definite and pj(x), j = 0, . . . , [n2 ], are Hermitian for almost all x ∈ (a, b). Further
we assume that pj , qj , j = 0, . . . , [n2 ], and r are measurable on (a, b). In addition we require for
odd n =: 2k + 1 that

(i) qk is absolutely continuous and q̂k(x) := (qk − q∗k)(x) is regular for every x ∈ (a, b),

(ii) |q̂ −1
k |, |q̂ −1

k (pk + q′k)|, |q̂
−1
k qk−1|, |pj |, |qj | for j = 0, . . . , k− 1 and |r| are locally integrable

on (a, b).

For even n =: 2k we suppose that the following conditions hold:

(i) pk(x) is regular for almost all x ∈ (a, b);

(ii) |p−1
k |, |p−1

k qk−1|, |pk−1 − q∗k−1p
−1
k qk−1|, |pj |, |qj |, j = 0, 1, . . . , k − 2, and |r| are locally

integrable on (a, b).

If r is continuous and the coefficients qj , pj , j = 0, . . . , n are sufficiently often continuously differ-
entiable, then the following minimal operator associated with τ is well defined in the Hilbert space
L 2((a, b), dx):

D(Tmin) := C∞0 (0, π)m, Tminf := τf. (2.14)

Remark 2.2. In the general case, the minimal operator associated with τ is defined as

D(T {min}) := {f ∈ H : f has compact support, f{0}, . . . , f{n−1} are absolutely continuous
and τf ∈ H}.

For the general definition of the quasi-derivatives f{j} we refer the reader to [Wei87, chap. 2].
In this work, we are only interested in the case nm = 2: in the next section we show that the
formal angular operator A(d) of (2.8) is a differential expression of type (2.13) satisfying the above
mentioned conditions for n = 1 and m = 2. The case n = 2, m = 1 arises in section 4.2.2. For
nm = 2, the quasi-derivatives are given by

f{0} := f, f{1} :=
(
q̂ d

dx + (q′0 + p0)
)
f = rτf if n = 1,m = 2,

f{0} := f, f{1} :=
(
p1

d
dx − q0

)
f,

f{2} :=
(
− d

dx − q∗0p
−1
1

)
f{1} +

(
p0 − q∗0p

−1
1 q0

)
f{0} = rτf if n = 2,m = 1.

If the coefficients of τ are such that Tmin is well defined, then we have T {min} = Tmin. ♦
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In the following we recall some basic definitions.

Definition 2.3. For an interval (a, b) ⊆ R consider a vector valued f : (a, b) −→ Cm. Then we say
that f lies right in L 2((a, b),dx)m if for every c ∈ (a, b) we have f |(c,b) ∈ L 2((c, b),dx)m. Analo-
gously, f is said to lie left in L 2((a, b),dx)m if for every c ∈ (a, b) we have f |(a,c) ∈ L 2((a, c),dx)m.

Definition 2.4. If for some λ ∈ C every solution of (τ − λ)f = 0 lies right in L 2((a, b),dx)m,
then τ is called quasi-regular at b. Quasi-regularity at a is defined analogously. The differential
expression τ is called quasi-regular, if it is quasi-regular at a and b.

Definition 2.5. Let (a, b) be an interval in R and τ be a formal differential expression on (a, b) as
in (2.13). We say that τ is in the limit circle case at b, if for every λ ∈ C all solutions of (τ−λ)f = 0
lie right in L 2((a, b),dx). τ is in the limit point case at b if for every λ ∈ C there is at least one
solution of (τ − λ)f = 0 that does not lie right in L 2((a, b),dx).
The notions limit point case at a and limit circle case at a are defined analogously.

Weyl’s alternative states that in the case nm = 2 these are the only cases that can occur for real
differential expressions τ . We cite the theorem in the version of [Wei87, theorem 5.6].

Theorem 2.6. Let τ be a differential expression as in (2.13) with real coefficients and p := nm = 2.
Then exactly one of the following two cases holds.

(i) For every λ ∈ C all solutions of (τ − λ)f = 0 lie right in L 2((a, b), r(x) dx)m.

(ii) For every λ ∈ C \ R there exists a (up to a multiplicative constant) unique solution f of
(τ − λ)f = 0 which lies right in L 2((a, b), r(x) dx)m.

The same result holds with “left” replaced by “right”.

Theorem 2.7. Let τ be a differential expression as in (2.13) with real coefficients such that the
minimal operator Tmin is well defined and let p := nm = 2. If τ is in the limit point case both at a
and b, then the closure of the minimal operator associated to τ is selfadjoint.

The proofs of theorems 2.6 and 2.7 may be found in [Wei87].

2.1.1 Transformation of spacetime coordinates

From the metric (2.1) we obtain the functional determinant g(r, ϑ) = − sin2 ϑΣ2(r, ϑ). The factor
Σ(r, ϑ) = r2 + a2 cos2 ϑ is strictly positive and bounded; here strictly positive means that there
exists a constant c > 0 such that Σ(r, ϑ) ≥ c for all ϑ ∈ [0, π] and all r ∈ [r+,∞). Hence for fixed
r ∈ (r+, ∞), the functional determinant g can be estimated from above and from below by some
positive constant multiple of sin2 ϑ, which suggests that the Hilbert space for A(d) to operate on is
the weighted space L 2((0, π),d cosϑ)2 = L 2((0, π), sinϑ dϑ)2. Indeed, one can show that in this
space A(d) is formally symmetric.
This symmetry becomes more apparent if we transform the given spectral problem into a problem
in the Hilbert space L 2((0, π),dϑ)2. To this end, consider the isometry

j : L 2((0, π), sinϑ dϑ) −→ L 2((0, π),dϑ), f 7→
√

sinϑf.

We have j∗ = j−1 and linear operators T on L 2((0, π), sinϑ dϑ) transform according to the following
commutative diagramme:

L 2((0, π), sinϑ dϑ) T−−−−→ L 2((0, π), sinϑ dϑ)

j

y yj
L 2((0, π),dϑ)

jT j−1

−−−−→ L 2((0, π),dϑ)
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This shows that multiplication operators remain unchanged under this transformation, but differ-
ential operators change. Consider the linear operator T = d

dϑ + cotϑ
2 as an operator acting on

L 2((0, π), sinϑ dϑ). Then, for arbitrary f ∈ D(T ), we have

(jT j−1)(jf)(ϑ) =
√

sinϑ
( d

dϑ
+

cotϑ
2

)( 1√
sinϑ

· (jf)(ϑ)
)

=
√

sinϑ
( 1√

sinϑ
d
dϑ

− cosϑ

2(sinϑ)
3
2

+
cotϑ

2
√

sinϑ

)
(jf)(ϑ)

=
d
dϑ

(jf)(ϑ).

Thus we have shown

jT j−1 =
d
dϑ

on j(D(T )) ⊆ L 2((0, π),dϑ).

If we transform the formal matrix differential operator A(d) with J := j ⊕ j =
(
j 0
0 j

)
, we obtain

A = JA(d)J−1 =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)

which acts on the Hilbert space L 2((0, π),dϑ)2. To simplify the following calculations we write A

as the sum of the unbounded operator Au and the bounded operator Ab given by

Au :=

(
0 d

dϑ + k+ 1
2

sinϑ

− d
dϑ + k+ 1

2
sinϑ 0

)
and Ab :=

(
−am cosϑ aω sinϑ
aω sinϑ am cosϑ

)
.

Now, if in (2.13) we set n = 1, m = 2, a = 0, b = π, r(x) = 1 and

q0(ϑ) =
1
2

(
0 I
−I 0

)
, pu,0(ϑ) =

k + 1
2

sinϑ

(
0 I
I 0

)
,

p0(ϑ) =
k + 1

2

sinϑ

(
0 I
I 0

)
+
(
−am cosϑ aω sinϑ
aω sinϑ am cosϑ

)
,

we find that the formal expressions Au and A are of the form (2.13), so they fit into the general
framework discussed at the beginning of section 2.1.

2.1.2 Realisation of A as a selfadjoint operator on L 2((0, π), dϑ)2

In the following we always assume a,m, ω ∈ R and k ∈ Z if not stated explicitly otherwise. Then
it is easy to see that both A and Au are formally symmetric on the space L 2((0, π),dϑ). First we
work only with Au because the calculations are simpler. The minimal operator associated with Au

is

D(Amin
u ) := C∞0 (0, π)2, Amin

u Ψ := AuΨ =

(
0 d

dϑ + k+ 1
2

sinϑ

− d
dϑ + k+ 1

2
sinϑ 0

)
Ψ. (2.15)

According to [Wei87, theorems 3.7 and 3.9], the operator Amin
u is symmetric, hence it is closable.

Let Au be the closure of Amin
u . Then the following holds:

Lemma 2.8. The operator Au is selfadjoint if and only if k ∈ R \ (−1, 0).
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Proof. We show that Au is in the limit point case at 0 and at π. A fundamental system of the
differential equation AuΨ = 0 is

Ψ1(ϑ) =
(
tan ϑ

2

)k+ 1
2

(
1
0

)
, Ψ2(ϑ) =

(
tan ϑ

2

)−(k+ 1
2
)
(

0
1

)
. (2.16)

Now we have to examine the square integrability of these solutions. Let k ≥ 0, c ∈ (π2 , π) and
d ∈ (0, π2 ) arbitrary. Then it follows that

π∫
c

|Ψ1(ϑ)|2 dϑ =

π∫
c

(
tan ϑ

2

)2k+1 dϑ ≥
π∫
c

tan ϑ
2 dϑ = −2 ln cos ϑ2

∣∣π
c

= ∞,

and

d∫
0

|Ψ2(ϑ)|2 dϑ =

d∫
0

(
cot ϑ2

)2k+1 dϑ ≥
d∫

0

cot ϑ2 dϑ = 2 ln sin ϑ
2

∣∣d
0

= ∞.

On the other hand, we have the estimates
c∫

0

|Ψ1(ϑ)|2 dϑ =

c∫
0

(
tan ϑ

2 )2k+1 dϑ ≤ (tan c
2)2k+1

c∫
0

dϑ <∞,

π∫
d

|Ψ2(ϑ)|2 dϑ =

π∫
d

(
cot ϑ2 )2k+1 dϑ ≤ (cot d2)2k+1

π∫
d

dϑ <∞.

Hence in the case k ≥ 0 the solution Ψ1 lies left in L 2((0, π),dϑ) but it does not lie right in
L 2((0, π),dϑ), whereas the solution Ψ2 lies right, but not left in L 2((0, π),dϑ)2. For k ≤ −1 the
same holds true for Ψ1 and Ψ2 exchanged.
Using Weyl’s alternative we conclude that for k ∈ R \ (−1, 0) the formal expression Au is in the
limit point case both at 0 and at π, hence it follows from theorem 2.7 that the closure of Amin

u is
selfadjoint.
To prove that Au is not selfadjoint for k ∈ (−1, 0), we show that in this case the solutions Ψ1 and
Ψ2 lie in L 2((0, π),dϑ)2, thus Au is in the limit circle case both at 0 and π. Then, by theorem 2.7,
the assertion is proved. We give a proof only for Ψ1 ∈ L 2((0, π),dϑ) in the case k ∈ (−1,−1

2 ]; the
remaining cases can be treated analogously. By assumption, we have 2k + 1 ∈ (−1, 0]. Hence it
follows from sin ϑ

2 ≥
ϑ
π > 0, ϑ ∈ (0, π), and the monotonicity of the cosine and tangent functions

that

π∫
0

|Ψ1(ϑ)|2 dϑ =

π
2∫

0

|Ψ1(ϑ)|2 dϑ+

π∫
π
2

|Ψ1(ϑ)|2 dϑ

=

π
2∫

0

(cos ϑ2 )−(2k+1)(sin ϑ
2 )2k+1 dϑ+

π∫
π
2

(
tan ϑ

2

)2k+1 dϑ

≤ π−(2k+1) cos(0)

π
2∫

0

ϑ2k+1 dϑ+ tan
π

4

π∫
π
2

dϑ

=
1

π2k+1(2k + 2)

[
ϑ2k+2

]π
2

0
+
π

2
< ∞.
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It is clear that for nonreal k the operator Au is not even symmetric, hence it cannot be essentially
selfadjoint.

Note that the proof of lemma 2.8 does not rely on k being integer though in the following k is
always assumed to have this property.

We can also find an explicit representation of the domain of Au. To this end we introduce the
so-called maximal operator associated with Au by

D(Amax
u ) :=

{
Ψ ∈ L 2((0, π),dϑ)2 : Ψ is absolutely continuous, AuΨ ∈ L 2((0, π),dϑ)2

}
,

Amax
u Ψ := AuΨ.

(2.17)

By [Wei87, Theorem 3.9] we have A∗u = Amax
u . Since for k ∈ R\(−1, 0) the operator Au is selfadjoint

by lemma 2.8, it follows that

Au = Amax
u .

Although Au is not essentially selfadjoint for k ∈ (−1, 0), it is still symmetric and all selfadjoint
extensions are given as restrictions of the maximal operator associated with Au in terms of boundary
conditions.

The next theorem contains the main result of this section.

Theorem 2.9. The angular operator

D(A) :=
{
Ψ ∈ L 2((0, π),dϑ)2 : Ψ is absolutely continuous, AΨ ∈ L 2((0, π),dϑ)2

}
,

AΨ := AΨ =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
Ψ

(2.18)

is selfadjoint if and only if k ∈ R \ (−1, 0). In this case, A is the closure of the minimal operator
Amin, defined by D(Amin) := C∞0 (0, π)2, AminΨ := AΨ.

Proof. First note that D(A) = D(Amax
u ). Let Ab be the operator maximal associated with the

formal multiplication operator Ab, i.e., D(Ab) = L 2((0, π),dϑ), AbΨ = AbΨ. The operator Ab is
symmetric and bounded in the Hilbert space L 2((0, π),dϑ)2. Hence the stability theorem for
selfadjoint operators [Kat80, chap. V, theorem 4.10] shows that A = Au + Ab with domain
D(A) = D(Au) is selfadjoint if and only if Au is selfadjoint. The assertion follows now from
lemma 2.8.

Recall that an operator matrix T =
(
T11 T12
T21 T22

)
on a Hilbert space H = H1⊕H2 has a block operator

matrix representation if its domain can be written as D(T ) = D1⊕D2 with suitable linear manifolds
Dj ⊆ Hj , j = 1, 2.

Remark 2.10. The angular operator A has a block operator matrix representation.

Proof. Let
(
f
g

)
∈ D(A) = D(Au). We have to show that

(
f
0

)
and

(
0
g

)
lie in the domain of A.

Since Au is the closure of Amin
u , there is a sequence

((
fn
gn

))
n∈N ⊆ D(Amin

u ) = C∞0 (0, π)2 such that

lim
n→∞

(
fn
gn

)
=
(
f
g

)
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and

lim
n→∞

Amin
u

(
fn
gn

)
= lim

n→∞


(

d
dϑ + k+ 1

2
sinϑ

)
gn(

− d
dϑ + k+ 1

2
sinϑ

)
fn

 = Au
(
f
g

)
.

This shows that both sequences
((
− d

dϑ + k+ 1
2

sinϑ

)
fn

)
n∈N and

((
d
dϑ + k+ 1

2
sinϑ

)
gn

)
n∈N converge. Hence

also lim
n→∞

(
fn
0

)
=
(
f
0

)
and lim

n→∞

(
0
gn

)
=
(

0
g

)
lie in the domain of Au.

Remark 2.11. Consider the angular operator in the special case m = 0 and define the formal
differential expression

B :=
(

0 B+

B− 0

)
:=

(
0 d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ 0

)
.

It follows from theorem 2.9 that for k ∈ R \ (−1, 0) the operator

D(B) := D(A) = {Ψ ∈ L 2((0, π),dϑ)2 : Ψ is absolutely continuous, BΨ ∈ L 2((0, π),dϑ)2},

BΨ := BΨ

is selfadjoint and that it is the closure of the minimal operator Bmin, given by D(Bmin) := C∞0 (0, π)2,
BminΨ := BΨ. This implies that the operators

D(B) := {Ψ2 ∈ L 2((0, π),dϑ) : Ψ2 is absolutely continuous, B+Ψ2 ∈ L 2((0, π),dϑ)},
BΨ2 := B+Ψ2,

D(B−) := {Ψ1 ∈ L 2((0, π),dϑ) : Ψ1 is absolutely continuous, B−Ψ1 ∈ L 2((0, π),dϑ)},
B−Ψ1 := B−Ψ1

are adjoint to each other, so that we have B =
(

0 B
B∗ 0

)
. Moreover, the operators B and B∗ = B−

are the closures of

D(Bmin) := C∞0 (0, π), BminΨ2 := B+Ψ2,

D(Bmin
− ) := C∞0 (0, π), Bmin

− Ψ1 := B−Ψ1,

respectively. ♦

2.2 Spectrum of A
Since A is a selfadjoint operator, its spectrum σ(A) is real. In order to determine the essential
spectrum of A we use the so-called decomposition method. The idea is to find a symmetric operator
T such that A is a finite dimensional extension of the closure of T . Since the essential spectra of all
finite dimensional selfadjoint extensions of T coincide (see, e.g., [Wei80, theorem 8.17]), it suffices
to determine the essential spectrum of one particular finite dimensional selfadjoint extension of T .

Let c ∈ (0, π) be arbitrary and let A0 and Aπ be the restrictions of A to (0, c) and (c, π), respectively.
With these formal differential expressions we associate the minimal operators

D(A0min) := C∞0 (0, c)2, A0minΨ := A0Ψ,

D(Aπmin) := C∞0 (c, π)2 , AπminΨ := AπΨ.
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From the general theory of differential operators we know that these operators are closable and
symmetric. In the proof of lemma 2.8 we have seen that A0 is in the limit point case at 0 and that
Aπ is in the limit point case at π. Both operators are in the limit circle case at c because they are
regular at the point c. Hence the operators A0min and Aπmin are not essentially selfadjoint, but we
can construct selfadjoint extensions if we restrict the corresponding maximal operators A0max and
Aπmax in terms of boundary conditions at the regular point c; more precisely:

Lemma 2.12. Let v0 be an arbitrary non-trivial real solution of A0v = 0 and vπ be an arbitrary
non-trivial real solution of Aπv = 0. Then selfadjoint extensions A0 and Aπ of A0min and Aπmin

are given by

D(A0) :=
{
Ψ ∈ L 2((0, c),dϑ)2 : Ψ is absolutely continuous, A0Ψ ∈ L 2((0, c),dϑ), [v0,Ψ]c = 0

}
,

A0Ψ := A0Ψ,

D(Aπ) :=
{
Ψ ∈ L 2((c, π),dϑ)2 : Ψ is absolutely continuous, AπΨ ∈ L 2((c, π),dϑ), [vπ,Ψ]c = 0

}
,

AπΨ := AπΨ,

where [v,Ψ]c := 〈(q0 − q∗0)v(c),Ψ(c)〉 =
〈(

0 1
−1 0

)
v(c),Ψ(c)

〉
.

Proof. This is an application of [Wei87, theorem 5.8.iii].

Since both differential expressions A0 and Aπ are regular at c, there are solutions v0 and vπ such
that v0(c) = ( 0

1 ) and vπ = ( 1
0 ). With these functions we obtain the particular selfadjoint extensions

D(A0) :=
{
Ψ ∈ L 2((0, c),dϑ)2 : Ψ is absolutely continuous, A0Ψ ∈ L 2((0, c)dϑ, , ) Ψ1(c) = 0

}
,

A0Ψ := A0Ψ,

D(Aπ) :=
{
Ψ ∈ L 2((c, π),dϑ)2 : Ψ is absolutely continuous, AπΨ ∈ L 2((c, π),dϑ), Ψ2(c) = 0

}
,

AπΨ := AπΨ.

It is clear that the operator A0 ⊕ Aπ with domain D(A0) ⊕ D(Aπ) is selfadjoint and we have
σess(A0 ⊕Aπ) = σess(A0) ∪ σess(Aπ).

Lemma 2.13. σess(A) = σess(A0) ∪ σess(Aπ).

Proof. Consider the operator T given by

D(T ) := {Ψ ∈ D(A) : Ψ(c) = 0} , T Ψ := AΨ.

Obviously, both A0⊕Aπ and A are finite dimensional selfadjoint extensions of the closed symmetric
operator T , so by [Wei80, theorem 8.17] their essential spectra are equal, i.e.,

σess(A) = σess(A0 ⊕Aπ) = σess(A0) ∪ σess(Aπ).

Using oscillation theory for Dirac operators we can prove the following theorem.
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Theorem 2.14. σess(A) = ∅.

Proof. Using the preceding lemma it suffices to show that σess(A0) and σess(Aπ) are empty. First
we consider Aπ. If we apply the unitary transformation

U :=
1√
2

(
I I
−I I

)
,

we obtain the formal differential expression

Aπ
U := UAπU−1 =

(
0 d

dϑ

− d
dϑ 0

)
+

(
k+ 1

2
sinϑ + aω sinϑ am cosϑ

am cosϑ −
(k+ 1

2
sinϑ + aω sinϑ

)
)

and the operator AπU := UAπU−1, D(AπU ) := UD(Aπ). Since U is unitary and Aπ is selfadjoint,
AπU is also selfadjoint and σess(A) = σess(AU ).
For real λ and real solutions Ψ =

(
ψ1

ψ2

)
of (AU − λ)Ψ = 0 we apply the transformation

Ψ(ϑ) = ρ(ϑ)
(

cos δ(ϑ)
sin δ(ϑ)

)
,

where ρ(ϑ) :=
√
ψ2

1(ϑ) + ψ2(ϑ)2 and δ(ϑ) :=

arctan ψ2(ϑ)
ψ1(ϑ) if ψ1(ϑ) 6= 0,

arccot ψ1(ϑ)
ψ2(ϑ) if ψ2(ϑ) 6= 0.

This transformation is known as Prüfer’s transformation, see also section 4.2.2. By the requirement
tan(δ(ϑ)) = ψ2(ϑ)

ψ1(ϑ) and cot(δ(ϑ)) = ψ1(ϑ)
ψ2(ϑ) , respectively, the function δ is determined modulo 2π only,

but it is possible to choose δ such that it is continuous. According to [Wei87, chap. 16], the function
δ fulfils the differential equation

d
dϑ

δ(ϑ) =
(
G(ϑ)

(
cos δ(ϑ)
sin δ(ϑ)

)
,

(
cos δ(ϑ)
sin δ(ϑ)

))
, ϑ ∈ (0, π), (2.19)

with

G(ϑ) := λ−

(
k+ 1

2
sinϑ + aω sinϑ am cosϑ

am cosϑ −
(k+ 1

2
sinϑ + aω sinϑ

)
)
.

To express the fact that δ depends also on λ via the function Ψ, we frequently write δ(ϑ, λ).
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As already mentioned, the phase function δ is determined a priori modulo 2π only. In the following
we choose δ such that δ(c, λ) ∈ [0, 2π). Let E be the spectral resolution of AπU . For all λ1 < λ2 we
define

n+(λ1, λ2) :=
1
π

lim inf
ϑ↗π

(δ(ϑ, λ2)− δ(ϑ, λ1)) ,

n−(λ1, λ2) :=
1
π

lim sup
ϑ↗π

(δ(ϑ, λ2)− δ(ϑ, λ1)) ,

M(λ1, λ2) := dim(E(λ2)− E(λ1)).

According to [Wei87, theorem 16.4] we have the inequalities

n−(λ1, λ2)− 2 ≤ M(λ1, λ2) ≤ n+(λ1, λ2) + 2. (2.20)

For arbitrary N ∈ N we show that for all λ ∈ (−N,N) the function δ(·, λ) is bounded. By (2.19)
it follows that

d
dϑ

δ(ϑ) = −

(
k + 1

2

sinϑ
+ aω sinϑ− λ

)
cos2 δ(ϑ) +

(
k + 1

2

sinϑ
+ aω sinϑ+ λ

)
sin2 δ(ϑ)

− 2am cosϑ sin δ(ϑ) cos δ(ϑ)

= λ− 2am cosϑ sin δ(ϑ) cos δ(ϑ) +

(
k + 1

2

sinϑ
+ aω sinϑ

)(
sin2 δ(ϑ)− cos2 δ(ϑ)

)
. (2.21)

Let |λ| < N and assume that δ(·, λ) is unbounded from above or from below. Furthermore we

assume k + 1
2 > 0. Since the function ϑ 7→ k+ 1

2
sinϑ , ϑ ∈ (π2 , π), is strictly increasing and unbounded,

we can choose ϑ0 ∈ (c, π) such that

k + 1
2

sinϑ
+ aω sinϑ > |λ|+ 2|am|, ϑ ∈ (ϑ0, π). (2.22)

By assumption, δ is continuous and unbounded, hence there exists either ν+ ∈ Z, ϑ+ ∈ (ϑ0, π), or
ν− ∈ Z, ϑ− ∈ (ϑ0, π), with the properties

δ(ϑ+, λ) = ν+π, δ(ϑ, λ) > δ(ϑ+, λ) in a right neighbourhood of ϑ+,

δ(ϑ−, λ) = (ν− + 1
2)π, δ(ϑ, λ) < δ(ϑ−, λ) in a right neighbourhood of ϑ−.

(2.23)

On the other hand, (2.21) shows that the phase δ is monotonously decreasing in a neighbourhood of
ϑ+ and monotonously increasing in a neighbourhood of ϑ− in contradiction to (2.23). For k+ 1

2 < 0
the proof is similar.
Thus for all λ ∈ (−N,N) the function δ(·, λ) is bounded. Hence also n± and, consequently,
M(λ1, λ2) are bounded for all λ1, λ2 ∈ (−N,N). By definition of M(λ1, λ2) it follows that

σess(AπU ) ∩ (−N,N) = σess(Aπ) ∩ (−N,N) = ∅.

Since this result is valid for all N ∈ N, it follows that σess(Aπ) = ∅.
Analogously we can show σess(A0) = ∅.

As a corollary we obtain the following theorem.

Theorem 2.15. The spectrum of A consists of isolated eigenvalues only which accumulate at most
at +∞ or −∞.

In fact, since A is unbounded and selfadjoint, the spectrum of A is unbounded. Hence at least one
of the points ±∞ must be an accumulation point. Later, in section 3.2, we show that the spectrum
of A is neither bounded from below nor from above.

Remark 2.16. In theorem 3.23 we show that A has compact resolvent which also implies that the
essential spectrum of A empty.
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2.3 Symmetries of the angular operator A

In this section we establish some symmetry properties of the formal differential expression A with
respect to the physical parameters k, a, m and ω. Recall that the formal angular operator is given
by

A =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
on (0, π).

Since in the following we consider different values of the variables a, k, m and ω, we often write
A(k, a,m, ω) and A(k, a,m, ω) to indicate the dependence of A and A on these variables explicitly.
If no confusion arises, we omit some or all of them.
For fixed λ ∈ R, the equation (A − λ)u = 0 is a linear system of two differential equations on the
interval (0, π), hence it has two linearly independent solutions. Using the symmetry properties of
A given in lemma 2.17, we can, for instance, construct a second solution of (A − λ)u = 0 if one
solution is already known.
Here we are only interested in formal solutions, i.e., in solutions that need not be square integrable;
therefore we work with the formal differential expression A rather than with the operator A.

Lemma 2.17. Fix k ∈ Z and a,m, ω, λ ∈ R. Further, let Ψ =
(
ψ1

ψ2

)
be a formal solution of

(A(k, a,m, ω)− λ)u = 0.

Then the following holds:

(i) Ψ is also a solution of

(A(k,−a,−m,−ω)− λ)u = 0.

(ii) The function X(ϑ) := Ψ(π − ϑ), ϑ ∈ (0, π), is a formal solution of

(A(−(k + 1), a,m,−ω) + λ)u = 0.

(iii) The function Φ(ϑ) :=
(

0 I
I 0

)
Ψ(π − ϑ) =

(
ψ2(π−ϑ)
ψ1(π−ϑ)

)
, ϑ ∈ (0, π), is also a formal solution of

(A(k, a,m, ω)− λ)u = 0.

(iv) The function Z(ϑ) :=
(−I 0

0 I

)
Ψ(ϑ) =

(
−ψ1(ϑ)
ψ2(ϑ)

)
, ϑ ∈ (0, π), is a formal solution of

(A(k, a,−m,ω) + λ)u = 0.

Recall that Ψ is an eigenfunction of A(k, a,m, ω) with eigenvalue λ if and only if Ψ is a solution
of the differential equation (A(k, a,m, ω)− λ)u = 0 and both Ψ and A(k, a,m, ω)Ψ are elements of
L 2((0, π),dϑ)2. Hence Ψ is an eigenfunction of A(k, a,m, ω) if and only if the functions X, Φ and
Z are also eigenfunctions of the corresponding operators.

Proof of lemma 2.17. (i) The assertion follows from A(k,−a,−m,−ω) = A(k, a,m, ω).
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(ii) Let X be defined by X(ϑ) := Ψ(π−ϑ) for all ϑ ∈ (0, π). If we apply the coordinate transforma-
tion ϑ 7→ π−ϑ, the eigenvalue equation (A(k, a, ω,m)−λ)Ψ = 0 becomes (A−(k, a,m, ω)−λ)X = 0
with the formal differential expression A− given by

A−(k, a,m, ω) =

(
am cosϑ − d

dϑ + k+ 1
2

sinϑ + aω sinϑ
d
dϑ + k+ 1

2
sinϑ + aω sinϑ −am cosϑ

)
.

Now we have the following equivalent equalities:

0 = (A−(k, a,m, ω)− λ)X

⇐⇒ 0 = (−A−(k, a,m, ω) + λ)X

⇐⇒ 0 =

((
−am cosϑ d

dϑ + −(k+1)+ 1
2

sinϑ − aω sinϑ

− d
dϑ + −(k+1)+ 1

2
sinϑ − aω sinϑ am cosϑ

)
+ λ

)
X,

and the last line is exactly the assertion.

(iii) For X and A−(k, a,m, ω) as above we know that (A−(k, a,m, ω)− λ)X = 0. Since the matrix(
0 I
I 0

)
is invertible, we have the following equivalences:

0 = (A−(k, a,m, ω)− λ)X

⇐⇒ 0 =
(

0 I
I 0

)(
A−(k, a,m, ω)

(
0 I
I 0

)
− λ

(
0 I
I 0

))(
0 I
I 0

)
X

⇐⇒ 0 =

((
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
− λ

)(
0 I
I 0

)
X.

The last line is the same as (A(k, a,m, ω)− λ)Φ = 0 and the assertion is proved.

(iv) Since the matrix
(−I 0

0 I

)
is invertible and self-inverse, we have the following equivalences:

0 = (A(k, a,m, ω)− λ)Ψ

⇐⇒ 0 =
((

−I 0
0 I

)
A(k, a,m, ω)

(
−I 0
0 I

)
− λ

)(
−I 0
0 I

)
Ψ

⇐⇒ 0 =

((
am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ −am cosϑ

)
+ λ

)
Z

⇐⇒ 0 = (A(k, a,−m,ω) + λ)Z.

The next corollary follows immediately from lemma 2.17 (iv).

Corollary 2.18. If either a = 0 or m = 0, then the point spectrum of A is symmetric with respect
to 0.

Lemma 2.17 allows us to draw some conclusions about the value of an eigenfunction at ϑ = π
2 .
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Corollary 2.19. Let Ψ =
(
ψ1

ψ2

)
be an eigenfunction of A with eigenvalue λ. Then lemma 2.17 (iii)

implies that also Φ :=
(

0 I
I 0

)
Ψ(π − ·) is an eigenfunction of A. Moreover, there is a γ ∈ C with

|γ| = 1 such that Φ = γΨ holds. With this γ we obtain

Ψ(π2 ) = ψ1(π2 )
(

1
γ

)
, Ψ′(π2 ) = ψ′1(

π
2 )
(

1
−γ

)
. (2.24)

In particular, none of the components of Ψ vanishes identically.

Proof. Let Ψ and λ be as in the assertion. Furthermore, let X be another solution of (A−λ)u = 0
such that Ψ, X form a fundamental system of (A− λ)u = 0. Since A− λ is in the limit point case
both at 0 and at π and since Ψ is square integrable by assumption, the function X lies neither
left nor right in L 2((0, π),dϑ)2. The preceding lemma shows that also Φ :=

(
0 I
I 0

)
Ψ(π − ·) is an

eigenfunction of (A − λ)u = 0, hence there exist γ, δ ∈ C such that Φ = γΨ + δX. Since both Ψ
and Φ are square integrable on (0, π), but X is not, it follows that δ must be zero. Furthermore,
the equality ‖Ψ‖ = ‖Φ‖ implies |γ| = 1. Comparing Ψ and Φ leads to

γ

(
ψ1(ϑ)
ψ2(ϑ)

)
= γΨ(ϑ) = Φ(ϑ) =

(
ψ2(π − ϑ)
ψ1(π − ϑ)

)
, ϑ ∈ (0, π),

and

γ

(
ψ′1(ϑ)
ψ2(ϑ)

)
= γΨ′(ϑ) = Φ′(ϑ) =

(
−ψ′2(π − ϑ)
−ψ′1(π − ϑ)

)
, ϑ ∈ (0, π).

In the special case ϑ = π
2 these equations show that

ψ1(π2 ) = γψ2(π2 ), ψ′1(
π
2 ) = −γψ′2(π2 ),

which proves equation (2.24).
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Three different lower bounds for the
modulus of the eigenvalues of A

In theorem 2.9 we have shown that the angular operator

A =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
=:

(
−D B
B∗ D

)
(3.1)

in the Hilbert space L 2((0, π),dϑ)2 with domain

D(A) = D(B∗)⊕D(B) =
{
Ψ ∈ L 2((0, π),dϑ)2 : Ψ is abs. cont., AΨ ∈ L 2((0, π),dϑ)2

}
is selfadjoint and has purely discrete point spectrum. All eigenvalues of A are simple because A is
a selfadjoint linear differential operator of first order.

The operator D with domain D(D) = L 2((0, π),dϑ) is a bounded multiplication operator in the
Hilbert space L 2((0, π),dϑ). In remark 2.11 we have seen that the operator B is the closure of
Bmin, defined by Bminf := B+f , f ∈ D(Bmin) := C∞0 (0, π). Where necessary, we express the
dependence of B on the wave number k by writing Bk instead of B, otherwise we suppress the
subscript k in order to keep the notation as simple as possible.

The aim of this chapter is to establish lower bounds for the modulus of eigenvalues of A by applying
an off-diagonalisation method. In order to express these lower bounds in terms of the physical
parameters k, a, m and ω, we need an explicit upper bound for ‖B−1‖. Since we know the form of
B−1 as an integral operator explicitly, we can derive various upper bounds, depending on how the
integral kernel of B−1 is estimated, see lemmata 3.30 and 3.34. The lower bounds for the modulus
of eigenvalues of A resulting from the off-diagonalisation method are established in theorem 3.35.
Other lower bounds for the modulus of the eigenvalues of A are obtained in the following chapter
where we use Sturm’s comparison theorem to obtain bounds for the eigenvalues of BB∗. Both
the off-diagonalisation method presented in this chapter and the variational principle of the next
chapter basically treat the bounded operators on the diagonal of A as a perturbation. A completely
different approach to obtain lower bounds for the modulus of eigenvalues of A is given in chapter 5.

In the first section of this chapter, we consider the angular operator for a = 0. In this case, the
eigenfunctions and eigenvalues of A are explicitly known, see lemma 3.3. Since for a = 0 the
spectrum is unbounded both from below and from above, it follows from standard perturbation
theory that also in the case a 6= 0 the set of eigenvalues of A is neither bounded from below nor
from above. The knowledge of the eigenfunctions of A for a = 0 allows us to give first order
approximations of the eigenvalues λ±1 (the first positive and the first negative eigenvalue of A)
with respect to a for small a.

In the following we always assume that k ∈ R \ (−1, 0).

27
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3.1 The special case a = 0

The aim of this section is twofold. Firstly, if we know the eigenvalues of A in the case a = 0, then
we can use analytic perturbation theory to derive estimates for the eigenvalues in the case of small
|a|. On the other hand, a comparison of the angular operator (3.1) in the case a = 0 with the
angular part of the usual Dirac operator in flat spacetime as given, e.g., in [Gre87] provides us with
a physical interpretation of the eigenvalue λ of the angular operator A.

3.1.1 The Dirac operator in flat spacetime

The usual Dirac equation without potential in flat spacetime is a linear system of four coupled
partial differential equations given by(

−i
∂

∂t
+HD

)
Φ̂ = 0 with HD = ~α · ~p+ βm, (3.2)

where β =
(
I2 0
0 −I2

)
and ~α =

(
0 ~σ
~σ 0

)
with ~σ = (σ1, σ2, σ3), consisting of the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The quantum mechanical momentum ~p is given by the formal differential operator

~p = −i∇ = −i
( ∂
∂x
,
∂

∂y
,
∂

∂z

)
.

Note that throughout the text we follow the standard convention ~ = c = 1.

In most textbooks on relativistic quantum mechanics, the Dirac equation is separated by applying
a suitable ansatz for the angular part of the eigenfunctions, see for example [Lan96] or [Sch99].
However, in order to see that the Dirac equation (3.2) and the Dirac equation for a fermion in the
Kerr-Newman background as given in (2.4) are equivalent in the special case a = 0, M = 0, Q = 0,
we carry out the separation process explicitly, see [Tha92]. In analogy to the ansatz (2.7) for the
solution of the Dirac equation in the case of the Kerr-Newman metric, we use the ansatz Φ̂ = e−iωtΦ̃
for solutions of (3.2) so that the derivative with respect to t can be substituted by −iω. Further,
we use polar coordinates (r, ϑ, ϕ), with the normalised basis vectors

~er = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), ~eϑ = (cosϑ cosϕ, cosϑ sinϕ, − sinϑ), ~eϕ = (− sinϕ, cosϕ, 0).

In polar coordinates, the formal differentiation operator −i∇ and the angular momentum operator
~L := ~r × ~p = −i~r ×∇ have the form

−i∇ = −i~er
∂

∂r
− 1
r
(~er × ~L), ~L = i~eϑ

1
sinϑ

∂

∂ϕ
− i~eϕ

∂

∂ϑ
. (3.3)

Obviously, we have ~er · ~L = 0.
Since in the following it is always clear on what spaces ∇ and the angular momentum operator
~L act, we do not use different notations for these operators with respect to the dimension of the
L 2-spaces they are acting on; for example, ~L has to be understood to be the block matrix

(
~L 0
0 ~L

)
when applied to functions with values in C2.

It is convenient to introduce the so-called spin operator

~S := 1
2 γ5 ~α = 1

2

(
~σ 0
0 ~σ

)
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with the 4×4-matrix γ5 =
(

0 I2
I2 0

)
. It is well known that for arbitrary vectors ~A and ~B the relation

(~α · ~A)(~α · ~B) = ~A · ~B + 2i ~S · ( ~A× ~B)

holds. In particular, using ~α = 2γ5
~S, we obtain for ~A = ~er and ~B = ~L that

~α · (~er × ~L) = 2 γ5
~S · (~er × ~L) = i γ5 (~er · ~L)− i γ5 (~α ·~er) (~α · ~L) = −i γ5 (~α ·~er) (~α · ~L) .

With this relation, the equality γ5 (~α ·~er) = (~α ·~er) γ5 and the representation (3.3) of ∇, it is easy
to verify that in polar coordinates the Dirac operator has the form

HD = −i ~α · ∇+ βm = −i (~α ·~er)
∂

∂r
− 1
r
~α · (~er × ~L) + βm

= −i (~α ·~er)
∂

∂r
+

i
r

(~α ·~er) γ5 (~α · ~L) + βm

= −i (~α ·~er)
∂

∂r
+ 2

i
r

(~α ·~er)(~S · ~L) + βm.

If we introduce the operators K := ~σ · ~L+1 acting on functions with values in C2 and the spin-orbit
operator K̂ := β (2~S · ~L + 1) =

(
K 0
0 −K

)
acting on functions with values in C4, the Dirac equation

becomes

0 = (HD − ω)Φ̃ =
(
− i
r
(~α ·~er)

(
r
∂

∂r
+ 1− β K̂

)
+ βm− ω

)
Φ̃. (3.4)

It is easy to see that

~α ·~er =
(

0 ~σ ·~er
~σ ·~er 0

)
with ~σ ·~er =

(
cosϑ e−iϕ sinϑ

eiϕ sinϑ − cosϑ

)
,

and by straightforward calculations it can be shown that (~σ ·~er) and K anticommute, and that K̂

commutes with the Dirac operator, i.e., (~σ ·~er)K + K(~σ ·~er) = 0 and K̂HD −HDK̂ = 0.
Furthermore, it should be mentioned that

K̂ = β (J2 − L2 − S2 + 1) = β (J2 − L2 + 1
4), (3.5)

where ~J := ~L+ ~S is the total angular momentum of the Dirac particle From the formula above, it
follows that K̂ commutes also with J2 and Jz.
Next we transform the Dirac equation with the unitary matrix

Ũ =
(
U 0
0 iU

)
, with U =

1√
2(1− cosϑ)

(
−e−

i
2
ϕ(1− cosϑ) e−

i
2
ϕ sinϑ

e
i
2
ϕ sinϑ e

i
2
ϕ(1− cosϑ)

)
.

Observe that

U−1 (~σ ·~er) U =
(
−I 0
0 I

)
,

U−1 (~σ ·~er)(~σ · ~L) U = −
(

0 I
I 0

) ( ∂
∂ϑ

+
cotϑ

2

)
−
(

0 I
−I 0

)
i

sinϑ
∂

∂ϕ
−
(
−I 0
0 I

)

=
(

0 −L
ϕ
−

−L
ϕ
+ 0

)
−
(
−I 0
0 I

)
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with the differential expressions L
ϕ
± = d

dϑ + cotϑ
2 ∓

(
aω sinϑ+ i

sinϑ
∂
∂ϕ

)
, cf. (2.10). Hence we obtain

for the Dirac equation in the form (3.4)

0 = (Ũ−1(HD − ω)Ũ)
(
Ũ−1Φ̃

)
=
(
−i Ũ−1 (~α ·~er) Ũ

( ∂
∂r

+
1
r

)
+

i
r
Ũ−1 (~α ·~er)β K̂ Ũ + βm− ω

) (
Ũ−1Φ̃

)
=
(
−i Ũ−1 (~α ·~er) Ũ

( ∂
∂r

+
1
r

)
+

i
r
Ũ−1 (~α ·~er)(2~S · ~L+ 1) Ũ + βm− ω

)(
Ũ−1Φ̃

)
=
(
− i

(
0 iU−1 (~σ ·~er) U

−iU−1 (~σ ·~er) U 0

)( ∂
∂r

+
1
r

)
+

i
r

(
0 iU−1 (~σ ·~er)(~σ · ~L+ 1) U

−iU−1 (~σ ·~er)(~σ · ~L+ 1) U 0

)
+ βm− ω

)(
Ũ−1Φ̃

)

=


 0

−I 0
0 I

I 0
0 −I 0

( ∂∂r +
1
r

)
+

1
r

 0
0 L

ϕ
−

L
ϕ
+ 0

0 −L
ϕ
−

−L
ϕ
+ 0

0

+ βm− ω

(Ũ−1Φ̃
)
.

Next we transform with the self-inverse, unitary matrix U0 :=
(
I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

)
and apply the ansatz

Φ̃ = 1
r e
−i(k+ 1

2
)ϕΦ so that we have ( ∂∂r + 1

r )Φ̃ = 1
r
∂
∂rΦ and i ∂∂ϕ Φ̃ = (k + 1

2)Φ̃. We finally obtain that
the Dirac equation (3.2) is equivalent to

0 = U0Ũ
−1(HD − ω)ŨU0 (U0Ũ

−1Φ̃)

=



m− ω 0 − ∂

∂r 0
0 m− ω 0 − ∂

∂r
∂
∂r 0 −(m+ ω) 0
0 ∂

∂r 0 −(m+ ω)

+
1
r

 0
0 L−

−L+ 0
0 L−

−L+ 0
0


(U0Ũ

−1Φ
)
.

This is exactly equation (2.11) with a = 0, M = 0, Q = 0, since in this case
√

∆(r) = r and
Ω(r) = ω.
Note that the ansatz Φ̃ = 1

r e
−i(k+ 1

2
)ϕΦ is natural in the sense that, by physical reasoning, Φ̃ is

supposed to be square integrable on (0,∞) with respect to r2 sinϑ drdϑdϕ, cf. also section 2.1.1.

The calculations above show that in flat spacetime, that is, a = 0, M = 0 and Q = 0, the angular
operator A is similar to the spin-orbit operator K. In fact, it follows from the calculation above
that (

0 A(d)

A(d) 0

)
= iU0 Ũ

−1 (~α ·~er)β K̂ ŨU0

= U0

(
0 −U−1 (~σ ·~er) KU

U−1 (~σ ·~er) KU 0

)
U0

=

 0 −
(
I 0
0 −I

)
U−1 (~σ ·~er) KU

−U−1 K (~σ ·~er)U
(
I 0
0 −I

)
0

 .
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Because of

−
(
I 0
0 −I

)
U−1 (~σ ·~er) KU = −

(
I 0
0 −I

)
U−1 (~σ ·~er)U U−1 KU = U−1 KU

and

−U−1 K (~σ ·~er)U
(
I 0
0 −I

)
= −U−1 KU U−1 (~σ ·~er)U

(
I 0
0 −I

)
= U−1 KU

we obtain

A(d) = U−1 KU. (3.6)

Remark 3.1. Let a = 0. Then Ψ̂ is a solution of the Dirac equation (R̂ + Â)Ψ̂ = 0 in the form of
(2.4) if and only if Φ̂ = 1

r ŨU
−1
0 V Ψ̂ is a solution of the Dirac equation (3.2).

We conclude this section with some remarks on the spectrum of the angular part of the Dirac
operator in flat spacetime.

It is well known that neither the spin operator ~S nor the angular momentum operator ~L commute
with the Dirac operator HD, see for example [BD64] or [Lan96]; but the total angular momentum
~J = ~L+ ~S and the parity operator P commute with HD and with each other. Furthermore, J2 and
Jz have purely discrete point spectrum and there is a basis {Ψ±

j,mj
: j, mj ∈ N + 1

2 , |mj | ≤ j} of
simultaneous eigenfunctions of J2, Jz and the parity operator P , with

J2Ψ±
j,mj

= j(j + 1)Ψ±
j,mj

, JzΨ±
j,mj

= mjΨ±
j,mj

and PΨ±
j,mj

= ±Ψ±
j,mj

.

It is possible to choose these eigenfunctions Ψ±
j,mj

such that Ψ±
j,mj

=
(
ψl

j,mj

ψl′
j,mj

)
where the two-spinors

ψlj,mj
and ψl

′
j,mj

are eigenfunctions of ~L with eigenvalues l and l′ respectively, with |l − l′ | = 1.
From the angular operator algebra it follows that |j − l | = 1

2 and |j − l′ | = 1
2 .

The functions Ψ±
j,mj

are also eigenfunctions of the spin-orbit operator K̂. As already mentioned, K̂

commutes with J2, Jz and the Dirac operator HD. From (3.5) it follows that K̂ has purely discrete
point spectrum, and that the Ψ±

j,mj
are eigenstates of K̂ with eigenvalue κ̃, where

κ̃ =

{
j + 1

2 = l + 1 if j = l + 1
2 ,

−(j + 1
2) = −l if j = l − 1

2 .
(3.7)

Thus, instead of classifying the eigenstates according to their parity, we can classify the eigenfunc-
tions according to the eigenvalues of K̂.
If we fix an mj ∈ N + 1

2 , then the eigenvalues of J2 are jn(jn + 1) with jn = |mj | + n, n ∈ N0.
Hence the eigenvalues κ̃ of K̂ are given by

{κ̃n = ±(jn + 1
2) : n ∈ N0} = {κ̃n = ±(|mj |+ 1

2 + n) : n ∈ N0}
= {κ̃n = sign(n)(|mj | − 1

2 + |n|) : n ∈ Z \ {0}}. (3.8)
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3.1.2 Eigenvalues in the case a = 0

In the previous section we have seen that in the case a = 0 the angular operator A is similar to
the spin-orbit operator K, hence their spectra coincide. Although the spectrum of K is known,
see (3.8), we present a direct calculation of the spectrum of A that also provides the eigenfunctions
explicitly. For a = 0 the angular operator reduces to

A =

(
0 d

dϑ + k+ 1
2

sinϑ

− d
dϑ + k+ 1

2
sinϑ 0

)
.

Recall that Ψ =
(
S−
S+

)
is an eigenfunction of A with eigenvalue λ if and only if Ψ does not vanish

identically on (0, π) and satisfies the differential equation

(A− λ)Ψ = 0 (3.9)

and the integrability condition

‖Ψ‖2
2 =

π∫
0

〈Ψ(ϑ),Ψ(ϑ)〉dϑ < ∞. (3.10)

As an abbreviation we set κ := k+ 1
2 . Recall that A is in the limit point case at both endpoints of

the interval (0, π) if and only if |κ| ≥ 1
2 , otherwise it is in the limit circle case at both endpoints.

In the rest part of this chapter we assume |κ| ≥ 1
2 .

The differential equation (3.9) is equal to the coupled system(
d
dϑ

+
κ

sinϑ

)
S+ − λS− = 0, ϑ ∈ (0, π),(

d
dϑ

− κ

sinϑ

)
S− + λS+ = 0, ϑ ∈ (0, π),

(3.11)

of differential equations for the components S− and S+ of Ψ.

Lemma 3.2. Let a = 0. If Ψ =
(
S−
S+

)
is an eigenfunction of A, then neither of its components

S− nor S+ vanishes identically. Further, λ = 0 is not an eigenvalue.

Proof. Assume that one of the components S± vanishes identically. Then, by corollary 2.19, we
have |S−(π2 )| = |S+(π2 )| = 0. The uniqueness theorem for solutions of linear differential operators
implies that Ψ vanishes identically, in contradiction to our assumptions.
From the form of the fundamental system (2.16) of AΨ = 0 it is clear that λ = 0 cannot be an
eigenvalue of A.

Note that 0 /∈ σ(A) is also a direct consequence of the fact that the differential operators d
dϑ ±

κ
sinϑ

are boundedly invertible. These differential operators are discussed in more detail in section 3.3.2.

Solving the first equation for S− and inserting into the second equation yields(
d
dϑ

− κ

sinϑ

)(
d
dϑ

+
κ

sinϑ

)
S+ + λ2S+ = 0. (3.12)

Evaluating this product and applying similar calculations for the function S+ we obtain[
d2

dϑ2
+

1
sin2 ϑ

(
−κ cosϑ− κ2

)
+ λ2

]
S+ = 0, (3.13 a)[

d2

dϑ2
+

1
sin2 ϑ

(
κ cosϑ− κ2

)
+ λ2

]
S− = 0. (3.13 b)
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Note that the second differential equation can be obtained from the first differential equation if we
substitute κ by κ′ = −κ (or, equivalently, k by k′ = −k − 1).

Lemma 3.3. If a = 0 and k ∈ R \ (−1, 0), then the spectrum of A is given by

σp(A) =
{
λn = sign(n)

(
(|k + 1

2 |)−
1
2 + |n|

)
: n ∈ Z \ {0}

}
. (3.14)

The corresponding eigenfunctions are Ψn :=
(
S−,n

S+,n

)
with

S−,n(ϑ) = s−,n(1 + cosϑ)β(1− cosϑ)α F (−(|n| − 1), 2(α+ β) + |n| − 1; 2β + 1
2 ; 1

2(1 + cosϑ)),
(3.15)

S+,n(ϑ) = s+,n(1 + cosϑ)α(1− cosϑ)β F (−(|n| − 1), 2(α+ β) + |n| − 1; 2α+ 1
2 ; 1

2(1 + cosϑ)),
(3.16)

with α = 1
2 |k| +

1
4 and β = 1

2 |k + 1| + 1
4 and the hypergeometric functions F (ã, b̃; c̃; x), see also

remark 3.4. Furthermore, we have

s+,n
s−,n

= sign(k + 1
2)
(

λn

|k+ 1
2
|+ 1

2

)sign(k+ 1
2
)
.

Proof. Since κ = k+ 1
2 the condition k ∈ R\(−1, 0) is equivalent to |κ| ≥ 1

2 . To find eigenfunctions
of A, we must solve the system of differential equations (3.13 a) and (3.13 b) and then check that
the solution also satisfies the coupling condition (3.11) and the integrability condition (3.10).
We transform the independent variable ϑ according to

x = 1
2(1 + cosϑ). (3.17)

Short calculations show

cosϑ = 2x− 1, sinϑ = 2
√
x(1− x),

d
dϑ

= −
√
x(1− x)

d
dx
,

d2

dϑ2
= x(1− x)

d2

dx2
− 1

2
(2x− 1)

d
dx
.

Inserting into the differential equations (3.13 a) and (3.13 b) yields[
x(1− x)

d2

dx2
− 1

2
(2x− 1)

d
dx

+
1

4x(1− x)

(
−2κx− (κ− 1

2)2 +
1
4

)
+ λ2

]
f̃ = 0, (3.18 a)[

x(1− x)
d2

dx2
− 1

2
(2x− 1)

d
dx

+
1

4x(1− x)

(
2κx− (κ+ 1

2)2 +
1
4

)
+ λ2

]
g̃ = 0, (3.18 b)

where f̃(x) := S+(ϑ(x)) and g̃(x) := S−(ϑ(x)) for all x ∈ (0, 1). It is easy to see that
(
S−
S+

)
is an

eigenfunction of A if and only if (f̃ , g̃) are solutions of (3.18 a) and (3.18 b), coupled by(
−
√
x(1− x)

d
dx

+
κ

2
√
x(1− x)

)
f̃(x)− λ g̃(x) = 0, x ∈ (0, 1),(

−
√
x(1− x)

d
dx

− κ

2
√
x(1− x)

)
g̃(x) + λ f̃(x) = 0, x ∈ (0, 1),

(3.19)

and satisfy the integrability condition

1∫
0

(|f̃(x)|2 + |g̃(x)|2)
√
x(1− x)

−1
dx <∞. (3.20)
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If we also transform the dependent variables according to

f̃(x) =: xα(1− x)βf(x), g̃(x) =: xβ(1− x)αg(x)

with

α := 1
2 |k|+

1
4 = 1

2 |κ−
1
2 |+

1
4 , β := 1

2 |k + 1|+ 1
4 = 1

2 |κ+ 1
2 |+

1
4

we obtain the differential equations[
x(1− x)

d2

dx2
+ (2α+ 1

2 − (1 + 2α+ 2β)x)
d
dx

+ λ2 − (α+ β)2
]
f(x) = 0, (3.21 a)[

x(1− x)
d2

dx2
+ (2β + 1

2 − (1 + 2α+ 2β)x)
d
dx

+ λ2 − (α+ β)2
]
g(x) = 0. (3.21 b)

These are hypergeometric differential equations. Recall that the general hypergeometric differential
equation is given by {

x(1− x)
d2

dx2
+ (c̃− (1 + ã+ b̃)x)

d
dx

− ãb̃

}
w(x) = 0. (3.22)

Comparison of equation (3.22) with (3.21 a) and (3.21 b), respectively, yields

ã+ b̃ = 2(α+ β), c̃ =

{
c̃f = 2α+ 1

2 = |k|+ 1 for (3.21 a),
c̃g = 2β + 1

2 = |k + 1|+ 1 for (3.21 b).
(3.23)

λ2 = (α+ β)2 − ãb̃. (3.24)

In particular,

|λ| = 1
2 |ã− b̃|

and c̃f = |k|+ 1 ≥ 1 and c̃g = |k + 1|+ 1 ≥ 1.
If the parameter c̃ in (3.22) the not a negative integer, then the hypergeometric function

F (ã, b̃; c̃; x) =
∞∑
n=0

(ã)n(̃b)n
(c̃)n

xn

n!
,

with Pochhammer’s symbol

(r)0 := 1, (r)n := r(r + 1) . . . (r + n− 1) for n ∈ N and r ∈ R

converges for |z| < 1 and is a solution of the differential equation (3.22). Its behaviour at the
point 1 depends on δ := Re(c̃− ã− b̃); obviously, F (ã, b̃; c̃; 0) = 1, see [Ste84, sec 15.1].
Since in our case both c̃f and c̃g are positive numbers, the functions f(x) := ηfF (ã, b̃; c̃f ; x) and
g(x) := ηgF (ã, b̃; c̃g;x) with constants ηf and ηg are solutions of the equations (3.18 a) and (3.18 b);
moreover, we show at the end of the proof that the numbers ηf and ηg can be chosen such that
f and g also satisfy the coupling condition (3.19). Since α ≥ 1

4 and β ≥ 1
4 , it is follows that the

corresponding functions f̃ and g̃ lie left in L 2((0, 1),
√
x(1− x)

−1
dx), thus the corresponding wave

function Ψ lies left in L 2((0, π),dϑ).
Since the differential equations (3.21 a) and (3.21 b) are of second order, there are solutions f(2), g(2)
independent of the hypergeometric functions, that might also lead to an eigenfunction Ψ(2) of the
original eigenvalue equation (A − λ)Ψ = 0. The wave function Ψ(2) is linearly independent of
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Ψ (constructed from the hypergeometric functions) and therefore cannot lie left in L 2((0, π),dϑ)
because A is in the limit point case at 0.
Thus we have shown that if f and g solve the differential equation (3.21 a) and (3.21 b) such that
also the integrability condition for the corresponding f̃ and g̃ is satisfied, they must be proportional
to hypergeometric functions.
Since we already know that none of the functions f and g vanishes identically, it follows that ηf 6= 0
and ηg 6= 0. Now we have to distinguish several cases.

Case 1. ã = 0.
In this case, solutions of the differential equations (3.21 a) and (3.21 b) are constant functions and
(3.20) is satisfied. Hence,

|λ| = 1
2 |̃b| = α+ β = 1

2(|κ− 1
2 |+ |κ+ 1

2 |+ 1) =

{
κ+ 1

2 if κ ≥ 1
2 ,

−κ+ 1
2 if κ ≤ −1

2

is an eigenvalue of A.

Case 2. ã = −n with n ∈ {1, 2, 3, . . . }.
In this case, the hypergeometric function F (ã, b̃; c̃; x) reduces to a polynomial and therefore is
finite at x = 1. From (3.23) it follows that b̃ = 2(α+ β) + n and hence

|λ| = α+ β + n = 1
2(|κ− 1

2 |+ |κ+ 1
2 |+ 1) + n =

{
κ+ 1

2 + n if κ ≥ 1
2 ,

−κ+ 1
2 + n if κ ≤ −1

2

is an eigenvalue of A.

Case 3. b̃ = −n with n ∈ {0, 1, 2, . . . }.
This is analogous to the previous cases since the differential equation (3.22) is symmetric in ã and b̃.

It is clear that in the cases 1, 2 and 3 the functions f̃ and g̃ fulfil the integrability condition (3.20)
because α, β ≥ 1

4 and the hypergeometric functions are polynomials so that the integrand in (3.20)
is bounded.

Case 4. ã, b̃ /∈ {0,−1,−2, . . . }.
We show that in this case the vector function (f̃ , g̃) is not an eigenfunction of the system (3.18 a),
(3.18 b). As already mentioned, the behaviour of F (ã, b̃; c̃; x) at x = 1 is determined by the value
of

δ = Re(c̃− ã− b̃) = Re(c̃− 2(α+ β)),

see [Ste84, 15.1.1]. If δ ≤ −1, then F (ã, b̃; c̃; x) diverges at x = 1. In our case we always have
either δf = c̃f − 2(α+ β) ≤ −1 or δg = c̃g − 2(α+ β) ≤ −1.

Suppose that
(
S−
S+

)
=
(
g̃(x(·))
f̃(x(·))

)
is an eigenfunction of A. Without restriction we may assume that

c̃f − 2(α+ β) ≤ −1 so that f = F (ã, b̃; c̃f ; · ) diverges at x = 1.

By lemma 2.17 (iii), also
(
S+(π−·)
S−(π−·)

)
is an eigenfunction of A with the same eigenvalue. This implies

that there is constant γ 6= 0 such that f̃(x) = γ g̃(1− x), and hence

ηfF (ã, b̃; c̃f ; x) = γ ηgF (ã, b̃; c̃g; 1− x)
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for all x ∈ (0, 1). For x→ 1 the function F (ã, b̃; c̃g; 1− x) remains bounded whereas the function

F (ã, b̃; c̃f ; x) diverges. Therefore,
(
S−
S+

)
cannot be an eigenfunction of A.

Summarising the cases 1 to 4, we find that for k ∈ R\(−1, 0) and a = 0, a number λ is an eigenvalue
of A if and only if

|λ| ∈ {α+ β + n : n ∈ N0} = {1
2(|κ− 1

2 |+ |κ+ 1
2 |+ 1) + n : n ∈ N0}.

Since by assumption |κ| ≥ 1
2 we can simplify |κ+ 1

2 |+ |κ−
1
2 | = 2|κ| = |2k+1|. From corollary 2.18

we know that the spectrum of A is symmetric to 0 in the case a = 0, so it follows that λ is an
eigenvalue of A if and only if

λ ∈ {±(|k + 1
2 |+

1
2 + n) : n ∈ N0} = {sign(n)(|k + 1

2 | −
1
2 + |n|) : n ∈ Z \ {0}}.

For n ∈ Z \ {0}, let λn := sign(n)(|k + 1
2 | −

1
2 + |n|). It remains to determine the ratio of ηf

and ηg for fixed n ∈ Z \ {0}. From the differential equations for S− and S+ and the ansatz
S+(ϑ(x)) = xα(1− x)βf(x) and S−(ϑ(x)) = xβ(1− x)αg(x) we obtain

λn x
β−α+ 1

2 (1− x)α−β+ 1
2 g(x) = −x(1− x)f ′(x) +

(
−α+ 1

2(k + 1
2) + x(α+ β)

)
f(x).

With f(x) = ηf F (ã, b̃; c̃; x) a straightforward evaluation of the right hand side yields

λng(x) =

ηf
(k+n+1)2

k+1 F (ã, b̃; c̃g ;x) if k ≥ 0,

ηf k F (ã, b̃; c̃g; x) if k ≤ −1,

hence, using λ2
n = (α+ β + n)2 = (|k + 1

2 |+ n+ 1
2)2, we find in both cases

ηg = sign(k + 1
2)
(

λn

|k + 1
2 |+

1
2

)sign(k+ 1
2
)

ηf .

The above calculation also shows that the coupling condition (3.19) is satisfied.

Remark 3.4. The polynomials F (ã, b̃; c̃, x) with ã ∈ −N are the so-called Jacobi polynomials. ♦

A comparison of the sets (3.8) and (3.14) shows that the spectra of A and K coincide, as is clear
from the relation A(d) = U−1 KU , see (3.6). The quantity k + 1

2 originating from the separation
ansatz (2.7) can be identified with the z-component of the total angular momentum of the fermion.
From (3.7) it follows that if λ = κ̃ is positive, then j = l + 1

2 which implies that the spin and the
angular momentum of the upper component of the fermion are parallel; if λ is negative, then we
have j = l − 1

2 , i.e., the spin and the angular momentum of the upper component of the fermion
are antiparallel.
Another way to see that λ should be interpreted as the parameter describing the spin-orbit coupling,
without using the angular equation, is to consider the radial equation. For a = M = Q = 0 the
radial equation (R(d) − λ)

(
X−
X+

)
= 0, see (2.8), reduces to(
−im− λ

r
d
dr − iω

d
dr + iω imr − λ

r

)(
X+

X−

)
= 0.

A transformation with the unitary matrix 1√
2

(
1 −i
1 i

)
yields(

d
dr −

λ
r ω −m

ω +m d
dr −

λ
r

)(
X+ +X−

i (X+ −X−)

)
= 0,

which is equivalent to the radial part of the Dirac equation in flat spacetime without potential,
where λ is the eigenvalue of the spin-orbit coupling operator K̂, see, e.g., [Lan96] or [Sch99].
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3.2 Analytic perturbation theory

In the previous section we have computed the spectrum of the angular operator A in the case a = 0.
Now we apply analytic perturbation theory to derive some basic estimates for the eigenvalues of A
in the case a 6= 0 from the results in the previous section. We also give a first order approximation in
terms of the Kerr parameter a for the first positive and first negative eigenvalue in a neighbourhood
of a = 0.
To indicate the dependence of the angular operator A and its eigenvalues λn on the parameter a,
we use the notation A(a) and λn(a).

In general, perturbation theory deals with operator valued functions T : U → C (X,Y ) defined
on an open set U ⊆ C with values in the set of closed operators from the Banach space X to the
Banach space Y . Sometimes, we also use the notation of a family of closed operators (T (ζ))ζ∈U .
Without loss of generality, we assume that 0 ∈ U . Usually the spectrum of T (0) is known or
can be approximated. If the operators T (0) and T (ζ) differ only slightly in an appropriate sense
for |ζ| small enough, then knowledge of the spectrum of the unperturbed operator T (0) leads to
information about the spectrum of T (ζ).

For the purpose of this work it is sufficient to consider holomorphic families of operators only; for
the following definitions and properties of holomorphic families we refer to [Kat80, chap. VII].

Definition 3.5. Let U be a domain in C and let X and Y be Banach spaces.

(i) A family of bounded operators (T (ζ))ζ∈U from X to Y is called (bounded-)holomorphic if it
is holomorphic in norm in U .

(ii) Let T = (T (ζ))ζ∈U be a family of closed operators from X to Y such that each T (ζ) has
nonempty resolvent set. Let ζ0 ∈ U and λ ∈ ρ(T (ζ0)). Then the family T is called holo-
morphic at ζ0 if there is a neighbourhood U0 of ζ0 in U such that λ ∈ ρ(T (ζ)) for all ζ ∈ U0

and the family of the resolvents ((T (λ) − ζ)−1)ζ∈U0 is bounded-holomorphic. The family T
is called holomorphic in U it it is holomorphic at each ζ0 ∈ U .

Definition 3.6. Let U ⊆ C be some domain. A family of densely defined, closed operators
(T (ζ))ζ∈U is called a selfadjoint family if

T (ζ)∗ = T (ζ), ζ ∈ U.

Definition 3.7. Let U be a domain in C and let X and Y be Banach spaces. A family of closed
operators (T (ζ))ζ∈U ⊆ C (X,Y ) is called a holomorphic family of type (A) if

(i) D(T (ζ)) = D is independent of ζ,

(ii) for all u ∈ U the vector valued function ζ 7→ T (ζ)u is holomorphic for ζ ∈ U .

It can be shown that holomorphic families of type (A) are holomorphic families. Holomorphic
families of type (B) are defined in section 4.1.
Obviously, the function

C −→ C (L 2((0, π),dϑ)2), a 7→ A(a) =

(
0 d

dϑ + k+ 1
2

sinϑ

− d
dϑ + k+ 1

2
sinϑ 0

)
+ a

(
−m cosϑ ω sinϑ
ω sinϑ m cosϑ

)
defines the holomorphic family of type (A) (A(a))a∈C. We showed earlier in lemma 3.3 that the
spectrum of A(0) is given by

σp(A(0)) =
{
λn(0) = sign(n)

(
(|k + 1

2 |)−
1
2 + |n|

)
: n ∈ Z \ {0}

}
.
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Since for real a the differential expression A(a) is in the limit point case at both endpoints of the
interval (0, π), all eigenvalues of A(a) are simple. From analytic perturbation theory it follows that
the eigenfunctions and eigenvalues of A depend analytically on a. Consequently, if λm(a0) < λn(a0)
for some a0 ∈ R, then also λm(a) < λn(a) for all a ∈ R.

Remark 3.8. The first derivative of A with respect to a is the bounded operator

dA
da

(a) =
(
−m cosϑ ω sinϑ
ω sinϑ m cosϑ

)
, a ∈ C, (3.25)

and we have ‖dA
da (a)‖ = max{|m|, |ω|}, a ∈ C.

Proof. Formula (3.25), and consequently the boundedness of ‖dA
da (a)‖ is obvious. The assertion

concerning the bound of ‖dA
da (a)‖, we note that for arbitrary Ψ =

(
Ψ1
Ψ2

)
∈ L 2((0, π),dϑ)2

∥∥∥dA
da

(a)Ψ
∥∥∥2

2
=

π∫
0

(
m2 cos2 ϑ+ ω2 sin2 ϑ

)(
|Ψ1(ϑ)|2 + |Ψ2(ϑ)|2

)
dϑ (3.26)

≤ max{m2 cos2 ϑ+ ω2 sin2 ϑ : ϑ ∈ (0, π)} ‖Ψ‖2
2 = max{m2, ω2} ‖Ψ‖2

2,

hence ‖dA
da (a)‖ ≤ max{|m|, |ω|}. Let T be the multiplication operator

√
m2 cos2 ϑ+ ω2 sin2(ϑ) on

the Hilbert space L 2((0, π),dϑ). Then (3.26) implies that ‖dA
da (a)‖ ≥ ‖T‖ = max{|m|, |ω|}.

Lemma 3.9. Let λn(0), n ∈ Z \ {0}, be the nth eigenvalue of A(0). Then for the eigenvalue λn(a)
of A(a) the following estimate holds:

|λn(a)− λn(0)| ≤ max{|m|, |ω|}. (3.27)

Proof. Let Ψa
n be a normalised eigenfunction ofA(a) with eigenvalue λn(a). The index n enumerates

the eigenvalues, the argument a denotes the dependence of the eigenvalue on the parameter a.
By [Kat80, chap. VII, §3.4], the derivative of λn with respect to a is given by

dλn
da

(a) =
(
Ψa
n,

dA
da

(a) Ψa
n

)
. (3.28)

Since ‖Ψa
n‖ = 1 by assumption, the previous remark yields∣∣∣∣dλnda

(a)
∣∣∣∣ ≤ ∥∥∥∥dA

da
(a) Ψa

n

∥∥∥∥ ≤
∥∥∥∥dA

da
(a)

∥∥∥∥ ≤ max{|m|, |ω|}.

Application of the mean value theorem to the continuous function λn leads to

|λn(0)− λn(a)| ≤ |a| max
{

dλn
da

(ã) : 0 ≤ ã ≤ a

}
= |a|max{|m|, |ω|}.

Equivalent to (3.27) is

λn(0)−max{|m|, |ω|} ≤ λn(a) ≤ λn(0) + max{|m|, |ω|},

or, using the explicit formula (3.14) for the eigenvalues λn(0),

sign(n)(|k + 1
2 | −

1
2 + |n|)− |a|max{|m|, |ω|}

≤ λn(a) ≤ sign(n)(|k + 1
2 | −

1
2 + |n|) + |a|max{|m|, |ω|},
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Corollary 3.10. The set of eigenvalues of A(a) is neither bounded from below nor from above.

Proof. The assertion holds for A(0) as shown in lemma 3.3. Since the derivative of the eigenvalues
with respect to a is bounded, the assertion follows also for all A(a).

Now we use equation (3.28) to give a first order approximation of the eigenvalues λn in a neigh-
bourhood of a = 0. We consider the case |n| = 1 only, since this case can be treated fairly well
analytically; for higher eigenvalues the computations become rather involved.

Lemma 3.11. Up to first order in a, the eigenvalues λ±1 have the asymptotics

λ1(a) =
∣∣k + 1

2

∣∣+ 1
2 +

sign(k + 1
2)

2
|k + 1

2 |+
1
2

|k + 1
2 |+ 1

(
2ω − m

|k + 1
2 |+

1
2

)
a+O(a2),

λ−1(a) = −
∣∣k + 1

2

∣∣− 1
2 +

sign(k + 1
2)

2
|k + 1

2 |+
1
2

|k + 1
2 |+ 1

(
−2ω − m

|k + 1
2 |+

1
2

)
a+O(a2),

where the Landau symbol O(a2) denotes a function such that lim
a→0

O(a2)
a2 is bounded.

Proof. It follows from analytic perturbation theory that the eigenvalues λ±1 are analytic functions
with respect to a. We have λ±1(0) = ±(|k + 1

2 | +
1
2) by (3.14), so it remains to calculate the first

derivative of λ±1(0). By lemma 3.3, the eigenfunctions of the angular operator A for a = 0 are
Ψ0
n =

(
S−,n

S+,n

)
with S∓,n defined in (3.15) and (3.16). According to (3.28), the derivative of the

eigenvalue with respect to a at a = 0 is given by

dλn
da

(0) =
(
Ψ0
n,

dA
da

(0)Ψ0
n

)
=
((

S−,n
S+,n

)
,

(
−m cosϑ ω sinϑ
ω sinϑ m cosϑ

) (
S−,n
S+,n

))

= m

π∫
0

cosϑ
(
−S−,n(ϑ)2 + S+,n(ϑ)2

)
dϑ+ 2ω

π∫
0

sinϑS−,n(ϑ)S+,n(ϑ) dϑ.

In the special case |n| = 1, the hypergeometric functions appearing in the formulae for S±,n are
constant functions, identical to 1, and we have s−,n/s+,n = n sign(k+ 1

2), implying |s−,n| = |s−,−n|.
The numerical value of |s−,1| is derived below. With the transformation x = 1

2(1 + cosϑ) the first
integral becomes

π∫
0

cosϑ
(
−S−,n(ϑ)2 + S+,n(ϑ)2

)
dϑ

= 22α+2β s2−,1

1∫
0

(2x− 1) (−x2β(1− x)2α + x2α(1− x)2β) (x(1− x))−
1
2 dx

= 2|2k+1|+1 s2−,1

1∫
0

(2x− 1) (−x|k+1|(1− x)|k| + x|k|(1− x)|k+1|) dx.
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For k ≥ 0, integration by parts yields

π∫
0

cosϑ
(
−S−,n(ϑ)2 + S+,n(ϑ)2

)
dϑ = 2|2k+1|+1 s2−,1

1∫
0

(2x− 1) (x(1− x))k (1− 2x)dx

=
2|2k+1|+1 s2−,1

k + 1

1∫
0

(2x− 1) ((x(1− x))k+1)′ dx = −
2|2k+1|+2 s2−,1

k + 1

1∫
0

(x(1− x))k+1 dx.

For k ≤ −1 we obtain by an analogous calculation
π∫

0

cosϑ
(
−S−,n(ϑ)2 + S+,n(ϑ)2

)
dϑ = −

2|2k+1|+2 s2−,1
|k|

1∫
0

(x(1− x))−k dx.

Using −k = −(k + 1
2) + 1

2 = |k + 1
2 |+

1
2 for k ≤ −1, we can summarise both cases in the formula

π∫
0

cosϑ
(
−S−,n(ϑ)2 + S+,n(ϑ)2

)
dϑ = −

2|2k+1|+2 sign(k + 1
2) s2−,1

|k + 1
2 |+

1
2

1∫
0

(x(1− x))|k+
1
2
|+ 1

2 dx.

Similarly, we can compute the second integral; the result is

2

π∫
0

sinϑS−,n(ϑ)S+,n(ϑ)dϑ = 2|2k+1|+3 n sign(k + 1
2) s2−,1

1∫
0

xα+β(1− x)α+βdx

= 2|2k+1|+3 n sign(k + 1
2) s2−,1

1∫
0

(x(1− x))|k+
1
2
|+ 1

2 dx.

Hence we obtain for the derivative of λn, n = ±1, at a = 0

d
da
λn(0) =

(
Ψ0
n,

dA
da

(0)Ψ0
n

)
=
(

2nω − m

|k + 1
2 |+

1
2

)
2|2k+1|+2 sign(k + 1

2) s2−,1

1∫
0

(x(1− x))|k+
1
2
|+ 1

2 dx

=
(

2nω − m

|k + 1
2 |+

1
2

)
2|2k+1|+2 sign(k + 1

2) s2−,1
2−2−|2k+1|√π Γ(|k + 1

2 |+
3
2)

Γ(|k + 1
2 |+ 2)

.

The constant s−,1 is defined be the requirement that Ψ0
1 be normalised, that is,

1 =

π∫
0

S−,1(ϑ)2 + S+,1(ϑ)2 dϑ = 2|2k+1|+1 s2−,1

1∫
0

(x(1− x))|k+
1
2
|− 1

2 dx

= 2|2k+1|+1 s2−,1
2−|2k+1|√π Γ(|k + 1

2 |+
1
2)

Γ(|k + 1
2 |+ 1)

.

This implies that

d
da
λn(0) =

sign(k + 1
2)

2

(
2nω − m

|k + 1
2 |+

1
2

)
Γ(|k + 1

2 |+ 1)
Γ(|k + 1

2 |+
1
2)

Γ(|k + 1
2 |+

3
2)

Γ(|k + 1
2 |+ 2)

=
sign(k + 1

2)
2

(
2nω − m

|k + 1
2 |+

1
2

) |k + 1
2 |+

1
2

|k + 1
2 |+ 1

.
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In general, the slope of λ at a = 0 is the steeper the larger m or ω are, unless they are somehow
balanced, that is, m ≈ sign(n)(|k + 1

2 | +
1
2)ω. Further it should be noted that for large values of

|k + 1
2 | the first order behaviour of the eigenvalues is governed by ω.

Remark 3.12. There are other ways to apply analytic perturbation theory to the angular operator
A. For example, we can treat m or ω as the perturbation parameter while a is fixed. We can even
consider A a family of operators depending on two parameters, say m and ω.
If, for instance, we want to use m as perturbation parameter, we have to compute or at least
approximate the eigenvalues of B =

(
0 B
B∗ 0

)
. Since B is the angular operator in the special case

m = 0, the spectrum of B consists of simple isolated eigenvalues only. Let . . . < µ−1 < 0 < µ1 < . . .
be the eigenvalues of B; then perturbation theory yields for the eigenvalues λn of A, now depending
on m,

µn − |am| ≤ λn(m) ≤ µn + |am|, n ∈ Z \ {0}.

Estimates for the µn are derived in theorem 4.39 with the help of Sturm’s comparison theorem
applied to the operator BB∗. ♦
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3.3 An off-diagonalisation of certain block operator matrices

Our aim is to show that certain 2 × 2 block operator matrices allow for a factorisation if the off-
diagonal elements are closed and boundedly invertible. This factorisation is then applied to the
angular operator A to derive a lower bound for the modulus of its eigenvalues.

3.3.1 The general case

In this section we consider block operator matrices on a Hilbert space H = H1 ⊕ H2 where H1

and H2 are Hilbert spaces and H is endowed with the usual scalar product induced by the scalar
products of H1 and H2. Let B(H2 → H1) and C(H1 → H2) be closed linear operators. Further,
assume that A(H1 → H1) is a C-bounded and D(H2 → H2) is a B-bounded linear operator, that
is, we have the inclusions

D(C) ⊆ D(A), D(B) ⊆ D(D)

and there exist real numbers α, γ, β, δ ≥ 0 such that

‖Ax‖ ≤ α‖x‖+ γ‖Cx‖, x ∈ D(C),

‖Dx‖ ≤ δ‖x‖+ β‖Bx‖, x ∈ D(B).

Then the block operator matrix

T :=
(
A B
C D

)
, D(T ) = D(C)⊕D(B),

is a well defined operator inH. Note, however, that T is not necessarily closed. But if we strengthen
the assumptions on A and D, then the following lemma implies the closedness of T .

Lemma 3.13. Assume that B(H2 → H1) and C(H1 → H2) are closed linear operators. Further-
more, let A(H1 → H1) and D(H2 → H2) be bounded linear operators. Then the operator T defined
above is closed.

Proof. We can show the assertion directly. Let
((

xn
yn

))
n∈N ⊆ D(T ) be an T -convergent sequence,

that is, there are
(
x
y

)
,
(
f
g

)
∈ H such that

(
xn
yn

)
→
(
x
y

)
and T

(
xn
yn

)
→
(
f
g

)
for n→∞. Obviously,

we also have Axn → Ax and Dyn → Dy because A and D are bounded. Thus we can conclude

Axn +Byn → f

Cxn +Dyn → g
=⇒

Byn → f −Ax

Cxn → g −Dy
=⇒

y ∈ D(B), By = f −Ax

x ∈ D(C), Cx = g −Dy,

since B and C are closed. Hence ( xy ) ∈ D(T ) and T ( xy ) =
(
f
g

)
holds.

Remark 3.14. In lemma 3.13 it would suffice to assume that only one of the operators A or D is
bounded. For example, let A be bounded and assume that D is closed and B-bounded. Then it
follows as above that y ∈ D(B) ⊆ D(D). Then, also as above, we have x ∈ D(C). ♦

Remark 3.15. A more elegant proof of lemma 3.13 makes use of a stability theorem. If A and D
are bounded, then also

(
A 0
0 D

)
is bounded. Since

(
0 B
C 0

)
is closed, the perturbation theorem [Kat80,

chap. IV, theorem 1.1] implies that also their sum is closed. ♦
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In the spectral theory of operator matrices the so-called Schur factorisation plays an important role
(see, e.g., [Nag89], [ALMS94], [ALMS96]). For λ ∈ ρ(A) or λ ∈ ρ(D) we have, at least formally,
the following factorisations

T − λ =
(

I 0
C(A− λ)−1 I

)(
A− λ 0

0 SD(λ)

)(
I (A− λ)−1B
0 I

)
, λ ∈ ρ(A), (3.29)

T − λ =
(
I B(D − λ)−1

0 I

)(
SA(λ) 0

0 D − λ

)(
I 0

(D − λ)−1C I

)
, λ ∈ ρ(D), (3.30)

with the operator valued functions

SA(λ) = A− λ−B(D − λ)−1C, λ ∈ ρ(D),

SD(λ) = D − λ− C(A− λ)−1B, λ ∈ ρ(A).

The functions SA and SD are called the Schur complements of the matrix T . Usually, the domains
of the operators SA(λ) and SD(λ) are taken to be their natural domains, for example, for λ ∈ ρ(D),
it is natural to define D(SA(λ)) := {x ∈ H1 : x ∈ D(A)∩D(C), (D− λ)−1Cx ∈ D(B)}; note that
in general these domains depend on the parameter λ.
The factorisations (3.29) and (3.30) can be used to characterise the spectrum of T ; for instance,
λ ∈ ρ(T ) ∩ ρ(D) if and only if 0 lies in the resolvent set of SA(λ). Note, however, that the Schur
factorisation gives no results for λ ∈ σ(A) ∩ σ(D). Roughly speaking, the Schur factorisation is
obtained if the linear systems (T − λ) ( xy ) = 0 is decoupled by using the fact that either A− λ or
D−λ is invertible. We will use the Schur complements later to obtain lower and upper bounds for
the eigenvalues of the angular operator A, see section 4.2 and appendix B.
On the other hand, if we know that B and C are invertible, then it is also possible to decouple the
equation (T − λ) ( xy ) = 0 by inverting B and C. This results in the off-diagonalisation stated in
the next lemma. Note that we need not assume that both A and D are bounded.

Lemma 3.16. Let A(H1 → H1), D(H2 → H2), B(H2 → H1) and C(H1 → H2) be densely defined
linear operators and assume that B and C are surjective and boundedly invertible. Further we
assume that A is C-bounded and D is B-bounded.

(i) If D is bounded, we define T1 by

T1 − λ :=
(
I (A− λ)C−1

0 I

)(
0 T1(λ)
C 0

)(
I C−1(D − λ)
0 I

)
(3.31)

with

T1(λ) = B − (A− λ)C−1(D − λ), D(T1(λ)) = D(B), (3.32)

and its natural domain

D(T1) =
{(

x
y

)
∈ H1 ⊕D(T1) : x+ C−1(D − λ)y ∈ D(C)

}
.

(ii) If A is bounded, we define T2 by

T2 − λ :=
(

I 0
(D − λ)B−1 I

)(
0 B

T2(λ) 0

)(
I 0

B−1(A− λ) I

)
(3.33)

with

T2(λ) = C − (D − λ)B−1(A− λ), D(T2(λ)) = D(C), (3.34)
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and its natural domain

D(T2) =
{(

x
y

)
∈ D(T2)⊕H2 : y +B−1(A− λ)x ∈ D(B)

}
.

Furthermore, let

T :=
(
A B
C D

)
, D(T ) = D(C)⊕D(B).

Then we have the following factorisations

T − λ =

{
T1 − λ if D is bounded,
T2 − λ if A is bounded.

Note that the domains of T1(λ) and T2(λ) do not depend on λ, so we write D(T1) and D(T2) instead
of D(T1(λ)) and D(T2(λ)).

Proof. We have to show the equalities D(T ) = D(T1) = D(T2) and that T ( xy ) = T1 ( xy ) = T2 ( xy )
for all ( xy ) ∈ D(T ).
In formulae (3.31) and (3.33), the first and the last factor of the first term on the right hand side are
bounded and boundedly invertible. For example, in case (i), the operator C−1(D − λ) is bounded
because both C−1 and D are bounded; furthermore, for all x ∈ H1 we have

‖(A− λ)C−1x‖ ≤ λ‖C−1x‖+ α‖C−1x‖+ γ‖x‖ ≤ (‖C−1‖(λ+ α) + γ)‖x‖

so that also (A−λ)C−1 is bounded. A purely algebraic calculation shows that the operators T , T1

and T2 coincide formally, see also the calculation below. To prove T = T1 and T = T2 it remains
to show that the domains of these operators coincide. We consider T1 only, the proof for T2 is
analogous. For ( xy ) ∈ D(T ) the component y lies in D(B) = D(T1), and since D is B-bounded,
also y ∈ D(D) holds. Thus the element x + C−1(D − λ)y is well defined and lies in D(C). This
shows that ( xy ) ∈ D(T1) and

T1

(
x
y

)
=
(
I (A− λ)C−1

0 I

)(
T1(λ)y

C(x+ C−1(D − λ)y)

)

=
(
T1(λ)y + (A− λ)C−1(Cx+ (D − λ)y)

Cx+ (D − λ)y

)
= T

(
x
y

)
.

Hence T ⊆ T1 is proved. Now consider ( xy ) ∈ D(T1). Since y ∈ D(T1) = D(B) ⊆ D(D), it follows
from x ∈ {−C−1(D − λ)y + x0 : x0 ∈ D(C)} = D(C) that ( xy ) lies also in D(T ), hence the above
calculation implies that T1 ( xy ) = T ( xy ).

The previous lemma shows that under the given assumptions the spectrum of T can be obtained
from the spectra of T1 and T2, respectively (for the definition of the spectrum of operator valued
functions see definition 4.8). As an example we state the following corollary.

Corollary 3.17. Let λ ∈ C and assume that the assumptions of one of the cases (i) or (ii) in
lemma 3.16 are satisfied. Then the following equivalences hold.

(i) If D is bounded, we have the equivalences

T − λ is bijective ⇐⇒ T1 is bijective,
T − λ is not injective ⇐⇒ T1 is not injective.
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(ii) If A is bounded, we have the equivalences

T − λ is bijective ⇐⇒ T2 is bijective,
T − λ is not injective ⇐⇒ T2 is not injective.

Proof. This is a direct consequence of the factorisations (3.31) and (3.33).

Corollary 3.18. Let T be a block operator matrix as in lemma 3.16. In addition assume that D
is bounded. Then for every eigenvalue λ ∈ C of T the following inequality holds:

|λ| ≥ −1
2

(
α+ γ‖C−1‖+ ‖D‖

)
+
(

1
4

(
α+ γ‖C−1‖ − ‖D‖)2 +

(
‖B−1‖ ‖C−1‖

)−1
) 1

2
. (3.35)

If both D and A are bounded, then we obtain

|λ| ≥ −1
2

(
‖A‖+ ‖D‖

)
+
(

1
4

(
‖A‖ − ‖D‖)2 +

(
‖B−1‖ ‖C−1‖

)−1
) 1

2
. (3.36)

Proof. Let λ be an eigenvalue of T . Then, by the previous corollary, 0 is an eigenvalue of the
operator T1(λ) = B − (A − λ)C−1(D − λ). For an eigenfunction f of T1(λ) with eigenvalue 0 we
have the identity f = B−1(A− λ)C−1(D − λ)f and hence it follows

‖f‖ ≤ ‖B−1‖ ‖(A− λ)C−1(D − λ)‖ ‖f‖

≤ ‖B−1‖
(
|λ| ‖C−1‖+ α‖C−1‖+ γ

)
‖(D − λ)f‖

≤ ‖B−1‖ ‖C−1‖
(
|λ|+ α+ γ ‖C−1‖−1

)(
‖D‖+ |λ|

)
‖f‖

= ‖B−1‖ ‖C−1‖
(
|λ|2 + |λ|

(
α+ γ ‖C−1‖−1 + ‖D‖

)
+ α‖D‖+ γ|‖D‖‖C−1‖

)
‖f‖

= ‖B−1‖ ‖C−1‖
((
|λ|+ 1

2

(
α+ γ ‖C−1‖−1 + ‖D‖

))2 − 1
4

(
α+ γ ‖C−1‖−1 − ‖D‖

))
‖f‖.

Dividing by ‖f‖ yields(
|λ|+ 1

2

(
α+ γ ‖C−1‖−1 + ‖D‖

))2 ≥ 1
4

(
α+ γ ‖C−1‖−1 − ‖D‖

)
+
(
‖B−1‖ ‖C−1‖

)−1

which implies inequality (3.35). If A is bounded, we can choose α = ‖A‖ and γ = 0 which gives
inequality (3.36).

In the special case H1 = H2 = C and A,B,C,D ∈ C the eigenvalues of the matrix T are given
by λ± = 1

2(A +D) ±
√

(A−D)2 +BC. This formula shows that corollary 3.18 gives an optimal
result in the case A = D = 0.

Before we apply this result to the angular operator, we want to point out the connection of the
off-diagonalisation given in lemma 3.16 with the Schur factorisation. Let T be a block operator
matrix as in lemma 3.16 and assume H1 = H2. Instead of T we consider the block operator matrix

T̃ (λ) :=
(

0 I
I 0

)
(T − λ) =

(
C D − λ

A− λ B

)
with domain D(T̃ ) =

(
0 I
I 0

)
D(T ) = D(B)⊕D(C). For all µC ∈ ρ(C) and µB ∈ ρ(B) we have the

Schur factorisations

T̃ (λ)− µC =
(

I 0
(A− λ)(C − µC)−1 I

)(
C − µC 0

0 SB(µC)

)(
I (C − µC)−1(D − λ)
0 I

)

T̃ (λ)− µB =
(
I (D − λ)(B − µB)−1

0 I

)(
SC(µB) 0

0 B − µB

)(
I 0

(B − µB)−1(A− λ) I

)
,
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where the Schur complements for the block operator matrix T̃ (λ) are given by

SB(µC) = B − µC − (A− λ)(C − µC)−1(D − λ), µC ∈ ρ(C),

SC(µB) = C − µB − (D − λ)(B − µB)−1(A− λ), µB ∈ ρ(B),

see formulae 3.29 and 3.30.
Since 0 ∈ ρ(C)∩ρ(B), the Schur complements SB(µC) and SC(µB) are well defined for µC = µB = 0
and the factorisation yields

T̃ (λ) =
(

I 0
(A− λ)C−1 I

)(
C 0
0 SB(0)

)(
I C−1(D − λ)
0 I

)
(3.37)

=
(
I (D − λ)B−1

0 I

)(
SC(0) 0

0 B

)(
I 0

B−1(A− λ) I

)
(3.38)

with

SB(0) = B − (A− λ)C−1(D − λ) = T1(λ),

SC(0) = C − (D − λ)B−1(A− λ) = T2(λ).

From the above factorisation of T̃ we recover the off-diagonal factorisation of T given in lemma 3.16
if we multiply equations (3.37) and (3.38) from the left by

(
0 I
I 0

)
and insert the factor I =

(
0 I
I 0

) (
0 I
I 0

)
after the first factor on the right hand sides.

3.3.2 Application to the angular operator

In this section we apply the off-diagonalisation presented in the previous section to the angular
operator A =

(−D B
B∗ D

)
, see (3.1). To this end, we have to investigate the operators B and B∗ in

greater detail. First we verify that the off-diagonal entries B and B∗ of A are boundedly invertible;
in fact, we show that σ(B) = σ(B∗) = ∅. Then, in lemma 3.30, we derive upper bounds for
‖B−1‖ and ‖B∗−1‖. In section 3.3.3 these estimates are further improved by an iteration method
(see lemma 3.34). Together with corollary 3.18, we obtain lower bounds for the modulus of the
eigenvalue of A with smallest modulus.

For µ ∈ C we introduce the formal differential expression defined by

Bµ :=
(

0 B+ − µ
B− − µ 0

)
.

With Bµ we associate the differential operator

D(Bµ) = D(A), BµΨ := BµΨ.

Furthermore, with the notation in remark 2.11, we have

B = B0 =
(

0 B
B∗ 0

)
.

For every µ ∈ C, the operator Bµ is selfadjoint since A is selfadjoint and Bµ −A is symmetric and
bounded. It can be shown that σess(Bµ) is empty; the proof is analogous to that of theorem 2.14,
where we have shown σess(A) = ∅.
A main tool for computing the inverse operators is to consider the selfadjoint operator B instead
of B and B∗ separately because to B we can apply well known results for Dirac operators, see for
example [Wei87].
First of all, we show that the point spectrum of B and B∗ is empty. Eventually, it turns out that
the spectrum of B and B∗ is empty.



Chapter 3. Three different lower bounds for the modulus of the eigenvalues of A 47

Lemma 3.19. σp(B) = σp(B∗) = ∅.

Proof. Fix an arbitrary µ ∈ C. The number µ lies in σp(B) ∪ σp(B∗) if and only if at least one of
the differential equations

( d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ− µ

)
ϕ(ϑ) = 0,(

− d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ− µ

)
ψ(ϑ) = 0

has a square integrable solution. The solutions of these differential equations are

ϕ[µ](ϑ) = c eµϑ+aω cosϑ
(
tan

ϑ

2

)−(k+ 1
2
)
,

ψ[µ](ϑ) = c e−µϑ−aω cosϑ
(
tan

ϑ

2

)k+ 1
2 =

(
ϕ[µ](ϑ)

)−1
.

The functions ϕ[µ] and ψ[µ] are unique up to a constant factor c ∈ C; without loss of generality we
set c = 1. The following computation (cf. also lemma 2.8) shows that ϕ[µ] and ψ[µ] are not square
integrable on the interval (0, π):

π∫
0

ϕ[µ](ϑ)2dϑ =

π∫
0

e2Re(µ)ϑ+2aω cosϑ
(
tan ϑ

2

)−(2k+1) dϑ

≥ M

(∫ π
2

0

(
tan ϑ

2

)−(2k+1) dϑ+
∫ π

π
2

(
tan ϑ

2

)−(2k+1)
dϑ
)
,

where M := inf{e2Re(µ)ϑ+2aω cosϑ : ϑ ∈ (0, π)} > 0. For k ≥ 0 it follows that

π
2∫

0

(
tan ϑ

2︸ ︷︷ ︸
≤1

)−(2k+1) dϑ ≥

π
2∫

0

(
tan ϑ

2

)−1
dϑ = 2 ln(sin ϑ

2 )
∣∣π

2

0
= ∞. (3.39)

For k ≤ −1 we estimate

π∫
π
2

(
tan ϑ

2︸ ︷︷ ︸
≥1

)−(2k+1) dϑ ≥
π∫

π
2

tan ϑ
2 dϑ = −2 ln(cos ϑ2 )

∣∣π
π
2

= ∞. (3.40)

In both cases we find ϕ[µ] /∈ L 2((0, π),dϑ) ⊇ D(B). Analogously we can show ψ[µ] /∈ D(B∗).

Corollary 3.20. For all µ ∈ C we have 0 /∈ σp(Bµ).

Proof. Assume 0 ∈ σp(Bµ) and let Ψ be an eigenfunction of Bµ with eigenvalue 0. From

0 = BµΨ = Bµ
(

0 I
I 0

)(
0 I
I 0

)
Ψ =

(
B − µ 0

0 B∗ − µ

)(
0 I
I 0

)
Ψ

it follows that either (B − µ) or (B∗ − µ) is not injective, in contradiction to σp(B) ∪ σp(B∗) = ∅
as shown in lemma 3.19.
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This corollary together with the fact that σess(Bµ) = ∅ shows that Bµ is boundedly invertible.
According to the previous corollary, we have 0 ∈ R \ (σp(Bµ) ∪ σess(Bµ)) = ρ(Bµ). Thus B − µ
and B∗ − µ are boundedly invertible and their resolvents and the resolvent of Bµ are connected as
follows: (

(B − µ)−1 0
0 (B∗ − µ)−1

)
=
(
B − µ 0

0 B∗ − µ

)−1

=
(

0 I
I 0

)
B−1
µ (3.41)

In particular, we have rg(B − µ) = rg(B∗ − µ) = L 2((0, π),dϑ). Thus we have shown

σ(B) = σ(B∗) = ∅. (3.42)

Lemma 3.21. Fix µ ∈ C and define, as in the proof of lemma 3.19, the functions

ϕ[µ](ϑ) := eµϑ+aω cosϑ
(
tan ϑ

2

)−(k+ 1
2
)
, ψ[µ](ϑ) := e−(µϑ+aω cosϑ)

(
tan ϑ

2

)k+ 1
2 , ϑ ∈ (0, π).

Then the inverse operators of B − µ and B∗ − µ map functions g, h ∈ L 2((0, π),dϑ) to

(B − µ)−1g(ϑ) =
1

ψ[µ](ϑ)
·


ϑ∫
0

ψ[µ](t)g(t) dt if k ≥ 0,

ϑ∫
π
ψ[µ](t)g(t) dt if k ≤ −1,

ϑ ∈ (0, π), (3.43 a)

(B∗ − µ)−1h(ϑ) =
1

ϕ[µ](ϑ)
·


π∫
ϑ

ϕ[µ](t)h(t) dt if k ≥ 0,

0∫
ϑ

ϕ[µ](t)h(t) dt if k ≤ −1,
ϑ ∈ (0, π). (3.43 b)

Proof. We know from the proof of lemma 3.19 that ϕ[µ] is a solution of (B − µ)u = 0 and that
ψ[µ] is a solution of (B∗ − µ)u = 0. To show that formulae (3.43 a) and (3.43 b) indeed represent
explicit expressions of the resolvents of B − µ and B∗ − µ we first show that

(B − µ)G(ϑ) = g(ϑ), (B∗ − µ)H(ϑ) = h(ϑ), ϑ ∈ (0, π),

holds formally; here G and H denote the right hand sides of (3.43 a) and (3.43 b), respectively.
Assume, for example, k ≥ 0. Then for g ∈ rg(B − µ) we obtain

(B − µ)G(ϑ) =
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ− µ

)[
ϕ[µ](ϑ)

ϑ∫
0

ψ[µ](t)g(t) dt
]

=
[( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ− µ

)
ϕ[µ](ϑ)

] ϑ∫
0

ψ[µ](t)g(t) dt

+ ϕ[µ](ϑ)
d
dϑ

ϑ∫
0

ψ[µ](t)g(t) dt

= ϕ[µ](ϑ)ψ[µ](ϑ) g(ϑ) = g(ϑ)

where we have used that ϕ[µ](ϑ) = (ψ[µ](ϑ))−1 and (B+ − µ)ϕ[µ] = 0. The case k ≤ −1 and the
equation for h can be shown analogously. It remains to prove G ∈ D(B) and H ∈ D(B∗). Again,
we give an explicit proof only for G ∈ D(B) in the case k ≥ 0. The assertion for k ≤ −1 and the
inclusion H ∈ D(B∗) follow by analogous calculations.



Chapter 3. Three different lower bounds for the modulus of the eigenvalues of A 49

Recall that the domain of B is given by

D(B) =
{
g ∈ L 2((0, π),dϑ) : g is absolutely continuous, B+g ∈ L 2((0, π),dϑ)

}
,

so it remains to be shown that G is square integrable on (0, π). The proof for that is similar to
that of the subsequent lemma 3.30; here we use a simplified calculation (the estimation for the
integrand is less accurate). By assumption we have k ≥ 0, so that

π∫
0

|G(ϑ)|2dϑ =

π∫
0

1
|ψ[µ](ϑ)|2

∣∣∣∣∣
ϑ∫

0

ψ[µ](t)g(t) dt

∣∣∣∣∣
2

dϑ ≤
π∫

0

( ϑ∫
0

∣∣∣∣ ψ[µ](t)
ψ[µ](ϑ)

∣∣∣∣ |g(t)|dt
)2

dϑ. (3.44)

Since by assumption g ∈ L 2((0, π),dϑ), we also have g|(0,ϑ) ∈ L 2((0, ϑ), dt) for all ϑ ∈ (0, π).
Furthermore, we have the estimate∣∣∣∣ ψ[µ](t)

ψ[µ](ϑ)

∣∣∣∣2 = e−2 Re(µ)(t−ϑ)−2aω(cos t−cosϑ)
( tan t

2

tan ϑ
2︸ ︷︷ ︸

≤1

)2k+1
≤ e2|Re(µ)|ϑ+4|aω|, 0 < t < ϑ < π,

thus ψ[µ]

ψ[µ](ϑ) ∈ L 2((0, ϑ), dt) for each fixed ϑ ∈ (0, π). Therefore we can apply the Cauchy-Schwarz
inequality to estimate the inner integral in (3.44) and obtain( ϑ∫

0

∣∣∣ ψ[µ](t)
ψ[µ](ϑ)

∣∣∣ |g(t)|dt)2

≤
( ϑ∫

0

∣∣∣∣ ψ[µ](t)
ψ[µ](ϑ)

∣∣∣∣2 dt
)( ϑ∫

0

|g(t)|2 dt
)

≤ ϑ e2|Re(µ)|π+4|aω| ‖g‖2
2.

Inserting into (3.44) shows that
π∫

0

|G(ϑ)|2dϑ ≤ π2

2
e2|Re(µ)|π+4|aω| ‖g‖2

2 <∞.

Since we are only interested in the inverses of B and B∗, that is, in the case µ = 0, we omit the
subscript µ in the following.
Now that we have obtained an explicit form of B−1, we can show that B, and consequently A, has
compact resolvent.

Lemma 3.22. The operator B has compact resolvent.

Proof. To show that the operator B−1 =
(

0 B∗−1

B−1 0

)
is compact, it suffices to show that the

operators B−1 and B∗−1 are compact. We prove only that B−1 is compact in the case k ≥ 0; the
case k ≤ −1 and the assertion concerning B∗−1 follows analogously.
Recall that for k ≥ 0 and g ∈ L 2((0, π),dϑ)

B−1g(ϑ) =
1

ψ(ϑ)

ϑ∫
0

ψ(t)g(t) dt, ϑ ∈ (0, π),

with ψ(ϑ) = e−aω cosϑ
(
tan ϑ

2

)k+ 1
2 defined in lemma 3.19. For each n ∈ N we define the operators

Tn : L 2((0, π),dϑ) −→ L 2((0, π),dϑ), Tnf(ϑ) =


0, ϑ /∈ [ 1

n , π −
1
n ],

1
ψ(ϑ)

ϑ∫
1
n

ψ(t)f(t) dt, ϑ ∈ [ 1
n , π −

1
n ]
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and

T̂n : L 2([ 1
n , π −

1
n ],dϑ) −→ L 2([ 1

n , π −
1
n ],dϑ), T̂nf(ϑ) = 1

ψ(ϑ)

ϑ∫
1
n

ψ(t)f(t) dt.

These operators are bounded for all n ∈ N. Moreover, the operators T̂n are even compact since
the integral kernel is continuous and bounded, see, e.g., [Kat80, chap. III, example 4.1]. For
every f ∈ L 2((0, π),dϑ) the corresponding function f̂ := f |[ 1

n
, π− 1

n
] lies in L 2([ 1

n , π −
1
n ],dϑ).

It is clear that for any convergent sequence (gn)n∈N ⊆ L 2([ 1
n , π −

1
n ],dϑ) also the sequence

(ǧ)n∈N ⊆ L 2((0, π),dϑ) converges where the ǧn are defined by

ǧn(ϑ) :=

{
0, ϑ /∈ [ 1

n , π −
1
n ],

g(ϑ), ϑ ∈ [ 1
n , π −

1
n ]

for all n ∈ N. Now let (fm)m∈N be a bounded sequence in L 2((0, π),dϑ). Then (f̂m)m∈N is a
bounded sequence in L 2([ 1

n , π−
1
n ],dϑ). Hence for every n ∈ N the sequence (T̂nf̂m)m∈N contains

a convergent subsequence. Consequently, also (Tnfm)m∈N contains a convergent subsequence since
(T̂nf̂m)̌ = (Tnfm). This shows that the operators Tn, n ∈ N, are also compact. If we have shown
that lim

n→∞
Tn = B−1 in the operator norm, that is, that ‖Tn−B−1‖ → ∞, n→∞, then the lemma

is proved. To see that, we note that for all f ∈ L 2((0, π),dϑ)

‖(Tn −B−1)f‖2
2 =

π∫
0

|(Tn −B−1)f(ϑ)|2dϑ =

1
n∫

0

|B−1f(ϑ)|2dϑ +

π∫
π− 1

n

|B−1f(ϑ)|2dϑ

≤ 2e4|aω|π

n
‖f‖2

2

holds where we have used that for all (a, b) ⊆ (0, π)

b∫
a

|B−1f(ϑ)|2dϑ =

b∫
a

( ϑ∫
0

ψ(t)
ψ(ϑ)︸ ︷︷ ︸
≤e2|aω|

|f(t)|dt
)2

dϑ ≤ e4|aω|
π∫

0

( π∫
0

|f(t)|2 dt
)( π∫

0

1 dt
)

dϑ

= e4|aω|
b∫
a

π ‖f‖2
2 dϑ = e4|aω| π (b− a) ‖f‖2

2.

Thus

lim
n→∞

‖Tn −B−1‖ ≤ lim
n→∞

2π
n

= 0.

Theorem 3.23. The angular operator A has compact resolvent.

Proof. We know that both A and B are selfadjoint, hence their spectra are real. For any µ ∈ ρ(A)
and ν ∈ ρ(B) the second resolvent equation yields

(A− µ)−1 − (B − ν)−1 = (A− µ)−1(B −A+ µ− ν)(B − ν)−1.

Since (B − ν)−1 is compact and (A− µ)−1 and (B −A+ µ− ν) are bounded, the operator on the
right hand side is compact. Thus also (A− µ)−1 has to be compact.
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We want to add two remarks concerning this theorem. First, the theorem follows also from the fact
that (A(a))a is a holomorphic family of type (A), and A(0) = B is compact, see [Kat80]. Secondly,
we observe that from theorem 3.23 it follows immediately that the spectrum of A consists of
isolated eigenvalues with no accumulation points in (−∞,∞), see [Kat80, chap. III, theorem 6.29].
Recall that this has already been proved in section 2.2 with methods of oscillation theory for Dirac
operators.

In the remainder of this section we derive estimates for ‖B−1‖ and ‖B∗−1‖ and apply corollary 3.18
to find a lower bound for the absolute value of eigenvalues of the angular operator A. The next
lemmata provide some rather technical estimates used for this task.

Lemma 3.24. For 0 < x < y < π we have the following inequalities:

tan x
2

tan y
2

<
x

y
, (3.45 a)

tan x
2

tan y
2

<
π − y

π − x
, (3.45 b)

tan x
2

tan y
2

<
ex

ey
=

eπ−y

eπ−x
. (3.45 c)

Proof. (i) Since inequality (3.45 a) is equivalent to the inequality tan x
2

x <
tan y

2
y , we consider the

function f : (0, π) → R, f(x) = tan x
2

x . Obviously, f is continuously differentiable and inequal-
ity (3.45 a) is equivalent to f(x) < f(y) for 0 < x < y < π. Thus it suffices to show that f is a
monotonously increasing function of x. An easy calculation shows that

f ′(x) =
d
dx

tan x
2

x
=

1
2x cos2 x

2

(
1−

sin x
2

x
2︸ ︷︷ ︸
<1

cos
x

2︸ ︷︷ ︸
<1

)
> 0,

hence the assertion is proved.

(ii) With the trigonometric identity tan(π2 − α) = 1
tanα we find

tan x
2

tan y
2

=
tan(π2 −

π−x
2 )

tan(π2 −
π−y

2 )
=

tan π−y
2

tan π−x
2

<
π − y

π − x
,

where we have used 0 < π−y
2 < π−x

2 < π and inequality (3.45 a).

(iii) To prove (3.45 c) fix again y ∈ (0, π) and define the function g : (0, π) → R, x 7→ tan x
2

ex .
This function is continuously differentiable, so as before it suffices to show that g is monotonously
increasing because obviously inequality (3.45 c) is equivalent to g(x) < g(y). Thus the assertion
follows from

g′(x) =
d
dx

tan x
2

ex
=

1
2 ex cos2 x

2

(
sin

x

2
− cos

x

2

)2
> 0.

Lemma 3.25. There exists a unique number ρ0 ∈ (0, π) such that

ρ0 sin ρ0 + cos ρ0 − 1 = 0. (3.46)

Further, with ν := − sin ρ0, c− := 1 and c+ := −1 + π sin ρ0, the functions

g− : [0, π] −→ R, g−(ϑ) := νϑ+ c−,

g+ : [0, π] −→ R, g+(ϑ) := νϑ+ c+
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satisfy the inequalities

g−(ϑ) ≤ cosϑ ≤ g+(ϑ), ϑ ∈ [0, π].

Corollary 3.26. For aω ∈ R the inequalities

aω(νϑ+ γ−) ≤ aω cosϑ ≤ aω(νϑ+ γ+), ϑ ∈ (0, π),

and hence

eaω(νϑ+γ−) ≤ eaω cosϑ ≤ eaω(νϑ+γ+) (3.47)

hold with γ± :=

{
c± if aω ≥ 0,
c∓ if aω < 0.

Note that the definition of γ+ and γ− implies aω(γ+ − γ−) = |aω(c+ − c−)| for all a, ω ∈ R.

Proof of lemma 3.25. First, we define the auxiliary functions

f : [0, π] −→ R, f(ϑ) := ϑ sinϑ+ cosϑ− 1

g0 : [0, π] −→ R, g0(ϑ) := cosϑ.

The existence of ρ0 as in the assertion follows because the function f is continuously differentiable
and therefore must have at least one zero ρ0 because of

f(π) = −2 < 0 <
π

2
− 1 = f(π2 ).

On the other hand, it is easy to see that ρ = π
2 is the only extremal point of f in (0, π) and that f

is zero for ρ = 0, thus ρ0 is uniquely determined and ρ0 ∈ (π2 , π).
The derivatives of g0 − g− and g0 − g+ are equal and given by

(g0 − g−)′(ϑ) = (g0 − g+)′(ϑ) = − sinϑ+ sin ρ0, ϑ ∈ [0, π].

This shows that (g0 − g−) and (g0 − g+) are increasing in [0, π − ρ0) ∪ (ρ0, π] and decreasing in
(π − ρ0, ρ0). Since (g0 − g−)(0) = (g0 − g+)(π) = 0, it follows that

(g0 − g−)(ϑ) > (g0 − g−)(ρ0) = 0, ϑ ∈ (π − ρ0, π),
(g0 − g−)(ϑ) > (g0 − g−)(0) = 0, ϑ ∈ (0, π − ρ0)
(g0 − g+)(ϑ) < (g0 − g+)(π − ρ0) = 0, ϑ ∈ (0, ρ0),
(g0 − g+)(ϑ) < (g0 − g+)(π) = 0, ϑ ∈ (ρ0, π).

The value ν gives the slope of the linear function by which the cosine is estimated. In the case of
the lemma, the numerical values of the constants ρ0, ν and γ+ − γ− are given by

ρ0 ≈ 2.331122370, ν ≈ −0.7246113541, γ+ − γ− ≈ sign(aω) · 0.276433707.

Instead of the number ν of lemma 3.25 we can choose any real value for ν; but then also the
numbers c± have to be adapted, see figure 3.1. For example, if we choose ν = −1, we have c− = 1
and c+ = π− 1. Hence the exponential function C(ω) (see lemma 3.27), which is important for the
estimation of the eigenvalues of A, has larger values, and in general the estimates will be weaker.

Now let α ≥ 0. With the help of the previous lemmata we can estimate the following double
integrals.
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g+(ϑ)
g−(ϑ)
cos(ϑ)

π3π
4

π
2

π
40

c+

2

1

0

−1

−2

g+(ϑ)
g−(ϑ)
cos(ϑ)

π3π
4

π
2

π
40

c+

1

0

−1

−2

Figure 3.1. The left graph shows the estimates for the cosine with ν from lemma 3.25, the right graph
shows the estimates with ν = −1.

Lemma 3.27. For all α ≥ 0 we have

π∫
0

ϑ∫
0

(
tan t

2

tan ϑ
2

)α
e2aω(cosϑ−cos t) dt dϑ =

π∫
0

π∫
ϑ

(
tan ϑ

2

tan t
2

)α
e2aω(cos t−cosϑ) dt dϑ (3.48)

≤ C(ω)2 δ(1
2(α− 1), ω)2 (3.49)

where

C(ω) := eaω(γ+−γ−), δ(1
2(α− 1), ω) :=


eπ(aων−α

2 )

(2aων−α) if α
2 − aων < 0,√

π
2 |aων −

α
2 |−1 if α

2 − aων > 0,

π√
2

if α
2 − aων = 0.

Since in the following the function δ is always applied to α = 2k + 1 as first argument, we have
defined it in the seemingly awkward way above. In lemma 3.30 we also admit arbitrary negative
values as first argument of δ.

Proof. First we show inequality (3.49). If we use (3.47) to estimate the exponential function
containing the cosine and equation (3.45 c) to estimate the quotient of the tangent functions we
obtain

π∫
0

ϑ∫
0

(
tan t

2

tan ϑ
2

)α
e2aω(cosϑ−cos t) dt dϑ ≤

π∫
0

ϑ∫
0

eα(t−ϑ)e2aων(ϑ−t)+2aω(γ+−γ−) dt dϑ

= e2|aω(c+−c−)|
π∫

0

ϑ∫
0

eϑ(2aων−α)et(−2aων+α) dt dϑ.

For 2aων−α = 0 the assertion is now obvious. For aων−α 6= 0 integration with respect to t yields

π∫
0

ϑ∫
0

(
tan t

2

tan ϑ
2

)α
e2aω(cosϑ−cos t) dt dϑ ≤ e2|aω(c+−c−)|

2aων − α

π∫
0

eϑ(2aων−α) − 1 dϑ. (3.50)
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For 2aων − α > 0 we use

0 ≤
π∫

0

eϑ(2aων−α) − 1 dϑ ≤
π∫

0

eϑ(2aων−α) dϑ ≤ eπ(2aων−α)

2aων − α
(3.51)

to obtain the assertion. If 2aων − α < 0, then

0 ≥
π∫

0

eϑ(2aων−α) − 1 dϑ ≥
π∫

0

−1 dϑ = −π (3.52)

yields the assertion.
Now we have to show the equality in (3.48). To this end, we apply the substitutions s := π − t
and σ := π− ϑ. Using the trigonometric identities cos(π− t) = − cos t and tan π−t

2 = (tan t
2)−1 we

obtain

π∫
0

π∫
ϑ

(
tan ϑ

2

tan t
2

)α
e2aω(cos t−cosϑ) dt dϑ =

0∫
π

0∫
σ

(
tan s

2

tan σ
2

)α
e2aω(cosσ−cos s) dsdσ.

For 0 < |2aων−α| < 1 we can improve estimates (3.51) and (3.52). Assume that 0 < 2aων−α < 1
holds. Then ∫ π

0
eϑ(2aων−α) − 1 dϑ =

1
2aων − α

(
e(2aων−α)π − 1− π(2aων − α)

)
≤ (2aων − α)π2e(2aων−α)π (3.51′)

instead of equation (3.51) might provide a better result. For −1 < 2aων − α < 0 the estimate

π∫
0

eϑ(2aων−α) − 1 dϑ ≥ eπ(2aων−α)

π∫
0

1− e−π(2aων−α)dϑ = −π(1− eπ(2aων−α)) (3.52′)

yields a better result than the estimate (3.52).

Remark 3.28. There are other estimates for these integrals which are in general weaker, but
have a simpler form than the estimate given in the previous lemma. Under the assumptions of
lemma 3.27 the following inequalities hold:

π∫
0

ϑ∫
0

(
tan t

2

tan ϑ
2

)α
e2aω(cosϑ−cos t) dtdϑ ≤ π2 Γ(ω)2

2(α+ 1)
, (3.53)

π∫
0

ϑ∫
0

(
tan t

2

tan ϑ
2

)α
e2aω(cosϑ−cos t) dtdϑ ≤ π Γ(ω)2

α
, (3.54)

where Γ(ω) := sup{eaω(cosϑ−cos t) : 0 < t ≤ ϑ < π}.

Proof. To prove the inequalities we estimate the exponential functions by Γ(ω) and then use the
estimates (3.45 a) and (3.45 c) to estimate the remaining integrand.
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With the help of these rather technical lemmata we are now able to derive upper bounds for the
norms of B−1 and B∗−1. Since the estimates depend on the wave number k, we add a subscript k
to the operators B and B∗ to emphasise their dependence on k. Likewise, we attach a subscript k
to the eigenfunctions ϕ and ψ of B and B∗ to indicate to which wave number k they belong (as
mentioned after the proof of lemma 3.21, we omit the subscript [µ]).

Remark 3.29. Let B̃−1
k be the operator obtained from B−1

k if we substitute aω by −aω; the same
notation applies to the adjoint operator and the eigenfunctions ϕk and ψk. Further, define the
self-inverse, unitary map

R : L 2((0, π),dϑ) −→ L 2((0, π),dϑ), h 7→ Rh := h(π − ·).

Then we for all k ∈ R \ (0, π) we have

ψk(ϑ) = ψ̃−k−1(π − ϑ) = ϕ̃−k−1(ϑ), (3.55)

ϕk(ϑ) = ϕ̃−k−1(π − ϑ) = ψ̃−k−1(ϑ), (3.56)

and for the operators Bk and B∗
k the following symmetry properties hold:

Bk = −B̃∗
−(k+1), (3.57)

Bk = −R B̃−(k+1)R. (3.58)

In particular, we have ‖B−1
k ‖ = ‖B̃∗−1

−(k+1)‖ = ‖B̃−1
−(k+1)‖.

Proof. The assertions concerning R and the eigenfunctions ϕk and ψk are clear if we recall that
they are given by ϕk(ϑ) = eaω cosϑ(tan ϑ

2 )−(k+ 1
2
) and ψk(ϑ) = e−aω cosϑ(tan ϑ

2 )k+
1
2 , see lemma 3.19.

Equality (3.57) follows from

Bk =
d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ = −

(
− d

dϑ
+
−(k + 1) + 1

2

sinϑ
+ (−aω) sinϑ

)
= −B̃∗

−(k+1).

Observing R d
dϑR = − d

dϑ , we find

−RB̃−(k+1)R = −R
( d

dϑ
+
−(k + 1) + 1

2

sinϑ
+ (−aω) sinϑ

)
R =

d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ = Bk.

Lemma 3.30. The following inequalities hold:

‖B−1
k ‖ = ‖B∗−1

k ‖ ≤ C(ω) δ(k, ω), (3.59)

‖B−1
k ‖ = ‖B∗−1

k ‖ ≤ π

2
Γ(k, ω)√
|k + 1

2 |+
1
2

, (3.60)

‖B−1
k ‖ = ‖B∗−1

k ‖ ≤ Γ(k, ω)
√

π

2|k + 1
2 |
, (3.61)

where C(ω) = e|aω(c+−c−)| is defined in lemma 3.27,

Γ(k, ω) :=

{
e2|aω| if sign(k + 1

2) aω ≤ 0,
1 if sign(k + 1

2) aω ≥ 0,
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is a generalisation of Γ(ω) (see remark 3.28) and δ is the following extension of the function δ in
lemma 3.27

δ(k, ω) =


eπ|aων−(k+1

2 )|

|aων−(k+ 1
2
)| if sign(k + 1

2)(k + 1
2 − aων) < 0,√

π
2 |aων − (k + 1

2)|−1 if sign(k + 1
2)(k + 1

2 − aων) > 0,

π√
2

if k + 1
2 − aων = 0.

A better estimate for ‖B−1
k ‖, involving |k + 1

2 − aων| instead of its square root, is obtained in
lemma 3.34.

Proof of lemma 3.30. It is well known that ‖B−1
k ‖ = ‖B∗−1

k ‖. Let k ≥ 0. For every function
g ∈ L 2((0, π),dϑ) and every ϑ ∈ (0, π), its restriction g|(0,ϑ) lies in L 2((0, ϑ),dϑ). Since also

the function t 7→ eaω(cosϑ−cos t)
(

tan t
2

tan ϑ
2

)k+ 1
2 is square integrable on (0, ϑ), we obtain by the Cauchy-

Schwarz inequality, applied to the inner integral,

‖B−1
k g‖2

2 =

π∫
0

∣∣∣∣ 1
ψ(ϑ)

ϑ∫
0

ψ(t)g(t) dt
∣∣∣∣2dϑ

=

π∫
0

∣∣∣∣
ϑ∫

0

eaω(cosϑ−cos t)

(
tan t

2

tan ϑ
2

)k+ 1
2

g(t) dt
∣∣∣∣2dϑ

≤
π∫

0

( ϑ∫
0

e2aω(cosϑ−cos t)

(
tan t

2

tan ϑ
2

)2k+1

dt

)( ϑ∫
0

|g(t)|2 dt

)
dϑ

≤ ‖g‖2
2

π∫
0

ϑ∫
0

e2aω(cosϑ−cos t)

(
tan t

2

tan ϑ
2

)2k+1

dt dϑ. (3.62)

Now inequalities (3.49) with α = 2k+1, (3.53) and (3.54) together with the fact that equation (3.62)
holds for all g ∈ L 2((0, π),dϑ) show the assertion.
Now, let k ≤ −1. The assertions can either be shown by an analogous computation or by a
symmetry argument. To this end, we recall that ‖B−1

k ‖ = ‖B̃∗−1
−(k+1)‖ by remark 3.29, where B̃k is

obtained from Bk by substituting aω with −aω. Note that −(k − 1) is nonnegative for k ≤ −1.
From

sign(k + 1
2)
(
aων − (k + 1

2)
)

= − sign(k + 1
2)
(
(−aω)ν − (−k − 1

2)
)

= sign(−(k + 1) + 1
2)
(
(−aω)ν − (−(k + 1) + 1

2)
)
,

| − aων − (−(k + 1) + 1
2)| = |aων − (k + 1

2)|

for k ∈ R \ (−1, 0) it follows that δ(k, ω) = δ(−(k + 1),−ω). Thus, by

‖B−1
k ‖ = ‖B̃−1

−(k+1)‖ ≤ C(−ω) δ(−(k + 1),−ω) = C(ω) δ(k, ω),

assertion (3.59) is proved also in the case k ≤ −1. Assertions (3.60) and (3.61) follow if we observe
that Γ(k, ω) = Γ(−(k + 1),−ω).

After this preparatory work we are now able to establish lower bounds for the modulus of the
eigenvalues of the angular operator A. These estimates are rather rough; we improve them in the
next section.
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Lemma 3.31. Let λ be an eigenvalue of the angular operator A. Then we have the following
estimates:

|λ| ≥ −|am|+ 1
C(ω) δ(k, ω)

, (3.63)

|λ| ≥ −|am|+ 2
π

√
|k + 1

2 |+
1
2

Γ(k, ω)
, (3.64)

|λ| ≥ −|am|+ 1
Γ(k, ω)

√
2|k + 1

2 |
π

, (3.65)

with C(ω), δ(k, ω) and Γ(k, ω) as defined in lemma 3.30.

Proof. Let λ be an eigenvalue of A. Since we have A = −D and ‖B−1‖ = ‖B∗−1‖, corollary 3.18
yields

|λ| ≥ −‖D‖+ ‖B−1‖−1. (3.66)

If we observe that ‖D‖ = |am| and insert the estimates (3.59) through (3.61) into the formula
above, we obtain all assertions.

Remark 3.32. If we apply analytic perturbation theory to the angular operator and use m as the
perturbation parameter (cf. section 3.2), then we obtain

µn − |am| ≤ λn ≤ µn + |am|,

where µn is the nth eigenvalue of B =
(

0 B
B∗ 0

)
, enumerated such that µn = λn for a = 0. Since B

and B∗ are boundedly invertible and the spectrum of BB∗ consists of eigenvalues only, it follows
that µ1 = ‖B−1‖−1. Hence, if (3.66) yields a positive lower bound then ‖B−1‖−1 > |am| and λ1

is the first positive eigenvalue of A, hence the estimate (3.63) can also be obtained from standard
perturbation theory. ♦

We want to add some comments on the estimates in lemma 3.31. It is not hard to see that for
large |k| the bound (3.65) is larger, i.e., sharper, than bound (3.64). However, in section 5.1.1, the
method by which the latter estimate was obtained (namely estimation of the tangent functions with
a rational function) turns out to be useful when the behaviour of elements f ∈ D(B∗) and g ∈ D(B)
in a neighbourhood of 0 and π is investigated. It is rather hard to compare in general these two
estimates with the first one, (3.63), since the exponential functions involved in the expressions
differ. However, in the case sign(k + 1

2)(aων − (k + 1
2)) < 0 the first expression should yield better

estimates than the other two if a is considered the perturbation parameter while all other quantities
are fixed. In the following, we always work with estimate (3.63).

3.3.3 Estimates of ‖B−1‖ by an iteration method

The first rough estimates for the eigenvalues λ obtained in lemma 3.31 are only of order
√
k whereas

a bound of order k could be expected from the case a = 0. Indeed, an estimate of order k can
be achieved if we improve the estimate for the norm of B−1. For this purpose, we estimate the
norms ‖(B−1B∗−1)n‖, n ∈ N, from which we then derive estimates for ‖B−1‖. By corollary 3.18, all
eigenvalues λ of A satisfy |λ| ≥ −|am|+‖B−1‖−1. Thus a bound for |λ| resulting from an estimate
‖B−1‖ ≤ b is the larger, and therefore the better, the smaller the bound b is. In lemma 3.34 such
bounds b are established by using the explicit formulae for B−1 and B∗−1 given in lemma 3.21.



58 3.3. An off-diagonalisation of certain block operator matrices

We obtain various results, according to which of the estimates provided in lemma 3.24 we use to

estimate the quotients of type tan ϑ
2

tan t
2

appearing in the formulae for B−1 and B∗−1 and how the

exponential functions are treated. A priori it is not clear which kind of estimate of ‖B−1‖ yields
the largest lower bound for the modulus of the eigenvalues of the angular operator A. Sample
plots of the bounds for ‖B−1‖−1 are given in figures 3.2 and 3.3 at the end of this section. Again,
we attach a subscript k to the operators B and B∗ to indicate to which wave number k they belong.

The next technical lemma is used in the proof of lemma 3.34.

Lemma 3.33. Let k ≥ 0. For every n ∈ N, η ∈ R and s0 ∈ (0, π) the following estimates hold.

(i)

π∫
s0

t1∫
0

π∫
s1

. . .

π∫
sn−1

n∏
j=1

( π − tj
π − sj−1

)k+ 1
2

n−1∏
j=1

(sj
tj

)k+ 1
2

( tn∫
0

(sn
tn

)2k+1
dsn

) 1
2

dtn dsn−1 . . . ds1 dt1

≤ 1√
π(2k + 2)

(
π

k + 3
2

)2n−1

(π − s0)

(ii)

π∫
s0

t1∫
0

π∫
s1

. . .

π∫
sn−1

(
n∏
j=1

e−2ηtj

)(
n−1∏
j=1

e2ηsj

)( tn∫
0

e2ηsn dsn

) 1
2

dtn dsn−1 . . . ds1 dt1

≤


η−(2n−1)(2η)−

1
2 e−ηs0 if η > 0,

e−2nηπ

|2η|2n−1
√
|2η|

if η < 0,

4
3
√
π

(1
2 π

2)n if η = 0.

Proof. Both Assertions are proved by induction with respect to n.

(i) For n = 1 we have

π∫
s0

(π − t1
π − s0

)k+ 1
2

( t1∫
0

(s1
t1

)2k+1
ds1

) 1
2

dt1 =
1√

2k + 2

π∫
s0

(π − t1
π − s0

)k+ 1
2
t

1
2
1 dt1

≤
√
π√

2k + 2

π∫
s0

(π − t1
π − s0

)k+ 1
2 dt1 =

1√
π(2k + 2)

π

k + 3
2

(π − s0).
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Now assume that the assertion holds for an n ∈ N. Then we have

π∫
s0

t1∫
0

. . .

tn∫
0

π∫
sn

n+1∏
j=1

( π − tj
π − sj−1

)k+ 1
2

n∏
j=1

(sj
tj

)k+ 1
2

( tn+1∫
0

(sn+1

tn+1

)2k+1
dsn+1

) 1
2

dtn+1 dsn . . . ds1 dt1

≤ 1√
π(2k + 2)

(
π

k + 3
2

)2n−1
π∫

s0

t1∫
0

(π − t1
π − s0

)k+ 1
2
(s1
t1

)k+ 1
2 (π − s1︸ ︷︷ ︸

≤π

) ds1 dt1

≤ 1√
π(2k + 2)

(
π

k + 3
2

)2n
π∫

s0

(π − t1
π − s0

)k+ 1
2

t1︸︷︷︸
≤π

dt1

≤ 1√
π(2k + 2)

(
π

k + 3
2

)2n+1

(π − s0)

which proves the claim for n+ 1.

(ii) We start with the case η > 0. In the proof we repeatedly use the relations

0 ≤
∫ t

0
eηs ds =

1
η

(eηt − 1) ≤ 1
η

eηt, t ∈ (0, π),

0 ≤
∫ π

s
e−ηt dt =

1
η

(e−ηs − e−ηπ) ≤ 1
η

e−ηs, s ∈ (0, π).

For n = 1 it is easy to see that

π∫
s0

e−2ηt1

( t1∫
0

e2ηs1 ds1

) 1
2

dt1 ≤ 1√
2η

π∫
s0

e−ηt1 dt1 ≤ 1
η
√

2η
e−ηs0 ,

hence the assertion holds. Assume the assertion to be valid for some n ∈ N. Then

π∫
s0

t1∫
0

. . .

π∫
sn−1

tn∫
0

π∫
sn

(
n+1∏
j=1

e−2ηtj

)(
n∏
j=1

e2ηsj

)( tn+1∫
0

e2ηsn+1 dsn+1

) 1
2

dtn+1 dsn . . . ds1 dt1

≤
π∫

s0

t1∫
0

e−2ηt1e2ηs1η−(2n−1)(2η)−
1
2 e−ηs1 ds1 dt1

≤ η−2n 1√
2η

π∫
s0

e−ηt1 dt1 ≤ η−(2n+1)(2η)−
1
2 e−ηs0

shows the assertion also for n+ 1. Now we show the assertion for η < 0. If we use

0 ≤
t∫

0

e2ηs ds =
1
2η

(e2ηt − 1) =
1

2|η|
(1− e2ηt) ≤ 1

2|η|
, t ∈ (0, π)

0 ≤
π∫
s

e−2ηt ds =
1
2η

(e−2ηs − e−2ηπ) =
1

2|η|
(e−2ηπ − e−2ηs) ≤ 1

2|η|
e−2ηπ s ∈ (0, π),
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we find for n = 1

π∫
s0

e−2ηt1

 t1∫
0

e2ηs1 ds1


1
2

dt1 ≤ 1√
|2η|

π∫
s0

e−2ηt1 dt1 ≤ e−2ηπ

|2η|
√
|2η|

.

Assuming that the assertion holds for some n ∈ N we find for n+ 1

π∫
s0

t1∫
0

. . .

π∫
sn−1

tn∫
0

π∫
sn

(
n+1∏
j=1

e−2ηtj

)(
n∏
j=1

e2ηsj

)( tn+1∫
0

e2ηsn+1 dsn+1

) 1
2

dtn+1rdsn . . . ds1 dt1

≤ e−2nηπ

|2η|2n−1
√
|2η|

π∫
s0

t1∫
0

e−2ηt1e2ηs1 ds1 dt1

≤ e−2nηπ

|2η|2n
√
|2η|

π∫
s0

e−2ηt1 dt1 ≤ e−2(n+1)ηπ

|2η|2n+1
√
|2η|

.

It remains to show the assertion for the case η = 0. Using the estimates

π∫
sn−1

( tn∫
0

dsn

) 1
2

dtn =

π∫
sn−1

t
1
2
n dtn = 2

3 (π
3
2 − s

3
2
n−1) ≤ 2

3 π
3
2 , sn−1 ∈ (0, π),

π∫
s

t∫
0

ds′dt =

π∫
s

tdt = 1
2 (π2 − s2) ≤ 1

2 π
2 s ∈ (0, π),

we find

π∫
s0

t1∫
0

π∫
s1

. . .

π∫
sn−1

( tn∫
0

dsn

) 1
2

dtn dsn−1 . . . ds1 dt1

≤ 2
3π

3
2

π∫
s0

t1∫
0

π∫
s1

. . .

π∫
sn−2

tn−1∫
0

dsn−1 dtn−1 . . . ds1 dt1 ≤ 2
3 π

3
2 (1

2π
2)n−1 = 4

3
√
π

(1
2 π

2)n.

Lemma 3.34. For every n ∈ N and k ∈ R \ (−1, 0), we have ‖B−1
k B∗−1

k ‖ = ‖B∗−1
k B−1

k ‖ and the
following estimates hold

‖(B−1
k B∗−1

k )n‖ ≤ Γ(k, ω)2n
π2

2
√

2π(|k + 1
2 |+ 1)

(
π

|k + 1
2 |+ 1

)2n−1

, (3.67)

‖(B−1
k B∗−1

k )n‖ ≤

√
|k + 1

2 |
2

(
Γ(k, ω)
|k + 1

2 |

)2n

(3.68)

with Γ(k, ω) =

{
e2|aω| if sign(k + 1

2) aω ≤ 0,
1 if sign(k + 1

2) aω ≥ 0
as defined in lemma 3.30.
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In addition, we have the estimates

‖(B−1
k B∗−1

k )n‖

≤



C(ω)2n

|aων − (k + 1
2)|2n

(
eπ|aων−(k+ 1

2
)|

2

)2n

if sign(k + 1
2)(k + 1

2 − aων) < 0,

C(ω)2n

|aων − (k + 1
2)|2n−

1
2

√
π

2
if sign(k + 1

2)(k + 1
2 − aων) > 0,

4
3
C(ω)2n

(1
2
π2
)n

if (k + 1
2)− aων = 0,

(3.69 a)

(3.69 b)

(3.69 c)

with C(ω) = e|aω(c+−c−)| as defined in lemma 3.30. Furthermore, we have the following upper
bounds for the norm of B−1

k :

‖B−1
k ‖ = ‖B∗−1

k ‖ ≤ π Γ(k, ω)
|k + 1

2 |+ 1
, (3.70)

‖B−1
k ‖ = ‖B∗−1

k ‖ ≤ Γ(k, ω)
|k + 1

2 |
(3.71)

and

‖B−1
k ‖ = ‖B∗−1

k ‖

≤



C(ω)
|aων − (k + 1

2)|
eπ|aων−(k+ 1

2
)|

2
if sign(k + 1

2)(k + 1
2 − aων) < 0,

C(ω)
|aων − (k + 1

2)|
if sign(k + 1

2)(k + 1
2 − aων) > 0,

π√
2
C(ω) if (k + 1

2)− aων = 0.

(3.72 a)

(3.72 b)

(3.72 c)

Proof. The equality ‖(B−1
k B∗−1

k )n‖ = ‖(B∗−1
k B−1

k )n‖ can either be seen by exploiting the sym-
metry properties of B−1

k stated in remark 3.29 (a straightforward calculation shows B∗−1
k B−1

k =
RB−1

k B∗−1
k R); or we use that

‖(B−1
k B∗−1

k )n‖ = ‖B−1
k B∗−1

k ‖n = ( sup
x∈H
‖x‖=1

|(B−1
k B∗−1

k x, x)|)n

= ( sup
x∈H
‖x‖=1

|(B∗−1
k x, B∗−1

k x)|)n = ‖B∗−1
k ‖2n,

(3.73)

where the first two equalities hold because B−1
k B∗−1

k is a bounded selfadjoint operator on the
Hilbert space H = L 2((0, π),dϑ). Analogously, we obtain ‖(B∗−1

k Bk)n‖ = ‖B−1
k ‖2n, thus equality

‖(B−1
k B∗−1

k )n‖ = ‖(B∗−1
k B−1

k )n‖ follows now from ‖B−1‖ = ‖B∗−1‖.
Furthermore, (3.73) shows that formulae (3.70), (3.71) and (3.72 a)–(3.72 c) are direct consequences
of (3.67), (3.68) and (3.69 a)–(3.69 c), respectively, if in (3.73) we solve for ‖B∗−1

k ‖ and then let
n→∞.
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In the case k ≤ −1, all assertions of the lemma can either be shown by calculations analogous to
those carried out below for the case k ≥ 0; or they can be derived from the results in the case
k ≥ 0 by symmetry arguments similar to those in the proof of lemma 3.30. Thus it remains to
prove (3.67), (3.68) and (3.69 a)–(3.69 c) for k ≥ 0. So fix k ≥ 0. Then for every f ∈ L 2((0, π),dϑ)
and every s0 ∈ (0, π) we obtain by lemma 3.21, with the functions ϕ := ϕ[0] and ψ := ψ[0] defined
in that lemma, that

|(B∗−1
k B−1

k )nf(s0)| =

∣∣∣∣∣
π∫

s0

t1∫
0

. . .

π∫
sn−1

tn∫
0

(
n∏
j=1

ϕ(tj)
ϕ(sj−1)

ψ(sj)
ψ(tj)

)
f(sn) dsn dtn . . . ds1 dt1

∣∣∣∣∣
≤

π∫
s0

t1∫
0

. . .

π∫
sn−1

(
n∏
j=1

ϕ(tj)
ϕ(sj−1)

)(
n−1∏
j=1

ψ(tj)
ψ(sj−1)

)( tn∫
0

ψ(sn)
ψ(tn)

|f(sn)| dsn

)
dtn . . . ds1 dt1

≤ ‖f‖2

π∫
s0

t1∫
0

. . .

π∫
sn−1

(
n∏
j=1

ϕ(tj)
ϕ(sj−1)

)(
n−1∏
j=1

ψ(tj)
ψ(sj−1)

)( tn∫
0

ψ(sn)
ψ(tn)

) 1
2

dtn . . . ds1 dt1 (3.74)

where in the last step we have used that for all tn ∈ (0, π) the restricted function | f |(0,tn) | lies
in L 2((0, tn), dsn) and that (0, tn) → R, sn 7→ ψ(sn)

ψ(tn) is bounded, so that the Cauchy-Schwarz
inequality applied to the innermost integral yields

tn∫
0

ψ(sn)
ψ(tn)

|f(sn)| dsn ≤
( tn∫

0

|f(sn)|2 dsn

) 1
2
( tn∫

0

(
ψ(sn)
ψ(tn)

)2

dsn

) 1
2

≤ ‖f‖2

( tn∫
0

(
ψ(sn)
ψ(tn)

)2

dsn

) 1
2

.

Observe that in (3.74) we have 0 < sj−1 ≤ tj < π and 0 < sj ≤ tj < π for each j ∈ {1, . . . , n}.
Hence we can apply lemma 3.24 and corollary 3.26 to estimate the expression (3.74).
First, we prove (3.67) with the help of (3.45 a) and (3.45 b). For j ∈ {1, . . . , n} we have

ϕ(tj)
ϕ(sj−1)

=
(

tan sj−1

2

tan tj
2

)k+ 1
2

eaω(cos tj−cos sj−1) ≤
( π − tj
π − sj−1

)k+ 1
2 Γ(k, ω),

ψ(sj)
ψ(tj)

=
(

tan sj

2

tan tj
2

)k+ 1
2

eaω(cos tj−cos sj) ≤
(sj
tj

)k+ 1
2 Γ(k, ω).

With these estimates and lemma 3.33(i) it follows from (3.74) that

|(B∗−1
k B−1

k )nf(s0)| ≤ ‖f‖2 Γ(k, ω)2n
1√

π(2k + 2)

( π

k + 3
2

)2n−1
(π − s0).

Taking the L 2-norm on both sides gives

‖(B∗−1
k B−1

k )nf‖2 ≤ ‖f‖2 Γ(k, ω)2n
π2

2
√
π(2k + 2)

( π

k + 3
2

)2n−1
,

thus (3.67) is proved.
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For the proof of (3.69 a)–(3.69 c) we use estimates (3.45 c) and (3.47) to obtain

ϕ(tj)
ϕ(sj−1)

=
(

tan sj−1

2

tan tj
2

)k+ 1
2

eaω(cos tj−cos sj−1) ≤ esj−1(k+ 1
2
−aων)etj(−(k+ 1

2
)+aων)e|aω(c+−c−)|,

ψ(sj)
ψ(tj)

=
(

tan sj

2

tan tj
2

)k+ 1
2

eaω(cos tj−cos sj) ≤ esj(k+
1
2
−aων)etj(−(k+ 1

2
)+aων)e|aω(c+−c−)|.

Thus we have

|(B∗−1
k B−1

k )nf(s0)| ≤ ‖f‖2 e2n|aω(c+−c−)| es0(k+ 1
2
−aων) ×

π∫
s0

t1∫
0

. . .

π∫
sn

(
n∏
j=1

e−2tj(k+
1
2
−aων)

)(
n−1∏
j=1

e2sj(k+
1
2
−aων)

)( tn∫
0

e2sn(k+ 1
2
−aων) dsn

) 1
2

dtn . . . ds1 dt1

to which we can apply lemma 3.33(ii) with η = sign(k+ 1
2)(k+ 1

2 − aων). Hence, for s0 ∈ (0, π) we
have in the case sign(k + 1

2)(k + 1
2 − aων) < 0

|(B∗−1
k B−1

k )nf(s0)| ≤ ‖f‖2 e2n|aω(c+−c−)| es0(k+ 1
2
−aων) e−2n(k+ 1

2
−aων)π

(2|k + 1
2 − aων|)2n−

1
2

; (3.69 a′)

in the case sign(k + 1
2)(k + 1

2 − aων) > 0 we have

|(B∗−1
k B−1

k )nf(s0)| ≤
1√
2
‖f‖2 e2n|aω(c+−c−)| (k + 1

2 − aων)−2n+ 1
2 ; (3.69 b′)

and for k + 1
2 − aων = 0 we have

|(B∗−1
k B−1

k )nf(s0)| ≤ ‖f‖2 e2n|aω(c+−c−)| 4
3
√
π

(1
2
π2
)n
. (3.69 c′)

Taking the L 2-norm on both sides of (3.69 a′)–(3.69 c′) shows (3.69 a)–(3.69 c).
Estimate (3.68) is obtained from (3.69 b) if we set ν = 0 and substitute C(ω) by Γ(k, ω).

Note that both the estimates (3.71) and (3.72 a)–(3.72 c) are obtained by estimating the quotient
of tangent function by exponential functions. Although it seems that often the estimates (3.72 a)–
(3.72 c) provide stronger lower bounds than (3.71), the advantage of the latter is that it exhibits
no exponential decay with respect to aω for sign(k + 1

2)(aων − (k + 1
2)) < 0.

It is not easy to decide in general which of the estimates (3.70), (3.71) and (3.72 a)–(3.72 c) yields
the best lower bound for the modulus of eigenvalues of the angular operator. It seems that for
sign(k + 1

2)aω ≥ 0 estimates (3.70) and (3.71) provide better results since there is no exponential
decay with respect to a. On the other hand, figure 3.2 shows that, for small |a|, also in this case
the estimates (3.72 a)–(3.72 c) provide larger lower bounds for ‖B−1‖−1 than the exponentially
nondecaying solutions. An other sample plot is given in figure 3.3.
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(3.72)
(3.71)
(3.70)

a

k = 0
ω = 0.75

151050−5

1.5

1

0.5

Figure 3.2. The plots show the estimates for ‖B−1‖−1 given by (3.70), (3.71) and (3.72 a)–(3.72 c) in
lemma 3.34 for ω = 0.75 and the wave number k = 0.

(3.72)
(3.71)
(3.70)

a

k = 8
ω = 0.75

6420−2−4−6

10

8

6

4

2

Figure 3.3. The plots show the estimates for ‖B−1‖−1 given by (3.70), (3.71) and (3.72 a)–(3.72 c) in
lemma 3.34 for ω = 0.75 and the wave number k = 8. Recall that we have |λ| ≥ −|am| + ‖B−1‖−1 for the
eigenvalues λ of the angular operator such that a larger bound for ‖B−1‖−1 provides a stronger result for λ.
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3.3.4 Lower bounds for the modulus of the eigenvalues of A

With the help of lemma 3.34 we can improve the lower bound of lemma 3.31 for the absolute value
of the eigenvalues λ of the angular operator A.

Theorem 3.35. For every eigenvalue λ of the angular operator A we have

|λ| ≥ λG := −|am|+ δ̃(ω), (3.75)

with

δ̃(ω) :=


2C(ω)−1 e−π|aων−(k+ 1

2
)| ∣∣aων − (k + 1

2)
∣∣ if sign(k + 1

2)(k + 1
2 − aων) < 0,

C(ω)−1 |aων − (k + 1
2)| if sign(k + 1

2)(k + 1
2 − aων) > 0,

C(ω)−1
√

2
π if k + 1

2 − aων = 0.

Proof. The bound (3.75) follows from |λ| ≥ −|am|+ ‖B−1‖−1 and ‖B−1‖ ≤ δ̃(k, ω)−1 by (3.72 a)–
(3.72 c).

If we compare the result of this theorem with estimate (3.63) in lemma 3.31, we find that the
estimate did not improve in the case sign(k+ 1

2)(k+ 1
2 − aων) < 0, where the estimate was already

of order k. In the case sign(k+ 1
2)(k+ 1

2 − aων) > 0, however, iteration has improved the estimate
insofar as now the bound is also of order k instead of only of order

√
k.

Remark 3.36. Of course, also estimates (3.70) or (3.71) can be used in theorem 3.35. Then we
obtain the following lower bounds for the eigenvalues λ:

|λ| ≥ λ
[lin]
G := − |am|+ 1

π Γ(k,ω) (|k + 1
2 |+ 1), (3.76)

|λ| ≥ λ
[exp]
G := − |am|+ 1

Γ(k,ω) |k + 1
2 |. (3.77)

The superscripts [lin] and [exp] refer to the fact that we have used a quotient of linear and expo-
nential functions, respectively, to estimate the quotient of tangent functions involved in the formula
for ‖B−1‖. ♦

Remark 3.37. Even in the case a = 0, theorem 3.35 does not provide sharp estimates. In fact,
inequality (3.75) becomes

|λ| ≥
∣∣∣k +

1
2

∣∣∣,
whereas the exact formula in lemma 3.3 shows that the eigenvalues with smallest modulus are λ±1

with

|λ±1| =
∣∣∣k +

1
2

∣∣∣+ 1
2
. ♦

In lemma 3.16 we showed that λ is an eigenvalue of A if and only if 0 is an eigenvalue of the
operator Tj(λ), j = 1, 2, i.e., if there is a function f ∈ D(B), such that f 6= 0 and T1(λ)f = 0, or
equivalently

f = B−1(−D − λ)B∗−1(D − λ)f. (3.78)

In the previous section we have used this equation to obtain an estimate for a lower bound of the
absolute values of all eigenvalues of A by simply taking the norm on both sides and solving for |λ|,
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see corollary 3.18. The norms of B−1 and B∗−1 have then been estimated by iterating B∗−1B−1.
Instead of applying the iteration process to B∗−1B−1 only, we can also iterate equation (3.78), thus
we obtain

f =
(
−B−1(D + λ)B∗−1(D − λ)

)n
f, n ∈ N. (3.79)

In general we cannot improve the lower bounds for the modulus of the eigenvalues of A by iter-
ating the complete equation (3.78) for f instead of iterating the operators B∗−1B−1 only. Under
additional assumptions on the physical parameters a, m, ω and k, however, the next lemma shows
that (3.78) implies that certain intervals are free of spectrum of A.

Lemma 3.38. Assume that the parameters k, a,m, ω are such that |am| < ‖B−1‖−1. Then we
have (

−‖B−1‖−1, −|am|
)
∩ σ(A) = ∅, if (k + 1

2) am ≥ 0,(
|am|, ‖B−1‖−1

)
∩ σ(A) = ∅, if (k + 1

2) am ≤ 0.

Proof. We assume k ≥ 0; the case k ≤ −1 can be treated analogously. If λ is an eigenvalue of the
angular operator A, then 0 is an eigenvalue of the operator T2(λ) (cf. lemma 3.16). If |λ| ≥ |am|,
then, for every eigenfunction h ∈ L 2((0, π),dϑ) of T2(λ) with eigenvalue 0, it follows

|h(ϑ)| = |B∗−1(D − λ)B−1(−D − λ)h(ϑ)| (3.80)

=

∣∣∣∣∣
π∫
ϑ

t∫
0

ϕ(t)ψ(s)
ϕ(ϑ)ψ(t)

(am cos t− λ)(−am cos s− λ)h(s) dsdt

∣∣∣∣∣
≤

π∫
ϑ

t∫
0

ϕ(t)ψ(s)
ϕ(ϑ)ψ(t)

(−λ+ am cos t)(−λ− am cos s)|h(s)|dsdt. (3.81)

The monotonicity of the cosine implies −1 ≤ cos t ≤ cos s ≤ 1 for 0 ≤ s ≤ t ≤ π. Thus, if
either am ≥ 0 and λ ≤ −am or am ≤ 0 and λ ≥ am, it follows that

(−λ+ am cos t)(−λ− am cos s) ≤ (−λ+ am cos s)(−λ− am cos s) = λ2 − a2m2 cos2 s ≤ λ2.

Hence (3.81) can be further estimated by

|h(ϑ)| ≤ λ2

π∫
ϑ

t∫
0

ϕ(t)ψ(s)
ϕ(ϑ)ψ(t)

|h(s)| dsdt = λ2B∗−1B−1 |h|(ϑ).

Now, if we take the L 2-norm on both sides, we obtain

‖h‖2 ≤ λ2‖B∗−1B−1‖ ‖h‖2 = λ2‖B−1‖2 ‖h‖2.

Solving for λ shows the assertion.

Estimates for ‖B−1‖−1 are given in lemma 3.34.



Chapter 4

A variational principle and estimates
for the higher eigenvalues of A

In the first section of this chapter an abstract variational principle for a class of selfadjoint block
operator matrices

T =
(
T11 T12

T ∗12 T22

)
on the product Hilbert space H1 ⊕H2 is presented. An application of this variational principle to
the angular operator A leads to upper and lower bounds for its eigenvalues with modulus greater
than |am|.
Note that the classical variational principle applies only to eigenvalues of semibounded operators
below or above its essential spectrum, see, e.g., [RS78]. The angular operator A, however, is not
semibounded, but the variational principle proved by Eschwé and Langer in [EL04] applies to
the Schur complements associated with A, see section 3.3.1 and the subsequent definition 4.15.
Here we follow the approach of Langer, Langer and Tretter in [LLT02] where the authors have
studied block operator matrices with bounded off-diagonal entries but unbounded diagonal entries.
For the angular operator, however, we have to consider the so-called off-diagonal dominant case,
i.e., T12 is unbounded and dominates the diagonal entries in the sense that D(T12) ⊆ D(T22) and
D(T ∗12) ⊆ D(T11). For bounded diagonal entries this situation has been investigated simultaneously
to this work in [KLT04]. Under the assumptions that T12T

∗
12 and T ∗12T12 are strictly positive,

that the spectrum of T0 =
(

0 T12
T ∗12 0

)
consist of discrete eigenvalues only and under some additional

assumptions on T11 and T22, the explicit formula for the eigenvalues of T provided by the variational
principle gives rise to upper and lower bounds for the eigenvalues of T in terms of the eigenvalues
of T0.
In section 4.2 these results are applied to the angular operator A. Since in this special case the
operators on the diagonal are bounded, also standard perturbation theory is applicable and yields
upper and lower bounds for the eigenvalues of A. These bounds are compared with the estimate
resulting from the variational principle.

If not explicitly stated otherwise, we always assume that all Hilbert spaces are infinite dimensional
and separable.

4.1 A variational principle for block operator matrices

In this section we prove a variational principle for the eigenvalues of a certain class of unbounded
block operator matrices T =

(
T11 T12
T21 T22

)
on a Hilbert space H = H1 ⊕ H2. In section 3.3.1 we
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already gave the formal definition of the Schur complement of a block operator matrix. Recall that
for λ ∈ ρ(T22) and λ ∈ ρ(T11), respectively, they are defined by

S1(λ) := T11 − λ− T12(T22 − λ)−1T21 and S2(λ) := T22 − λ− T21(T11 − λ)−1T12. (4.1)

Since in the following we do not assume D(T11) ⊆ D(T21) or D(T22) ⊆ D(T12), the domains of the
Schur complements S1(λ) and S2(λ) have to be chosen with some care. In fact, in the case of the
angular operator A, the operators on the diagonal are bounded, whereas the off-diagonal elements
are unbounded and hence are not everywhere defined.
In the following, H1 and H2 are Hilbert spaces; by H = H1 ⊕ H2 we denote the product Hilbert
space equipped with the usual scalar product induced by H1 and H2.

Throughout this section we assume that the following conditions on the entries Tij of the block
operator matrix T , acting in the Hilbert space H = H1 ⊕H2, hold:

(B1) T12 is a closed densely defined operator from H2 to H1 with T ∗12 = T21;

(A1) D(T ∗12) ⊆ D(T11) and T11 is symmetric in H1 and semibounded from below, i.e., there
is a constant c1 ∈ R such that

(x, T11x) ≥ c1‖x‖2, x ∈ D(T11);

(D1) D(T12) ⊆ D(T22) and T22 is symmetric in H2 and semibounded from above, i.e., there
is a constant c2 ∈ R such that

(x, T22x) ≤ c2‖x‖2, x ∈ D(T22);

furthermore, T22 is closed and (c2,∞) ⊆ ρ(T22).

We always assume that the block operator matrix T is given by

(T 1) T =
(
T11 T12

T ∗12 T22

)
, D(T ) = D(T ∗12)⊕D(T12).

Remark 4.1. (i) The block operator matrix T depends only on the restriction T̃11 = T11|D(T ∗12)

of T11. Hence, if T11 is not symmetric because its domain is too large, we can replace it
by T̃11. It is easy to see that the restriction T̃11 is symmetric if T is symmetric because
(y, T̃11x) = (( y0 ) , T ( x0 )) for all x, y ∈ D(T̃11) = D(T ∗12); thus the symmetry of T implies
D(T̃11) ⊆ D(T̃ ∗11).

(ii) Since T11 is closable by assumption, the condition concerning its domain implies (see [Kat80,
chap. IV, remark 1.5]) that T11 is T21-bounded, i.e., that there are positive numbers α and
α21 such that

‖T11x‖ ≤ α ‖x‖+ α21 ‖T21x‖, x ∈ D(T21).

(iii) Condition (D1) implies that T22 is even selfadjoint because the defect index of the closed
operator T22 is constant on the connected set C \ W (T ). Now, ρ(T ) ∩ C \ W (T ) being
nonempty implies that T22 has zero defect, hence it is essentially selfadjoint. Since T22 is
already closed, its selfadjointness is proved.

Observe that the above conditions do not imply that T is closed.

In this section we study the Schur complement S1 and the spectrum of T in some right half plane.
The following straightforward definition of the Schur complement can be regarded as a minimal
realisation of the Schur complement of the block operator matrix T .
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Definition 4.2. Assume that conditions (B1), (A1), (D1) and (T 1) hold. Then for all λ > c2 the
operator

D(S[min]

1 (λ)) := {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12x ∈ D(T12)},

S[min]

1 (λ) := T11 − λ− T12(T22 − λ)−1T ∗12,
(4.2)

on the Hilbert space H1 is well defined. We call the family (S[min]

1 (λ))λ>c2 the minimal Schur
complement of T .

Proposition 4.3. Assume that conditions (B1), (A1), (D1) and (T 1) hold. Then for all λ > c2
the operator

D(S[min]

1 (λ)) = {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12x ∈ D(T12)},

S[min]

1 (λ) = T11 − λ− T12(T22 − λ)−1T ∗12

is bounded from below. If in addition one of the conditions

(D2.a) T22 is bounded;

(D2.b) the domain of T12 is invariant under (T22 − λ)−1, i.e., (T22 − λ)−1(D(T12)) ⊆ D(T12)
for all λ > c2;

holds, then S[min]

1 (λ) is also symmetric, and therefore densely defined and closable.

Proof. Because of the inclusion D(T ∗12) ⊆ D(T11), the Schur complement is well defined. To show
that S[min]

1 (λ) is semibounded, we use that (λ−T22)−1 is a positive operator for λ > c2; indeed, for
all x ∈ D(S[min]

1 (λ)) we have

(x, S[min]

1 (λ)x) = (x, (T11 − λ)x)− (x, T12(T22 − λ)−1T ∗12x)

= (x, (T11 − λ)x) + (T ∗12x, (λ− T22)−1T ∗12x) ≥ (c1 − λ)‖x‖2.

In particular, the scalar product on the left hand side is real, hence S[min]

1 (λ) is formally symmetric.
It remains to be shown that D(S[min]

1 (λ)) is dense in H1. First, suppose that (D2.a) holds. By
assumption, the operator (λ− T22)−1 is selfadjoint, bounded and positive for fixed λ > c2. Hence
there exists a positive square root (λ − T22)−

1
2 which is also bounded and selfadjoint. Therefore

((λ−T22)−
1
2T ∗12)

∗ = T12(λ−T22)−
1
2 holds. Condition (D2.a) implies that the operator (λ−T22)−1T ∗12

is closed, hence by the theorem of von Neumann (see, for instance, [Kat80, chap. V, theorem 3.24])
the operator ((λ− T22)−

1
2T ∗12)

∗((λ− T22)−
1
2T ∗12) = −T12(T22 − λ)−1T ∗12 with domain

{x ∈ D((λ− T22)−
1
2T ∗12) : (λ− T22)−

1
2T ∗12x ∈ D(T12(λ− T22)−

1
2 )}

= {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12 x ∈ D(T12)} = D(S[min]

1 (λ))

is selfadjoint and its domain is a core of (T22 − λ)−
1
2T ∗12; in particular, its domain is dense in H1.

Finally, we assume that (D2.b) holds. It follows that D(T12(T22 − λ)−1T ∗12) ⊇ D(T12T
∗
12). Again

by von Neumann’s theorem, the operator T12T
∗
12 is densely defined, hence D(S[min]

1 (λ)) is dense in
H1.

Remark 4.4. In fact, in condition (D2.b) in the previous lemma, it suffices to assume the inclusion
(T22 − λ)−1(rg(T ∗12) ∩ D(T12)) ⊆ D(T12), λ > c2 only.
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In proposition 4.16, we use sesquilinear forms to realise the Schur complement of T as a family of
selfadjoint operators (S1(λ))λ>c2 such that S[min]

1 (λ) ⊆ S1(λ), λ > c2.
Corollary 4.9 shows that the spectral properties of the block operator matrix T and its Schur
complement S1 are connected.
The following proposition holds under more general conditions than we actually need.

Proposition 4.5. For Hilbert spaces H1 and H2, we consider linear operators Tij(Hj → Hi),

i, j = 1, 2, with D(T21) ⊆ D(T11) and D(T12) ⊆ D(T22). Let T =
(
T11 T12
T21 T22

)
be the block operator

matrix with domain D(T ) = D(T21)⊕D(T12) in the Hilbert space H1⊕H2. If T22 is bijective, then
the operator

S := T11 − T12T
−1
22 T21, D(S) := {x ∈ D(T21) : T−1

22 T21x ∈ D(T12)}

is well defined and the following holds:

(i) T is injective ⇐⇒ S is injective.

(ii) If additionally T21 is surjective, then rg(S)⊕ {0} = rg(T ) ∩ (H1 ⊕ {0}) and

T is surjective ⇐⇒ S is surjective.

Proof. (i) First assume that T is not injective. Then there are f ∈ D(T21), g ∈ D(T12) such that

T11f + T12g = 0, T21f + T22g = 0 and
(
f
g

)
6= 0.

From the second equality it follows T−1
22 T21f = −g ∈ D(T12). Consequently, f lies in D(S) and

f 6= 0. Inserting the expression for g into the first equality gives Sf = 0, hence S is not injective.
Now assume that S is not injective and fix an element f 6= 0 in its kernel. For g := −T−1

22 T21f it
follows that

0 = Sf = T11f − T12T
−1
22 T21f = T11f + T12g,

0 = g + T−1
22 T21f = T−1

22 (T22g + T21f).

Since T−1
22 is injective, the above equations show 0 6=

(
f
g

)
∈ ker(T ).

(ii) For every f ∈ D(S), it follows that g := −T−1
22 T21f lies in D(T12). Consequently,

(
f
g

)
∈ D(T )

and

T
(
f
g

)
=
(
T11f + T12g
T21f + T22g

)
=
(
T11f − T12T

−1
22 T21f

0

)
=
(
Sf
0

)
which implies that rg(S) ⊕ {0} ⊆ rg(T ) ∩ (H1 ⊕ {0}). Conversely, let

(
f
g

)
∈ D(T ) such that

T
(
f
g

)
=
( x

0

)
for some x ∈ H1. From T21f + T22g = 0 it follows that g = −T−1

22 T21f ∈ D(T12).
Thus we have f ∈ D(S) and

x = T11f + T12g = T11f − T12T
−1
22 T21f = Sf,

implying rg(T ) ∩ (H1 ⊕ {0}) ⊆ rg(S)⊕ {0}. In particular, the surjectivity of T implies that of S.
Finally, assume that S is surjective and fix ( xy ) ∈ H1 ⊕ H2. Since rg(T21) = H2 by assumption,
there is an f ′ ∈ D(T21) ⊆ D(T11) such that T21f

′ = y. Therefore,
(
f ′

0

)
lies in the domain of T and

we have T
(
f ′

0

)
=
(
T11f ′
y

)
. Since we have already shown that rg(S) ⊕ {0} = rg(T ) ∩ (H1 ⊕ {0}),

the surjectivity of S implies H1 ⊕ {0} = rg(T ) ∩ (H1 ⊕ {0}) ⊆ rg(T ), hence we finally have(
x
y

)
= T

(
f ′

0

)
+
(
x−T11f ′

0

)
∈ rg T because both terms on the right hand side lie in rg(T ).
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Remark 4.6. In fact, in proposition 4.5 we have shown that

ker(T ) =
{(

f

−T−1
22 T21f

)
: f ∈ kerS

}
∼= ker(S). ♦

Remark 4.7. If T12 is bounded, then we need not assume that T21 is surjective in order to prove
the surjectivity of T in assertion (ii) of proposition 4.5. For any given ( xy ) ∈ H1 ⊕ H2, the
element x− T12T

−1
22 y is well defined and the surjectivity of S implies that there is an f such that

Sf = x − T12T
−1
22 y. Since T22 is bijective, we can define g := T−1

22 (y − T21f). An easy calculation
shows T

(
f
g

)
=
(
x
y

)
and the surjectivity of T is proved. ♦

The spectrum and resolvent set of an operator valued function are defined as follows.

Definition 4.8. Let S = (S(z))z be a family of closed operators, where z varies in some set U ⊆ C.
Then the spectrum, point spectrum and resolvent set of S are defined as

σ(S) := {z ∈ U : 0 ∈ σ(S(z))},
σp(S) := {z ∈ U : 0 ∈ σp(S(z))},
ρ(S) := {z ∈ U : 0 ∈ ρ(S(z))}.

Analogous definitions apply to the other parts of the spectrum of S, e.g., the essential spectrum.

Recall that for a linear operator S the essential spectrum and discrete spectrum are defined by

σess(S) := {λ ∈ C : dim(ker(S − λ)) = ∞ or codim(rg(S − λ)) = ∞}
σd(S) := {λ ∈ C : λ is an isolated eigenvalue of S with finite multipilcity}

For a selfadjoint operator S we have σd(S) = σ(S) \ σess(S).

Corollary 4.9. In addition to the assumptions in proposition 4.3, suppose that the operator T is
selfadjoint and that T ∗12 is surjective. Furthermore, assume that the operator function S[min]

1 defined
in (4.2) is holomorphic and that each S[min]

1 (λ) is selfadjoint. Then we have

σp(T ) ∩ (c2,∞) = σp(S
[min]

1 ), (4.3)

σess(T ) ∩ (c2,∞) = σess(S
[min]

1 ). (4.4)

Proof. Proposition 4.5 applied to T − λ shows that λ ∈ σ(T )∩ (c2,∞) if and only if λ ∈ σ(S [min]

1 ).
Moreover, it follows from remark 4.6 that λ ∈ σp(S

[min]

1 ) if and only if λ ∈ σp(T ) ∩ (c2,∞)
with dim(ker(T − λ)) = ∞ if and only if dim(ker(S[min]

1 (λ))) = ∞. Hence, (4.3) is proved. To
show (4.4) it suffices to show σd(T ) ∩ (c2,∞) = σd(S

[min]

1 ). Let λ ∈ σd(T ) ∩ (c2,∞). Then we
have dim rg(S[min]

1 (λ))⊥ = dim ker(S[min]

1 (λ)) = dim ker(T −λ) <∞. Further, the range of T −λ is
closed because λ ∈ σd(T ). So proposition 4.5 shows that rg(S [min]

1 (λ)) = rg(T )∩ (H1⊕{0}) is also
closed. Hence it follows 0 ∈ σd(S [min]

1 (λ)) and consequently λ ∈ σd(S[min]

1 ).
Let λ ∈ σd(S

[min]

1 ). Then λ ∈ σp(T ) with dim ker(T − λ) = dim ker(S1(λ)) < ∞ and we have to
show that λ is no accumulation point of σ(T ). Since 0 ∈ σd(S

[min]

1 (λ)) and S[min]

1 is holomorphic,
there are δ > 0, ε > 0 and holomorphic functions µj : (λ − δ, λ + δ) → R with µj(λ) = 0 for
j = 1, . . . , dim ker(S1(λ)), such that for all λ̃ ∈ (λ−ε, λ+ε) we have that µ ∈ σ(S[min]

1 (λ̃))∩(−ε, ε)
if and only if µ is an eigenvalue of S[min]

1 (λ̃) with finite multiplicity and µ = µj(λ̃) for some j
(see [Kat80, chap. IV, §3 and chap. VII]). Furthermore, for j = 1, . . . , dim ker(S[min]

1 (λ)) we have

d
dλ
µj(λ) =

d
dλ

(xj , S
[min]

1 (λ)xj) = −‖xj‖2 − ‖(T22 − λ)−1T ∗12 xj‖2
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for normalised eigenvectors xj of S[min]

1 (λ) with eigenvalue 0, hence the functions µj are not constant
in a neighbourhood of λ. Thus there exists a nonempty interval (λ − δ̃, λ + δ̃) such that 0 ∈
ρ(S[min]

1 (λ̃)) for all λ̃ ∈ (λ − δ̃, λ + δ̃) \ {λ}. Consequently, σ(T ) ∩ (λ − δ̃, λ + δ̃) = {λ} which
completes the proof.

In corollary 4.9 we have seen that under certain conditions the spectrum of T in the interval (c2,∞)
and that of the operator family S [min]

1 coincide. One of the main assumptions was the holomorphy
of S[min]

1 . In the following we realise the Schur complement as a holomorphic selfadjoint operator
function S1 via sesquilinear forms and establish criteria that guarantee S[min]

1 (λ) = S1(λ).

For convenience, we repeat some well known definitions and facts concerning sesquilinear forms on
Hilbert spaces, see, e.g., [Kat80, chap. VI]. A mapping

t : D(t)×D(t) −→ C, (u, v) 7→ t[u, v]

is called a sesquilinear form on a complex Hilbert space H with domain D(t) if D(t) is a linear
manifold in H and if

t[αu, βv + w] = α (β t[u, v] + t[u, w]), α, β ∈ C, u, v, w ∈ D(t).

The simplest example of a sesquilinear form is the scalar product on H (observe that we use the
convention (ix, y) = −i(x, y)). We often use the abbreviation

t[u] := t[u, u], u ∈ D(t).

If for forms s and t on H the inclusion of domains D(t) ⊆ D(s) and t[u, v] = s[u, v] for all u, v ∈ D(t)
hold, then t is called a restriction of s and s is called an extension of t. We denote this relation by
t ⊆ s. A form t is called symmetric if

t[u, v] = t[v, u], u, v ∈ D(t).

The numerical range of t is the set

W (t) := {t[u] : u ∈ D(t), ‖u‖ = 1}.

Obviously, the numerical range of a symmetric form is a subset of R. A symmetric form is said to
be bounded from below if there exists a γ ∈ R such that

t[u] ≥ γ ‖u‖2, u ∈ D(t).

If the numerical range of a sesquilinear form is contained in a sector {z ∈ C : |arg(z − γ)| ≤ ϑ}
for some γ ∈ R and 0 ≤ ϑ < π

2 , then the form is called sectorial. Note that we use the convention
arg(z) ∈ (−π, π] for z ∈ C.
A sequence (un)n∈N ⊆ D(t) is called t-convergent if it converges to some u ∈ H and if t[un − um]
tends to zero for n,m→∞. If t is sectorial and D(t) is complete with respect to t-convergence, we
call the form t closed. In other words, t is closed if for every t-convergent sequence (un)n∈N ⊆ D(t)
also u := lim

n→∞
un is in the domain of t and t[u− un] → 0 for n→∞.

The form t is called closable if it admits a closed extension s. If t[un] → 0 for every t-convergent
sequence (un)n∈N ⊆ D(t) with un → 0, then t is closable (see [Kat80, chap. VI, theorem 1.17]).
If t is closable, then there is a unique smallest closed extension t̃, which is called the closure of t.
Its domain consists of all u ∈ H such that there is a t-convergent sequence (un)n∈N ⊆ D(t) with
un → u. It is well known that for a closable form the numerical range is dense in the numerical
range of its closure.
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By the first representation theorem (see [Kat80, chap. VI, theorem 2.1]), for every densely defined,
closed, sectorial form t in H there is a uniquely defined m-sectorial operator T with D(T ) ⊆ D(t)
and t[u, v] = (u, Tv) for all u ∈ D(t) and v ∈ D(T ). T is called the operator associated with t. Recall
that an operator T is said to be m-sectorial if its numerical range is contained in a sector in the right
half plane and if the open left half plane is in the resolvent set of T with ‖(T − λ)−1‖ ≤ |Re(λ)|−1

for all λ ∈ C with Re(λ) < 0.

In this section we are also dealing with families of sesquilinear forms and their associated operators.

Definition 4.10. Let U be a domain in C and H be a Hilbert space. A family (t(ζ))ζ∈U of
sesquilinear forms is called a holomorphic family of type (a) if

(i) D(t(ζ)) = D is independent of ζ and dense in H and each t(ζ) is sectorial and closed,

(ii) for each fixed u ∈ D the function ζ 7→ t(ζ)[u] is holomorphic in U .

For each ζ ∈ U let T (ζ) be them-sectorial operator associated with t(ζ). Then the family (T (ζ))ζ∈U
is called a holomorphic family of type (B).

It can be shown that a family of type (B) is holomorphic ([Kat80, chap. VII, theorem 4.2]).

For λ > c2, we define

D(t11(λ)) := D(T11), t11(λ)[u, v] :=
(
u, (T11 − λ)v

)
, (4.5)

D(t12(λ)) := D(T ∗12), t12(λ)[u, v] :=
(
T ∗12u, (T22 − λ)−1T ∗12v

)
. (4.6)

Proposition 4.11. Assume that the conditions (B1), (A1), (D1) and (T 1) hold. Further, let either
(D2.a) or (D2.b) be fulfilled. Then the sesquilinear form

D(s[min]

1 (λ)) := D(T ∗12), s[min]

1 (λ)[u, v] :=
(
u, (T11 − λ)v

)
−
(
T ∗12u, (T22 − λ)−1T ∗12v

)
in H1 is symmetric, semibounded from below and closable.

Proof. The symmetry and boundedness from below can be shown as in proposition 4.3. Since the
operator T11−λ is symmetric and bounded from below, it is form-closable, i.e., the symmetric form
t11(λ) defined in (4.5) is closable. Because the sum of closable forms is again closable (see [Kat80,
chap.VI, theorem 1.31]), it remains to be shown that the form t12(λ) is also closable. Consider
the restriction t[min]

12 (λ) of t12(λ) with D(t[min]
12 (λ)) = D(S[min]

1 (λ)). We showed in the proof of
proposition 4.3 that the operator −T12(T22 − λ)−1T ∗12 with domain D(S[min]

1 (λ)) is symmetric and
bounded from below. Hence the form t[min]

12 (λ) associated with it is closable; therefore it suffices to
show that t12(λ) ⊆ t̃[min]

12 (λ) where t̃[min]
12 (λ) is the closure of t[min]

12 (λ).
To this end we fix x ∈ D(T ∗12). If we assume that (D2.a) holds, then D(S[min]

1 (λ)) is a core of
(λ− T22)−

1
2T ∗12 (see proof of proposition 4.3). Consequently, there exists a sequence

(xn)n∈N ⊆ D(S[min]

1 (λ)) ⊆ D((λ− T22)−
1
2T ∗12) = D(T ∗12)

with xn → x and (T22 − λ)−
1
2T ∗12xn → (T22 − λ)−

1
2T ∗12x for n→∞. Then it follows that

t[min]
12 (λ)[xn − xm] =

(
T ∗12(xn − xm), (λ− T22)−1T ∗12(xn − xm)

)
=
∥∥(λ− T22)−

1
2T ∗12(xn − xm)

∥∥2 −→ 0, n, m→∞.

Hence x ∈ t̃[min]
12 (λ) which implies t12(λ) ⊆ t̃[min]

12 (λ).
Finally, we assume that condition (D2.b) holds. Since D(T12T

∗
12) is a core of T ∗12, there is a sequence
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(xn)n∈N ⊆ D(T12T
∗
12) such that xn → x and T ∗12xn → T ∗12x for n → ∞. By the Cauchy-Schwarz

inequality it follows that

t[min]
12 (λ)[xn − xm] = (T ∗12(xn − xm), (λ− T22)−1T ∗12(xn − xm))

≤ ‖(λ− T22)−1‖ ‖T ∗12(xn − xm)‖2 −→ 0, n, m→∞.

This shows x ∈ D(̃t[min]
12 (λ)), thus t12(λ) ⊆ t̃[min]

12 (λ).
Hence both (D2.a) and (D2.b) imply t[min]

12 (λ) ⊆ t12(λ) ⊆ t̃[min]
12 (λ), and therefore t12(λ) is closable.

In the following, we set

s1(λ) := s̃[min]

1 (λ), λ ∈ (c2,∞),

where s̃[min]

1 (λ) is the closure of s[min]

1 (λ). The next lemma gives conditions which ensure that
s[min]

1 (λ) is already closed. The proof is essentially an application of a perturbation result for closed
sesquilinear forms.

Lemma 4.12. Assume that the conditions (B1), (A1), (D1), (D2.a) and (T 1) hold. Then s[min]

1 (λ)
is closed, i.e., s[min]

1 (λ) = s1(λ) for all λ ∈ (c2,∞).

Proof. Since T22 is bounded by assumption, it follows that also (T22−λ)
1
2 is bounded and therefore

the operator (λ− T22)−
1
2T ∗12 is closed. For every t12(λ)-convergent sequence (xn)n∈N ⊆ D(T ∗12) we

have

‖(T22 − λ)−
1
2T ∗12(xn − xm)‖ = t12(λ)[xn − xm] → 0, n, m→∞.

Since (T22 − λ)−
1
2T ∗12 is closed, it follows that x := lim

n→∞
xn ∈ D((T22 − λ)−

1
2T ∗12) = D(T ∗12).

This shows that t12(λ) is closed. The form t11(λ) is closable, see proof of proposition 4.11; let
t̃11(λ) denote its closure. Then it follows that the form s1(λ) = t̃11(λ) + t12(λ) with domain
D(̃t11(λ)) ∩ D(t12(λ)) is also closed. Since D(t12(λ)) ⊆ D(t11(λ)) ⊆ D(̃t11(λ)), the form s1(λ) with
domain D(t12(λ)) = D(T ∗12) is closed.

Remark 4.13. In lemma 4.12, condition (D2.a) cannot be replaced by (D2.b). Consider, for
example, the unbounded selfadjoint multiplication operators T12 and T22 on H := L 2((0, 1),dx)
with domains D(T12) = D(T22) = {f ∈ H : x 7→ 1

x f(x) ∈ H}, defined by

(T12f)(x) =
1
x
f(x), (T22f)(x) = −1

x
f(x), x ∈ (0, 1).

Then the block operator matrix T :=
(

0 T12
T12 T22

)
with domain D(T ) = D(T12) ⊕ D(T12) satis-

fies all assumptions of lemma 4.12 apart from (D2.a); in particular, T22 ≤ c1 := 0. Further,
condition (D2.b) is fulfilled because for every λ ∈ (0,∞) and every f ∈ D(T12) the function
(0, 1) → C, x 7→ (T22 − λ)−1f(x) = − x

1+λx f(x) lies again in D(T12). Hence, by proposition 4.11,
the form t12(λ) defined in (4.6) is closable for all λ ∈ (0, ∞), but it is not closed. To see this, fix
ε ∈ (0, 1

2) and define the sequence (fn)n∈N ⊆ H by

fn(x) =

{
x

1
2
−ε if x ∈ ( 1

n , 1)
0 if x ∈ (0, 1

n ].
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Obviously, ‖fn−f‖2 → 0 for n→∞ with f(x) = x
1
2
−ε, x ∈ (0, 1). First we show that the sequence

is also t12(λ)-convergent. To this end, observe that for arbitrary λ > 0 we have

|t12(λ)[fn − fm]| =
∣∣ (T12(fn − fm), (T22 − λ)−1T12(fn − fm)

) ∣∣
=
∣∣∣∣

1
n∫

1
m

x−2(−x−1 − λ)−1f(x)2 dx
∣∣∣∣ =

∣∣∣∣
1
n∫

1
m

x−2ε(1 + λx)−1 dx
∣∣∣∣

≤
∣∣∣∣

1
n∫

1
m

x−2ε dx
∣∣∣∣ =

1
1− 2ε

∣∣∣m2ε−1 − n2ε−1
∣∣∣ −→ 0

for n, m → ∞. Hence f lies in the domain of the closure t̃12(λ) of t12(λ). On the other hand,
because the integral

1∫
0

(1
x
f(x)

)2
dx =

1∫
0

x−1−2ε dx = − 1
2ε

lim
δ→ 0

(1− δ−2ε)

is not finite, it follows that f /∈ D(T12). Hence we have proved D(̃t12(λ)) 6= D(T12). ♦

In proposition 4.11 we showed that t12(λ) is closable if one of the conditions (D2.a) or (D2.b) holds.
In particular, if we have (D2.a), then the form t12(λ) is closed. Lemma 4.12 shows that also s[min]

1 (λ)
is closed and that its domain does not depend on λ. In this case we set

D(s1) := D(s[min]

1 (λ)) = D(T ∗12), λ ∈ (c2,∞).

Although under condition (D2.b) the domain of the closure does not necessarily coincide with
D(T ∗12), the following lemma shows that also in this case the domain of the closure does not depend
on λ.

Lemma 4.14. Assume that the conditions (B1), (A1), (D1) and (T 1) are satisfied. Furthermore,
suppose that there exists a λ ∈ (c2,∞) such that the form t12(λ) defined in (4.6) is closable with
closure t̃12(λ). Then the form t12(µ) is closable for all µ ∈ (c2, ∞) and the domain of its closure
t̃12(µ) does not depend on µ.

Proof. Let λ1, λ2 ∈ (c2,∞). Using the resolvent equation

(T22 − λ2)−1 − (T22 − λ1)−1 = (λ2 − λ1)(λ1 − T22)−1(λ2 − T22)−1,

we find for all x ∈ D(T ∗12)

|t12(λ1)[x]− t12(λ2)[x]| =
∣∣ (T ∗12x, (−(T22 − λ1)−1 + (T22 − λ2)−1)T ∗12x

) ∣∣
= |λ2 − λ1|

∣∣ ((λ1 − T22)−
1
2T ∗12x, (λ1 − T22)−

1
2 (λ2 − T22)−1T ∗12x

) ∣∣
≤ |λ2 − λ1|

∥∥ (λ1 − T22)−
1
2T ∗12x

∥∥ ∥∥ (λ2 − T22)−1(λ1 − T22)−
1
2T ∗12x

∥∥
≤ |λ2 − λ1|

∥∥ (λ2 − T22)−1
∥∥ ∥∥ (λ1 − T22)−

1
2T ∗12x

∥∥2

= |λ2 − λ1|
∥∥ (λ2 − T22)−1

∥∥ t12(λ1)[x].

Now let λ ∈ (c2,∞) such that t12(λ) is closable and fix an arbitrary µ ∈ (c2,∞). We have to
show that for every t12(µ)-convergent sequence (xn)n∈N ⊆ D(t12(µ)) = D(T ∗12) with xn → 0 for
n → ∞ also t12(µ)[xn] tends to zero. Applying the above inequality with x = xn − xm to λ1 = λ
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and λ2 = µ and to λ1 = µ and λ2 = λ we find that t12(µ)[xn − xm] tends to zero if and only
if t12(λ)[xn − xm] does. Hence every t12(µ)-convergent sequence is also t12(λ)-convergent. Since
t12(λ) is closable, it follows that t12(λ)[xn] converges to zero for n→∞. Application of the above
chain of inequalities to xn shows that also t12(µ)[xn] → 0 for n → ∞ and the closability of t12(µ)
is proved. To show that the domain of the closure of t12(µ) is independent of µ, it suffices to prove
the inclusion D(̃t12(µ)) ⊆ D(̃t12(λ)). For x ∈ D(̃t12(µ)) we chose a t12(µ)-convergent sequence
(xn)n∈N with xn → x. As above, it follows that the sequence is also t12(λ)-convergent, hence the
closedness of t̃12(λ) implies x ∈ D(̃t12(λ)). In the same way we can show the converse inclusion
D(̃t12(λ)) ⊆ D(̃t12(µ)), hence the domain of the closure of the form t12(µ) is independent of µ.

If we assume that T11 is T12(T22 − λ)−1T ∗12-bounded with relative bound less than 1 (compare
proposition 4.16), then the above lemma also holds for the forms s1(λ) instead of t12(λ) because in
this case s1(λ) is closable (closed) if and only if t12(λ) is.

Assume now that s1(λ) is closed. By the first representation theorem [Kat80, chap. VI, theorem
2.1] there is a uniquely defined selfadjoint operator S1(λ) associated with the closed sesquilinear
form s1(λ) such that

D(S1(λ)) ⊆ D(s1) and (v, S1(λ)u) = s1(λ)[v, u], v ∈ D(s1), u ∈ D(S1(λ)).

Moreover, if for fixed u ∈ D(s1) the identity s1(λ)[v, u] = (v, w) holds for all v belonging to a core
of s1(λ), then u is in the domain of S1(λ) and S1(λ)u = w.

Definition 4.15. The operator family (S1(λ))λ>c2 is called the Schur complement of T .

Now we show that the operator S1(λ) is a selfadjoint extension of S[min]

1 (λ) defined in proposition 4.3.

Proposition 4.16. The inclusion S[min]

1 (λ) ⊆ S1(λ) holds, where S[min]

1 (λ) is the operator of propo-
sition 4.3 and S1(λ) is the operator associated to the form s1(λ). If in addition (D2.a) and

(A2) T11 is symmetric and T12(T22 − λ)−1T ∗12-bounded with relative bound less than 1, i.e.,
there are α > 0 and 1 > α̃ > 0 (which may depend on λ) such that

‖T11x‖ ≤ α ‖x‖+ α̃ ‖T12(T22 − λ)−1T ∗12x‖, x ∈ D(T12(T22 − λ)−1T ∗12),

then S1(λ) = S[min]

1 (λ); in particular, S [min]

1 (λ) is selfadjoint.

Proof. Fix some x ∈ D(S[min]

1 (λ)) = {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12x ∈ D(T12)}. Then we have for
all v ∈ D(s1)

s1[v, x] = (v, (T11 − λ)x)−
(
T ∗12v, (T22 − λ)−1T ∗12x

)
=
(
v, (T11 − λ− T12(T22 − λ)−1T ∗12)x

)
=
(
v, S[min]

1 (λ)x
)
,

hence x ∈ D(S1(λ)) and S1(λ)x = S [min]

1 (λ)x, therefore S[min]

1 (λ) ⊆ S1(λ) is proved.
If we assume that T22 is bounded and that T11 is bounded with respect to T12(T22−λ)−1T ∗12 with rel-
ative bound less than 1, then it follows from the Kato-Rellich theorem [Kat80, chap. V, theorem 4.3]
that S[min]

1 (λ) is selfadjoint since T12(T22−λ)−1T ∗12 is selfadjoint, see proof of proposition 4.3; hence
S[min]

1 (λ) = S1(λ) follows.

Recall that D(S[min]

1 (λ)) = D(T12(T22 − λ)−1T ∗12). It is not hard to see that under condition (A2)
the restriction s

[min,r]
1 (λ) of s[min]

1 (λ) to D(S[min]

1 (λ)) is also closable and that its closure is given by
s̃
[min,r]
1 (λ) = s1(λ). This follows because S1(λ) = S[min]

1 (λ) is the operator associated with the form
s1(λ). On the other hand, s

[min,r]
1 (λ) is the form associated with S [min]

1 (λ) and therefore closable.
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Since the correspondence between the set of all densely defined, closed sectorial forms and the set
of all m-sectorial operators is one-to-one, s1(λ) must be the closure of s

[min,r]
1 (λ).

The selfadjoint extension S1(λ) of S[min]

1 (λ) which we have constructed via the associated sesquilin-
ear form s1(λ) is the so-called Friedrichs extension of S [min]

1 (λ).

From now on we assume that the conditions (T 1), (B1), (A1), (A2), (D1) and (D2.a) hold. Then
the family S1 = (S1(λ))λ with λ ∈ (c2,∞) is a family of selfadjoint operators and its spectrum
coincides with that of T in (c2,∞), provided that T ∗12 is surjective. This means that the problem
of determining the spectrum of T in the interval (c2,∞) is equivalent to the spectral problem of
the operator family S1.
In the remaining part of this section we prove a minimax principle for the eigenvalues of the operator
family S1 based on a minimax principle in [EL04]. The main result of this paper is stated in the
appendix, theorem A.1. The next proposition summarises the assumptions on the block operator
matrix T and provides the main properties of S1.

Proposition 4.17. Consider the selfadjoint block operator matrix T =
(
T11 T12
T ∗12 T22

)
with domain

D(T ) = D(T ∗12)⊕D(T12) on the Hilbert space H1 ⊕H2. Assume that T ∗12 is surjective and that the
conditions (B1), (A1), (A2), (D1) and (D2.a) hold.

(i) For every λ ∈ (c2,∞), the form

D(s1(λ)) := D(T ∗12), s1(λ)[u, v] := (u, (T11 − λ)v)−
(
(T ∗12u, (T22 − λ)−1T ∗12v)

)
is closed and its domain is independent of λ. The operator S1(λ) associated with the form is
a well defined selfadjoint operator with S [min]

1 (λ) = S1(λ), λ ∈ (c2,∞).

Define the operator valued function

S1 : (c2,∞) −→ C (H1), λ 7→ S1(λ) (4.7)

and, for fixed x ∈ D(s1), the function

σx1 : (c2,∞) −→ R, σx1 (λ) = s1(λ)[x]. (4.8)

(ii) The operator valued function S1 : (c2,∞) → C (H) of (4.7) is continuous in the norm resolvent
topology, and for every x ∈ D(s1) the function σx1 : (c2,∞) → R of (4.8) is continuous.

(iii) For every x ∈ D(s1) \ {0} the function σx1 is decreasing and unbounded from below.

(iv) The equalities σess(S1) = σess(T ) ∩ (c2,∞) and σp(S1) = σp(T ) ∩ (c2,∞) hold.

Proof. (i) The assertions concerning s1(λ) have been shown in lemma 4.12 while the identity
S[min]

1 (λ) = S1(λ) was proved in proposition 4.16. In particular, the mapping S1 is well defined.

(ii) From (i) it follows that the family of sesquilinear forms (s1(λ))λ∈(c2,∞) is of type (a). Hence
S1 is a holomorphic family of type (B), which implies the holomorphy of S1 in the norm resolvent
topology. Obviously, for every x ∈ D(s1) the function σx1 is even smooth on (c2,∞).

(iii) For every x ∈ D(s1), x 6= 0, the function σx1 is monotonously decreasing because

d
dλ
σx1 (λ) =

d
dλ

s1(λ)[x] = −‖x‖2 − ‖(T22 − λ)−1T ∗12x‖2 ≤ −‖x‖2 < 0. (4.9)

(iv) This has been shown in corollary 4.9.
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Proposition 4.18. Suppose that in addition to the assumptions of proposition 4.17 there is a
constant b > 0 such that for all x ∈ D(T ∗12) the estimate

‖T ∗12x‖ ≥ b‖x‖ (4.10)

holds. For λ ∈ (c2,∞) let d(λ) be a nonnegative lower bound for (λ− T22)−1, i.e.,(
x, (λ− T22)−1x

)
≥ d(λ)‖x‖2 ≥ 0, x ∈ H2, λ ∈ (c2,∞). (4.11)

If there is a δ > 0 with

δ < d(λ)b2 + c1 − λ (4.12)

for all λ in a sufficiently small right neighbourhood (c2, c2 + ε) of c2, then

(v) the spectral subspace L(−∞, 0)S1(λ) is trivial for all λ ∈ (c2, c2 + ε);

(vi) σess(S1) ∩ (c2, c2 + ε) = ∅.

If we allow δ = 0 in equation (4.12), then we can show (v) only.

Proof. For λ ∈ (c2, c2 + ε), assumptions (4.11) and (4.12) imply for all x ∈ D(S1(λ)) \ {0} that

(x, S1(λ)x) = s1(λ)[x] = (x, T11x)− λ‖x‖2 +
(
T ∗12x, (λ− T22)−1T ∗12x

)
≥ (c1 − λ)‖x‖2 + d(λ) b2 ‖x‖2 > δ ‖x‖2. (4.13)

(v) If δ ≥ 0, then for all λ ∈ (c2, c2 + ε) the numerical range of the selfadjoint operatorS1(λ), the
closure of which equals the closure of the numerical range of s1(λ), is contained in the right half
plane {z ∈ C : Re(z) ≥ 0}, implying ρ(S1(λ)) ⊇ (−∞, 0).

(vi) If we assume the strict inequality δ > 0, then the calculation above shows (−∞, δ) ⊆ ρ(S1(λ))
for λ ∈ (c2, c2 + ε), hence (c2, c2 + ε) ∩ σ(S1) = ∅.

Condition (4.10) on T ∗12 of the previous proposition is fulfilled if, for example, the operator T ∗12
is boundedly invertible. In this case we can choose b = ‖T ∗−1

12 ‖−1. If T22 is bounded, then, for
λ ∈ (c2,∞) and x ∈ H2, x 6= 0, we find

‖x‖2 = ‖x‖−2
∣∣ ((λ− T22)

1
2x, (λ− T22)−

1
2 x
) ∣∣2 ≤ ‖x‖−2

∥∥(λ− T22)
1
2x
∥∥2 ∥∥(λ− T22)−

1
2x
∥∥2

= ‖x‖−2
(
x, (λ− T22)x

) (
x, (λ− T22)−1x

)
≤ ‖λ− T22‖

(
x, (λ− T22)−1x

)
≤ (|λ|+ ‖T22‖)

(
x, (λ− T22)−1x

)
,

hence we can choose d(λ) = (|λ|+ ‖T22‖)−1. For λ in a right neighbourhood of c2, the function d is
bounded from below with bound greater than 0. Thus, if b is large enough, then condition (4.12)
is satisfied.

Proposition 4.17 (iii) shows that for every x ∈ D(s1)\{0} the function σx1 has at most one zero and
that it is not bounded from below. If in addition (4.12) holds with some δ > 0, then σx1 is positive
for λ in a sufficiently small right neighbourhood of c2, see (4.13) Thus the continuity of σx1 implies
that it has exactly one zero. We denote this zero by p(x), i.e.,

σx1 (λ) = 0 ⇐⇒ λ = p(x). (4.14)

If relation (4.12) does not hold, then the function σx1 need not have a zero. In this case we define
p(x) := −∞, so that obviously either p(x) = −∞ or p(x) > c2. Further, p(x) does not depend on
the norm of x, i.e., for all ξ ∈ C \ {0} we have p(x) = p(ξx).
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Now fix a linear manifold D ⊆ H1, independent of λ, such that

D(S1(λ)) ⊆ D ⊆ D(s1(λ)), λ ∈ (c2,∞).

Such a manifold D exists; for example, we can choose D = D(T ∗12).
For n ∈ N we define the numbers

µn := min
L⊆D

dim L=n

max
x∈L×

p(x), (4.15)

where L× := L \ {0}. Theorem 4.19 shows that these numbers are indeed well defined. Here and
in the following, a sequence λ1 ≤ λ2 ≤ · · · ≤ λN with N = ∞ has to be understood as the infinite
sequence λ1 ≤ λ2 ≤ . . . .

In the following we need one more notation. For an interval ∆ ⊆ R and a selfadjoint operator S
we denote its spectral subspace corresponding to ∆ by L∆(S). By λe we denote the lower bound
of the essential spectrum of S1, i.e.,

λe :=

{
inf σess(S1) if σess(S1) 6= ∅,
∞ if σess(S1) = ∅.

If (c2, λe) is not empty, then the eigenvalues of S1 in this interval are characterised by the following
minimax principle.

Theorem 4.19. Let the block operator matrix T =
(
T11 T12
T ∗12 T22

)
, D(T ) = D(T ∗12) ⊕ D(T12) be self-

adjoint in the Hilbert space H1 ⊕ H2. Suppose that the conditions (B1), (A1), (A2), (D1) and
(D2.a) are satisfied and that T ∗12 is surjective. Further, assume that the set (c2, λe) is nonempty
and that there is a λ0 ∈ (c2, λe) such that dimL(−∞,0)S1(λ0) <∞. Then the index shift

n0 := min
λ>c2

dimL(−∞,0)S1(λ) (4.16)

is finite and σ(T )∩ (c2, λe) consists of a (possibly infinite) sequence of eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λN , where N ∈ N0 ∪ {∞}. If the eigenvalues are counted according to their multiplicity, then

λn = µn+n0 , 1 ≤ n ≤ N, (4.17)

and N ∈ N0 ∪ {∞} is given by

N = n(λe)− n0

where n(λe) is the dimension of maximal subspaces of the set

{x ∈ D : ∃ λ > c2 with s1(λ)[x] < 0} ∪ {0}.

If N = ∞, then lim
n→∞

λn = λe. If N < ∞ and σess(S1) = ∅, then µn = ∞ for n > n0 + N . If
N <∞, λe <∞, then µn = λe for n > n0 +N .
If even the stronger assumptions of proposition 4.18 are fulfilled, then n0 = 0.

Proof. Proposition 4.17 shows that all assumptions of theorem [EL04, theorem 2.1] (see theo-
rem A.1) are satisfied. Hence, the numbers µn exist and are equal to the eigenvalues of the operator
family S1. By corollary 4.9, we have σp(S1) = σp(T ) ∩ (c2,∞) and σess(S1) = σess(T ) ∩ (c2,∞) so
that all the assertions follow from theorem [EL04, theorem 2.1].
If even the assumptions of proposition 4.18 are valid, then it follows automatically that (c2, λe) 6= ∅
and that dimL(−∞,0)S1(λ) = 0 for λ in a sufficiently small right neighbourhood of c2, hence the
index offset n0 appearing in formula (4.17) vanishes.



80 4.1. A variational principle for block operator matrices

The numbers p(x) are rather hard to estimate. However, there is a representation of p(x) as
the supremum of a functional λ+ ( xy ) where y varies in some subspace of H2. The functional λ+ is
connected with the so-called quadratic numerical range of block operator matrices, see, for example,
[LMMT01]. It was used in [LLT02] to obtain a variational principle for block operator matrices
with bounded off-diagonal entries.

Definition 4.20. Let T =
(
T11 T12
T21 T22

)
be a closed block operator matrix on the Hilbert space

H = H1 ⊕H2 with domain D(T ) = D(T21)⊕D(T12). Assume that the operators T12 and T21 are
closed and that T11 is T21-bounded and that T22 is T12-bounded. For ( xy ) ∈ D(T ), x 6= 0, y 6= 0,
consider the matrices

Tx,y :=

 (x, T11x)
‖x‖2

(x, T12y)
‖x‖ ‖y‖

(y, T21x)
‖x‖ ‖y‖

(y, T22y)
‖y‖2

 ∈M2(C)

with eigenvalues

λ±

(
x
y

)
:=

1
2

(x, T11x)
‖x‖2

+
(y, T22y)
‖y‖2

±

√(
(x, T11x)
‖x‖2

− (y, T22y)
‖y‖2

)2

+
4(x, T12y)(y, T21x)

‖x‖2 ‖y‖2


(4.18)

and define the sets

Λ±(T ) :=
{
λ±

(
x
y

)
: x ∈ D(T21), y ∈ D(T12), x, y 6= 0

}
.

The quadratic numerical range W 2(T ) of T is defined as the set of all complex numbers λ that are
eigenvalues of some Tx,y, that is,

W 2(T ) :=
⋃

x∈D(T21)×
y∈D(T12)×

σp(Tx,y) = Λ+(T ) ∪ Λ−(T ).

Another way to define the quadratic numerical range would be to consider the operator valued
mapping

W : D := C×D(T21)× ×D(T12)× −→M2(C), (λ, x, y) 7→ Tx,y − λ,

where, as usual, D(Tij)× := D(Tij) \ {0} for i, j = 1, 2. In analogy to the point spectrum of
an operator valued function, the point spectrum of this mapping can be defined as σp(W ) :=
{(λ, x, y) ∈ D : 0 ∈ σp(W (λ, x, y))} ⊆ D. The quadratic numerical range of T is then the
projection of σp(W ) onto its first component.

It is easy to see that λ± ( xy ) does not depend on the norm of the vectors x and y. It therefore
suffices to restrict the definition of λ± ( xy ) to elements ( xy ) ∈ D(T ) with ‖x‖ = ‖y‖ = 1.
In the following we characterise p(x), defined in (4.14), in terms of λ± ( xy ). Recall that p(x) was
the unique zero of the function λ 7→ σx1 (λ) if it exists and p(x) = −∞ otherwise.

Lemma 4.21. Assume that the conditions of proposition 4.17 hold. Then for all x ∈ D(T ∗12) \ {0}
with p(x) 6= −∞ we have

p(x) = sup
{
λ+

(
x
y

)
: y ∈ D(T12) \ {0}

}
. (4.19)

If in addition x ∈ D(S1(p(x))), then the supremum is attained, thus we have

p(x) = max
{
λ+

(
x
y

)
: y ∈ D(T12) \ {0}

}
. (4.20)
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Proof. Fix x ∈ D(T ∗12) \ {0}. Since T21 = T ∗12 and the operators T11 and T22 are symmetric, (4.18)
shows that λ+ ( xy ) is real for all y ∈ D(T12) \ {0}. For the proof of the assertion, we first show that
p(x) ≥ λ+ ( xy ) for all y ∈ D(T12)\{0}. So fix y ∈ D(T12)\{0} and, for simplicity, set λ+ := λ+ ( xy ).
If λ+ ≤ c2, then nothing has to be shown since c2 ≤ p(x) by assumption. Now assume λ+ > c2.
Since p(x) is the unique zero of the monotonously decreasing function σx1 , it suffices to show
σx1 (λ+) = s1(λ+)[x] ≥ 0. By definition, λ+ is an eigenvalue of the complex 2× 2-matrix Tx,y, thus

0 = ‖x‖2 ‖y‖2 det(Tx,y − λ+)

=
(
(x, T11x)− λ+‖x‖2

)(
(y, T22y)− λ+‖y‖2

)
− (x, T12y)(y, T ∗12x)

=
(
y, (T22 − λ+)y

)
s1(λ+)[x] +

(
y, (T22 − λ+)y

)(
T ∗12x, (T22 − λ+)−1T ∗12x

)
− |(y, T ∗12x)|2.

(4.21)

For λ > c2 the operator (λ−T22) is strictly positive and the same holds for the induced sesquilinear
form (u, v) 7→ (u, (λ − T22)v) for u, v ∈ D(T22). For this form, we have the following generalised
Cauchy-Schwarz inequality

| (u, (λ− T22)v) |2 =
∣∣ ((λ− T22)

1
2u, (λ− T22)

1
2 v
) ∣∣2 ≤

∥∥(λ− T22)
1
2u
∥∥2 ∥∥(λ− T22)

1
2 v
∥∥2

=
(
u, (λ− T22)u

)(
v, (λ− T22)v

)
for all u, v ∈ D(T22). Since y ∈ D(T12) ⊆ D(T22), we can use this inequality to estimate the last
two terms in (4.21):(

y, (T22 − λ+)y
)(
T ∗12x, (T22 − λ+)−1T ∗12x

)
− |(y, T ∗12x)|2

=
(
y, (T22 − λ+)y

)(
T ∗12x, (T22 − λ+)−1T ∗12x

)
−
∣∣(y, (λ+ − T22)(λ+ − T22)−1T ∗12x

)∣∣2
≥
(
y, (λ+ − T22)y

)(
T ∗12x, (λ+ − T22)−1T ∗12x

)
−
(
y, (λ+ − T22)y

)(
T ∗12x, (λ+ − T22)−1T ∗12x

)
= 0.

Because the factor (y, (T22 − λ+)y) in the first term of (4.21) is negative, it follows that the
second factor, s1(λ+)[x] = σx1 (λ+), must be nonnegative, and thus we have proved the inequality
p(x) ≥ sup{λ+ ( xy ) : y ∈ D(T12) \ {0}}.
If x ∈ D(S1(p(x))), then we can choose an element y such that p(x) = λ+ ( xy ). To this end, define
y := (T22 − p(x))−1T ∗12x. This vector is well defined and it lies in the domain of T12 since by
assumption x ∈ D(S1(p(x))). If we use(

y, (T22 − p(x))y
)(
T ∗12x, (T22 − p(x))−1T ∗12x

)
−
∣∣(T ∗12x, y

)∣∣2 = 0 (4.22)

we obtain in analogy to equation (4.21)

‖x‖2 ‖y‖2 det(Tx,y − p(x)) =
(
y, (T22 − p(x))y

)
s1(p(x))[x] = 0.

This implies that p(x) is an eigenvalue of Tx,y. Together with λ− ( xy ) ≤ λ+ ( xy ) ≤ p(x) it follows
that p(x) = λ+ ( xy ) which proves (4.19) and (4.20) in the case x ∈ D(S1(p(x))).
It remains to show (4.19) in the case x /∈ D(S1(p(x))), i.e., for elements x ∈ D(T ∗12) such that
(T22−p(x))−1T ∗12x /∈ D(T12). For fixed x ∈ D(T ∗12)\D(S1(p(x))), there exists a sequence (xn)n∈N ⊆
D(S1(p(x))) such that

xn → x and (T22 − λ)−
1
2T ∗12xn → (T22 − λ)−

1
2T ∗12x, n→∞,

since in the proof of proposition 4.3 we saw that D(S1(p(x))) is a core of (T22 − p(x))−
1
2T ∗12. Set

yn := (T22 − p(x))−1T ∗12xn, n ∈ N. Because both (T22 − p(x))−1 and T22 − p(x) are bounded,
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the limites y := lim
n→∞

yn and lim
n→∞

T ∗12xn exist and are not zero; otherwise it would follow that

x ∈ D(S1(p(x))) in contradiction to the assumption on x. Moreover, since T11 is relatively bounded
with respect to T ∗12, also the limit lim

n→∞
T11xn exists. Therefore, all terms in

s1(p(x))[xn] = s1(p(x))[x] + s1(p(x))[xn − x, xn] + s1(p(x))[xn, xn − x] + s1(p(x))[xn − x]

= 2
(
xn − x, (T11 − p(x))xn

)
+
(
xn − x, (T11 − p(x))(xn − x)

)
− 2

(
T ∗12(xn − x), (T22 − p(x))−1T ∗12xn

)
−
(
T ∗12(xn − x), (T22 − p(x))−1T ∗12(xn − x)

)
converge to zero for n→∞. As in (4.22), we obtain(

yn, (T22 − p(x))yn
)(
T ∗12xn, (T22 − p(x))−1T ∗12xn

)
−
∣∣(T ∗12xn, yn

)∣∣2 = 0, n ∈ N,

which implies

‖xn‖ ‖yn‖ det(Txn,yn − p(x)) =
(
yn, (T22 − p(x))yn

)
s1(p(x))[xn] −→ 0, n→ ∞.

Since neither xn nor yn tend to zero, it follows that(
p(x)− λ−

(
xn

yn

))(
p(x)− λ+

(
xn

yn

))
= det(Txn,yn − p(x)) −→ 0, n→∞. (4.23)

Each entry of

Txn,yn − Tx,y =
(

(xn, T11(xn − x)) + (xn − x, T11x) (xn, T12(yn − y)) + (xn − x, T12y)
(yn, T ∗12(xn − x)) + (yn − y, T ∗12x) (yn, T22(yn − y)) + (yn − y, T22y)

)

=
(

(xn, T11(xn − x)) + (xn − x, T11x) (T ∗12xn, yn − y) + (T ∗12(xn − x), y)
(yn, T ∗12(xn − x)) + (yn − y, T ∗12x) (yn, T22(yn − y)) + (yn − y, T22y)

)
converges to zero for n→∞, hence we have Txn,yn → Tx,y in norm. Thus the eigenvalues λ±

(
xn

yn

)
converge. Now, if p(x) > sup

{
λ+

(
x
y

)
: y ∈ D(T ∗12) \ {0}

}
, then there exists an ε > 0 such that

p(x) > λ+

(
x
ỹ

)
+ ε for all ỹ ∈ D(T ∗12) \ {0}. Since the functional λ+ depends continuously on both

its independent variables, there exists an N such that
∣∣∣λ+

(
x
yn

)
−λ+

(
xn

yn

)∣∣∣ < ε
2 and for all n ≥ N .

Thus we have

p(x)− λ+

(
xn
yn

)
= p(x)− λ+

(
x
yn

)
+ λ+

(
x
yn

)
− λ+

(
xn
yn

)
≥ ε− ε

2
=

ε

2
.

Because of p(x)− λ−

(
xn

yn

)
≥ p(x)− λ+

(
xn

yn

)
it follows

(
λ−

(
xn
yn

)
− p(x)

)(
λ+

(
xn
yn

)
− p(x)

)
≥ ε2

4
, n > N, (4.24)

in contradiction to (4.23).

Remark 4.22. From (4.19) it is clear that if λ+ ( xy ) > c2 for some y ∈ D(T12), then also p(x) > c2.
Vice verse, if there is an x ∈ D(T ∗12) such that x ∈ D(S1(p(x))) and p(x) 6= −∞, then it follows
from (4.20) that there exists a y ∈ D(T12) such that λ+ ( xy ) = p(x) > c2. ♦

Now we can state the main theorem of this section, which is essentially a corollary of the previous
lemma and theorem 4.19.
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Theorem 4.23. Suppose that the assumptions of theorem 4.19 hold, that is, suppose that conditions
(T 1), (B1), (A1), (A2), (D1) and (D2.a) are fulfilled, that T ∗12 is surjective, that (c2, λe) 6= ∅ and
that there is a λ0 ∈ (c2, λe) such that dimL(−∞,0)S1(λ0) <∞. Additionally assume that the domain
of S1(λ) does not depend on λ, i.e.,

D(S1(λ)) = D(S1), λ ∈ (c2,∞).

Then the eigenvalues of T in (c2, λe) are given by

λn = min
L⊆D(S1)

dim L=n+n0

max
x∈L×

max
y∈D(T12)×

λ+

(
x
y

)

= min
L⊆D(T∗12)

dim L=n+n0

max
x∈L×

sup
y∈D(T12)×

λ+

(
x
y

)
, 1 ≤ n ≤ N,

(4.25)

where we have adopted the notation of theorem 4.19.

Proof. From theorem 4.19 it follows that all eigenvalues of T greater than c2 are given by

λn = min
L⊆D

dim L=n+n0

max
x∈L×

p(x), 1 ≤ n ≤ N,

where D is any linear manifold with D(S1) ⊆ D ⊆ D(s1). From proposition 4.17 we know that
the forms s1(λ), λ ∈ (c2,∞) are closed and that D(s1(λ)) = D(T ∗12). Fix n > 0 and a subspace
L ⊆ D(s1) with dimL = n + n0. Then there exists an x ∈ L with p(x) 6= −∞. Lemma 4.21 and
the remark thereafter yield

max
x∈L×

p(x) = max
x∈L×

p(x) 6=−∞

p(x) = max
x∈L×

p(x) 6=−∞

sup
y∈D(T12)×

λ+

(
x
y

)
= max

x∈L×
sup

y∈D(T12)×
λ+

(
x
y

)
.

If we have even L ⊆ D(S1), then the supremum can be replaced by the maximum.

In the next section we use theorem 4.23 to estimate the eigenvalues of the angular operator A with
modulus greater than |am|. We know that for the angular operator the spectrum of T12T

∗
12 consists

of discrete simple eigenvalues only. So we specialise theorem 4.23 to a class of operators for which
the product T12T

∗
12 has only discrete point spectrum σp(T12T

∗
12) ∈ (0,∞), and all eigenspaces are

finite dimensional.

Remark 4.24. Assume that T0 =
(

0 T12
T ∗12 0

)
with domain D(T0) = D(T ∗12)⊕D(T12) ⊆ H1 ⊕H2 is

closed and that T12T
∗
12 and T ∗12T12 are strictly positive. Then σp(T0) = {λ ∈ R : λ2 ∈ σp(T12T

∗
12)}.

Proof. For λ ∈ σp(T0) \ {0} we have λ2 ∈ σp(T12T
∗
12) ∩ σp(T ∗12T12) because if

(
f
g

)
is an eigenvector

of T0 with eigenvalue λ, then f ∈ D(T12T
∗
12), g ∈ D(T ∗12T12) and f, g 6= 0 and it follows that

0 = (T0 + λ)(T0 − λ)
(
f
g

)
=
(( T12T ∗12 0

0 T ∗12T12

)
− λ2

) ( f
g

)
=
(

(T12T ∗12−λ2)f

(T ∗12T12−λ2)g

)
.

On the other hand, if µ 6= 0 is an eigenvalue of T ∗12T12 with eigenfunction g, then it is also an
eigenvalue of T12T

∗
12 with eigenfunction T12g. For σ = ±1 we define f = σµ−

1
2 T12g. Then we have

that (T0 − σ
√
µ)
(
f
g

)
= 0, hence ±√µ are eigenvalues of T0.

The next theorem can be regarded as a perturbation result for the eigenvalues of the block operator
matrix

(
0 T12
T ∗12 0

)
under the unbounded perturbation

(
T11 0
0 T22

)
.



84 4.1. A variational principle for block operator matrices

Theorem 4.25. Let T =
(
T11 T12
T ∗12 T22

)
with domain D(T12)⊕D(T ∗12) ⊆ H1⊕H2 be a selfadjoint block

operator matrix such that the conditions (T 1), (B1), (A1), (A2), (D1) and (D2.a) hold. Then T11

is bounded with respect to T ∗12; let α and α21 such that

‖T11x‖ ≤ α‖x‖+ α21‖T ∗12x‖, x ∈ D(T ∗12).

Further, let T ∗12 be bijective and assume that there exists a number b > 0 such that ‖T ∗12x‖ ≥ b‖x‖
for all x ∈ D(T ∗12). Moreover, assume that for all λ ∈ (c2,∞) the Schur complement

S1(λ) = T11 − λ− T12(T22 − λ)−1T ∗12, D(S1(λ)) = {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12x ∈ D(T12)}

is selfadjoint and that D(S1(λ)) =: D(S1) is independent of λ. Additionally suppose that there
exists a λ0 ∈ (c2,∞) such that dimL(−∞,0)S1(λ0) < ∞. If the spectrum of the operator T12T

∗
12

satisfies

σ(T12T
∗
12) = σp(T12T

∗
12) = {νj : j ∈ N} with 0 < ν1 ≤ ν2 ≤ . . .

where the eigenvalues are counted with their multiplicities, then the block operator matrix T has
discrete point spectrum λ1 ≤ λ2 ≤ . . . λN in (c2, λe). More precisely, with n0 as in theorem 4.19,
that is, n0 = min

λ>c2
dimL(−∞,0)S1(λ), the eigenvalues λn of T in (c2, λe) satisfy the estimates

λn ≤ α21

2
√
νn+n0 +

√
νn+n0 + 1

4(α21
√
νn+n0 + ‖T22‖+ α)2 + 1

2 (α+ c2) , 1 ≤ n ≤ N, (4.26)

λn ≥ √
νn+n0 + 1

2(c1 − ‖T22‖), 1 ≤ n ≤ N. (4.27)

Proof. All assumptions of theorem 4.23 are satisfied. In particular, the index shift n0 is finite.
To prove inequalities (4.26) and (4.27), we estimate the right hand side of (4.25). For the proof
of (4.26) note that D(T22) = H2 and that

(i) |(x, T11x)| ≤ ‖x‖ ‖T11x‖ ≤ ‖x‖ (α‖x‖+ α21‖T ∗12x‖), x ∈ D(T ∗12),

(ii) (y, T22y) ≤ c2‖y‖2, y ∈ H2,

(iii) |(y, T22y)| ≤ ‖T22‖ ‖y‖2, y ∈ H2,

(iv) |(y, T ∗12x)|2 ≤ ‖y‖2 ‖T ∗12x‖2, x ∈ D(T ∗12), y ∈ H2.

With the help of these inequalities we find for all x ∈ D(T ∗12), y ∈ D(T12) with x 6= 0, y 6= 0

λ+

(
x
y

)
=

1
2

(x, T11x)
‖x‖2

+
(y, T22y)
‖y‖2

+

√(
(x, T11x)
‖x‖2

− (y, T22y)
‖y‖2

)2

+
4|(y, T ∗12x)|2
‖x‖2 ‖y‖2


≤ 1

2

(x, T11x)
‖x‖2

+
(y, T22y)
‖y‖2

+

√(
|(x, T11x)|
‖x‖2

+
|(y, T22y)|
‖y‖2

)2

+
4|(y, T ∗12x)|2
‖x‖2 ‖y‖2


≤ 1

2

α+ c2 +
α21‖T ∗12x‖

‖x‖
+

√(
α+

α21‖T ∗12x‖
‖x‖

+ ‖T22‖
)2

+
4 ‖T ∗12x‖2

‖x‖

 .

The right hand side is independent of y and monotonously increasing in ‖T ∗12x‖. For given n ∈ N
let Ln be an n-dimensional subspace of the spectral space L[ν1,νn](T12T

∗
12). Then for every x ∈ Ln

we have that ‖T ∗12x‖2 = (x, T12T
∗
12x) ≤ νn‖x‖2.
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Observe that D(s1) = D(T12)∗, thus the minimax principle (4.25) shows that

λn = min
L⊆D(T12)∗
dim L=n+n0

max
x∈L×

sup
y∈D(T12)×

λ+

(
x
y

)
≤ max

x∈L×
n+n0

sup
y∈D(T12)×

λ+

(
x
y

)

≤ max
x∈L×

n+n0

1
2

α+ c2 +
α21‖T ∗12x‖

‖x‖
+

√(
α21‖T ∗12x‖

‖x‖
+ ‖T22‖+ α

)2

+
4 ‖T ∗12x‖2

‖x‖2


≤ 1

2

(
α+ c2 + α21

√
νn+n0 +

√
(α21

√
νn+n0 + ‖T22‖+ α)2 + 4 νn+n0

)
which proves (4.26). In order to show (4.27), we choose a particular element y ∈ D(T12). Since by
assumption T ∗−1

12 exists and is bounded by b−1, also T−1
12 exists and is bounded by b−1. For every

x ∈ D(T ∗12) the element y(x) := T−1
12 x exists and lies in D(T12). Therefore, again by (4.25),

λn = min
L⊆D(T∗12)

dim L=n+n0

max
x∈L×

sup
y∈D(T12)×

λ+

(
x
y

)

≥ min
L⊆D(T∗12)

dim L=n+n0

max
x∈L×

sup
y∈D(T12)×

1
2

(
(x, T11x)
‖x‖2

+
(y, T22y)
‖y‖2

+
2 |(x, T12y)|
‖x‖ ‖y‖

)
(4.28)

≥ min
L⊆D(T∗12)

dim L=n+n0

max
x∈L×

1
2

(
(x, T11x)
‖x‖2

+
(T−1

12 x, T22T
−1
12 x)

‖T−1
12 x‖2

+
2 (x, x)

‖T−1
12 x‖ ‖x‖

)

≥ min
L⊆D(T∗12)

dim L=n+n0

max
x∈L×

1
2

(
(x, T11x)
‖x‖

− ‖T22‖+ 2 ‖T−1
12 x‖

−1‖x‖
)

≥ 1
2

(
c1 − ‖T22‖

)
+ min

L⊆D(T∗12)

dim L=n+n0

max
x∈L×

‖T−1
12 x‖

−1 ‖x‖. (4.29)

For every n-dimensional subspace Ln ⊆ D(T ∗12), also the subspace T−1
12 Ln ⊆ D(T ∗12T12) is n-dimen-

sional. Hence it follows that

min
L∈Λ(n+n0)

max
x∈L×

‖T−1
12 x‖

−1 ‖x‖ = min
L⊆D(T∗12)

dim L=n+n0

max
ξ∈T−1

12 L
×
‖ξ‖−1 ‖T12ξ‖

= min
L⊆D(T∗12T12)

dim L=n+n0

max
ξ∈L×

‖ξ‖−1 ‖T12ξ‖.

By remark 4.24, the squares of the nonzero eigenvalues of T̃0 =
(

0 T ∗12
T12 0

)
=
(

0 I
I 0

)
T0

(
0 I
I 0

)
are the

eigenvalues ν1 ≤ ν2 ≤ . . . of T12T
∗
12. On the other hand, the variational principle of theorem 4.23

applied to T̃0 shows that

√
νn = λn = min

L⊆D(T∗12T12)

dim L=n

max
ξ∈L×

max
y∈D(T ∗12)×

|(y, T12ξ)|
‖y‖ ‖ξ‖

≤ min
L∈D(T∗12T12)

dim L=n

max
ξ∈L×

|(T12ξ, T12ξ)|
‖T12ξ‖ ‖ξ‖

= min
L∈D(T∗12T12)

dim L=n

max
ξ∈L×

‖T12ξ‖
‖ξ‖

.
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Inserting into (4.29) yields

λn ≥ 1
2(c1 − ‖T22‖) +√

νn+n0 .

In theorem 4.25 we saw that we can estimate the eigenvalues of the block operator matrix T by
the eigenvalues of T12T

∗
12, that is, by the eigenvalues of

(
0 T12
T ∗12 0

)
. In the calculations leading to

formulae (4.26) and (4.27) we have used that the operator T11 is semibounded. For the angular
operator, however, T11 is even bounded so we can improve the estimate.

Corollary 4.26. In addition to the assumptions in theorem 4.25, let T11 and T22 be bounded. Then
there are real numbers c1, c+1 , c−2 and c2 such that

c1 ‖x‖2 ≤ (x, T11x) ≤ c+1 ‖x‖
2, x ∈ H1 and c−2 ‖y‖

2 ≤ (y, T22y) ≤ c2 ‖y‖2, y ∈ H2.

Let n0 = min
λ>c2

dimL(−∞,0)S1(λ). Then the eigenvalues of the block operator matrix T in (c2, λe),

enumerated such that c2 < λ1 ≤ λ2 ≤ . . . , can be estimated by

λn ≤
√
νn+n0 + 1

4(‖T11‖+ ‖T22‖)2 + 1
2(c+1 + c2), 1 ≤ n ≤ N, (4.30)

λn ≥ √
νn+n0 + 1

2

(
c1 + c−2

)
, 1 ≤ n ≤ N, (4.31)

where 0 < ν1 ≤ ν2 ≤ . . . are the eigenvalues of T12T
∗
12, see theorem 4.25.

Proof. First, we improve the estimates of λ+ from above. If we use (x, T11x) ≤ c+1 ‖x‖2 and
|(x, T11x)| ≤ ‖T11‖ ‖x‖2, x ∈ H1, instead of (i) of theorem 4.25, we obtain

λ+

(
x
y

)
=

1
2

(
(x, T11x) + (y, T22y) +

√
((x, T11x)− (y, T22y))2 + 4|(y, T ∗12x)|2

)
≤ 1

2
(c+1 + c2) +

√
1
4(‖T11‖+ ‖T22‖)2 + ‖T ∗12x‖2

for all ( xy ) ∈ D(T ) with ‖x‖ = ‖y‖ = 1. Also the upper bound for λ+ ( xy ) can be improved if we
use (y, T22y) ≥ c−2 in (4.28). Now a reasoning analogous to that of theorem 4.25 completes the
proof.

The estimate (4.30) for the eigenvalues can be further improved if we use the fact that all the
terms of the formula for λ+ involving T11 and T22 are bounded. To this end, we use the following
auxiliary lemma.

Lemma 4.27. For a1, a2, b1, b2, γ ∈ R with a1 < b1 and a2 < b2 we define the function

f : [a1, b1]× [a2, b2] → R, f(s, t) = s+ t+
√

(s− t)2 + γ2.

For fixed t, the function f is monotonously increasing in s and vice versa. In particular,

f(a1, a2) ≤ f(s, t) ≤ f(b1, b2), (s, t) ∈ [a1, b1]× [a2, b2].

Proof. Partial differentiation of f with respect to yields

∂

∂s
f(s, t) = 1 +

s− t√
(s− t)2 + γ2

≥
√

(s− t)2 + γ2 − |s− t|√
(s− t)2 + γ2

≥ 0.
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If we apply this lemma to the functional λ+ ( xy ) with γ = 2|(x, T ∗12y)|, s = (x, T11x) ∈ (c1, c+1 ) and
t = (y, T22y) ∈ (c−2 , c2) it follows that

1
2

(
c1 + c−2 +

√
(c1 − c−2 )2 + 4|(T ∗12x, y)|2

)
≤ λ+

(
x
y

)
≤ 1

2

(
c+1 + c2 +

√
(c+1 − c2)2 + 4|(T ∗12x, y)|2

)
.

Now we can use these estimates to improve the result in lemma 4.26. Note that the estimate (4.31)
remains unchanged. We finally arrive at the following theorem.

Theorem 4.28. With the above assumptions and notation the eigenvalues of T in (c2, λe) are
given by

λn ≤
√
νn+n0 + 1

4(c+1 − c2)2 + 1
2(c+1 + c2) 1 ≤ n ≤ N, (4.32)

λn ≥ √
νn+n0 + 1

2(c1 + c−2 ), 1 ≤ n ≤ N. (4.33)

The index shift n0 is given by n0 = min
λ>c2

dimL(−∞,0)S1(λ).

Remark 4.29. In the case of bounded T11 and T22, also methods from standard perturbation
theory yield estimates for the eigenvalues of T , see lemma 3.9. For all eigenvalues λn of T we
obtain the estimate

√
νn −

∥∥∥∥(T11 0
0 T22

)∥∥∥∥ ≤ λn ≤
√
νn +

∥∥∥∥(T11 0
0 T22

)∥∥∥∥.
In the formula above, there is no need to determine an index shift n0. On the other hand, since∥∥∥∥(T11 0

0 T22

)∥∥∥∥ = max{‖T11‖, ‖T22‖} = max{|c+1 |, |c1|, |c2|, |c
−
2 |},

the sign of the operators T11 and T22 are not taken into account. ♦

Eigenvalues in some left half plane

So far, we have used the Schur complement S1 to characterise eigenvalues of T to the right of c2.
For a block operator matrix T with domain D(T ) ⊆ H1 ⊕H2, consider

T (−) :=
(

0 I
I 0

)
(−T )

(
0 I
I 0

)
=
(
−T22 −T21

−T12 −T11

)
in H2⊕H1 with domain D(T (−)) =

(
0 I
I 0

)
D(T ). Since T (−) is unitarily equivalent to −T , it follows

that σ(T ) = −σ(−T ) = −σ(T (−)) which implies

σ(T ) ∩ (−∞, c1) = −
(
σ(T (−)) ∩ (−c1, ∞)

)
.

Assume that T (−) satisfies conditions (B1), (A1), (D1) and (T 1), i.e., we assume

(B1(−)) T21 is a closed operator from H1 to H2 with T ∗21 = T12;

(A1(−)) D(T12) ⊆ D(T22) and T22 is symmetric in H2 and semibounded from above, i.e., there
is a constant c2 ∈ R such that

(x, T22x) ≤ c2‖x‖2, x ∈ D(T22);
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(D1(−)) D(T21) ⊆ D(T11) and T11 is symmetric in H1 and semibounded from below, i.e., there
is a constant c1 ∈ R such that

(x, T11x) ≥ c1‖x‖2, x ∈ D(T11);

furthermore, T11 is closed with (−∞, c1) ⊆ ρ(T11).

(T 1(−)) T =
(
−T22 −T21

−T12 −T11

)
, D(T ) = D(T12)⊕D(T21) ⊆ H2 ⊕H1.

Then the Schur complement S(−)
1 of T (−) is well defined for λ ∈ (−c1,∞); in particular, we have

S
(−)
1 (λ) = −T22 − λ− (−T21)(−T11 − λ)−1(−T12)

= −
(
T22 − (−λ)− T21(T11 − (−λ))−1T12

)
= −S2(−λ), λ > −c1.

If in addition T is selfadjoint and the Schur complement S2 is a holomorphic operator function
such that S2(λ), λ < c1, is selfadjoint, then S

(−)
1 has the same properties, and consequently (see

corollary 4.9),

σ(T ) ∩ (−∞, c1) = −
(
σ(T (−)) ∩ (−c1, ∞)

)
= −σ(S(−)

1 ) = σ(S2),

so the spectrum of T to the left of c1 is given by the spectrum of S2.
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4.2 The variational principle for the angular operator A
In the following we return to the angular operator A, formally given by

A =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
on (0, π).

Since in this section no other Hilbert space than L 2((0, π),dϑ) and products thereof occur, we set

H := L 2((0, π),dϑ).

In section 2.1.2 we have seen that for k ∈ R \ (−1, 0) the operator Amin in the space H×H defined
by Aminf = Af with domain D(Amin) = C∞0 (0, π)2 is essentially selfadjoint. In this case, its closure
is given by the block operator matrix

A =
(
−D B
B∗ D

)
, D(A) = D(B∗)⊕D(B) (4.34)

where D is the operator of multiplication by the function (0, π) → R, ϑ 7→ am cosϑ and B is the

first order differential operator d
dϑ + k+ 1

2
sinϑ + aω sinϑ. The operator B with domain

D(B) =
{
f ∈ H : f is absolutely continuous, B+f ∈ H

}
is closed; further properties of the operator B have been derived in section 3.3.2.
If not stated explicitly otherwise, it is always assumed that k ∈ R \ (−1, 0).

The aim of this section is to apply the variational principle of section 4.1 to the angular operator A
in order to obtain upper and lower bounds for its eigenvalues. For this task the Schur complements
S1 and S2 of A play a crucial role, see (4.2). For λ ∈ R \ σ(D) they are given by

D(S1(λ)) = {f ∈ D(B∗) : (D − λ)−1B∗f ∈ D(B)}, S1(λ) := −D − λ−B(D − λ)−1B∗,

D(S2(λ)) = {f ∈ D(B) : (−D − λ)−1Bf ∈ D(B∗)}, S2(λ) := D − λ−B∗(−D − λ)−1B.

The Schur complements are investigated in appendix B with methods from spectral theory for
linear differential operators.

4.2.1 Application of the variational principle

In the following, we consider the family S1 for λ ∈ (|am|,∞) only.

Lemma 4.30. The angular operator fulfils conditions (T 1), (B1), (A1), (A2), (D1) and (D2.a) of
the preceding section, in particular, we have

c1 := −|am| ≤ (x, −Dx) ≤ |am| =: c+1 , x ∈ H (A1′)

c−2 := −|am| ≤ (x, Dx) ≤ |am| =: c2, x ∈ H, (D1′)

‖−D ‖ = ‖D ‖ = |am|, (D2.a′)

and σ(D) = σ(−D) = σess(D) = [−|am|, |am| ]. For all λ ∈ (|am|,∞), the form

D(s1(λ)) = D(B∗), s1(λ)[f, g] := (f, (−D − λ)g)− (B∗f, (D − λ)−1B∗g), (4.35)

is symmetric, semibounded from below and closed. Further, the operator S1(λ) is the selfadjoint
operator associated with s1(λ), and its domain is independent of λ, more precisely, we have

D(S1(λ)) = D(BB∗), λ ∈ (|am|,∞). (4.36)
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Proof. Since D is the bounded operator given by multiplication with the continuous, nowhere con-
stant function am cosϑ, ϑ ∈ (0, π), the assertions concerning the spectrum of D and relations (A1′),
(D1′) and (D2.a′) are clear. Hence conditions (A1) and (D1) are satisfied with c2 = |am| and
c1 = −|am|, and (A2) and (D2.a) hold because D is bounded with ‖D‖ = |am|. Conditions (T 1)
and (B1) hold because we have already shown in section 2.1.2 that the angular operator (4.34) is
selfadjoint for every a ∈ R. Since σ(D) = [−|am|, |am| ], the sesquilinear forms s1(λ), λ ∈ (|am|,∞),
are well defined, and, by proposition 4.11 and lemma 4.12, they are symmetric, semibounded from
below and closed. Proposition 4.16 implies that for λ ∈ (|am|,∞) the operator S1(λ) is the selfad-
joint operator associated with s1(λ).
To prove (4.36), fix f ∈ D(BB∗) and λ ∈ (|am|,∞). We have to show that (D−λ)−1B∗f ∈ D(B).
Since both (am cosϑ− λ)−1 and B∗f are absolutely continuous, we have

B+(D − λ)−1B∗f(ϑ)

=
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
(am cosϑ− λ)−1

(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

= (am cosϑ− λ)−1
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

+
( d

dϑ
(am cosϑ− λ)−1

)(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

= (D − λ)−1BB∗f(ϑ) +
( d

dϑ
(am cosϑ− λ)−1

)
B∗f(ϑ).

Observe that the first term on the first line is the formal differential expression associated with B.
Since, by assumption, f ∈ D(BB∗) and since both (D− λ)−1 and d

dϑ(am cosϑ− λ)−1 are bounded
operators on H, it follows that (D − λ)−1B∗f ∈ D(B), and consequently f ∈ D(S1(λ)).
Conversely, assume f ∈ D(S1(λ)) for some λ ∈ (|am|,∞). Since the function am cosϑ − λ is
differentiable on (0, π), we have

B+B
∗f = −

( d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ

)
B∗f(ϑ)

=
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
(am cosϑ− λ)(am cosϑ− λ)−1

(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

= (am cosϑ− λ)
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
(am cosϑ− λ)−1

(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

+
( d

dϑ
(am cosϑ− λ)

)
(am cosϑ− λ)−1

(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
f(ϑ)

= (D − λ)B(D − λ)−1B∗f(ϑ) +
( d

dϑ
(am cosϑ− λ)

)
(D − λ)−1B∗f(ϑ).

Since D − λ and d
dϑ(am cosϑ− λ) are bounded operators on H, it follows that the function above

is also an element of H, hence we have B∗f ∈ D(B), implying f ∈ D(BB∗).

Recall that the spectrum of the angular operator consists only of isolated simple eigenvalues without
accumulation points in (−∞,∞), see theorem 2.14. We also know that the eigenvalues depend
continuously on the parameter a. Hence we can enumerate the eigenvalues λn, n ∈ Z \ {0},
unambiguously by requiring that λn is the analytic continuation of λn = sign(n)

(
k + 1

2 | −
1
2 + n

)
in the case a = 0. Since all eigenvalues are simple, it follows that λn < λm for n < m.
For fixed Kerr parameter a we define m± ∈ Z such that

. . . ≤ λm−−2 ≤ λm−−1 < −|am| ≤ λm− ≤ · · · ≤ λm+ ≤ |am| < λm++1 ≤ λm++2 ≤ . . .
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i.e., σ(A) ∩ [−|am|, |am| ] = {λn : m− ≤ n ≤ m+, n 6= 0} and the number of eigenvalues of A in
the interval [−|am|, |am| ] is given by

#
(
σ(A) ∩ [−|am|, |am| ]

)
=

{
m+ −m− if 0 ∈ [m−,m+],
m+ −m− + 1 if 0 /∈ [m−,m+].

Observe that m+ and m− depend on the physical parameters a, m, ω and k.

Remark 4.31. Since the operator B =
(

0 B
B∗ 0

)
coincides with the angular operator in the case

m = 0, its spectrum also consists of discrete simple eigenvalues only. Further, 0 ∈ ρ(B), see
corollary 3.20, and the spectrum of B is symmetric with respect to 0, see corollary 2.18. In the
following, we always order the eigenvalues µn, n ∈ Z \ {0}, of B such that

. . . ≤ −µ2 ≤ −µ1 < 0 < µ1 ≤ µ2 ≤ . . . ; (4.37)

then the spectrum of BB∗ is given by σ(BB∗) = {νn = µ2
n : n ∈ N}, see also remark 4.24.

Furthermore, we have ‖B−1‖−1 = µ1. With the enumeration (4.37) the eigenvalues of B and A in
the case m = 0 coincide. Estimates for the eigenvalues νn are given in section 4.2.2. ♦

Now we are ready to apply the theorems of the preceding section to characterise the eigenvalues
λm++n, n ∈ N.

Theorem 4.32. Let n0 = dimL(−∞,0)S1(λ0) for some λ0 ∈ (|am|, λm++1). Then the eigenvalues
of the angular operator A to the right of |am| are given by

λm++n = min
L⊆D(BB∗)
dim L=n+n0

max
x∈L×

max
y∈D(B)×

λ+

(
x
y

)
, n ∈ N. (4.38)

Furthermore, the eigenvalues can be estimated by

√
νn0+n − |am| ≤ λm++n ≤ √

νn0+n + |am|, n ∈ N, (4.39)

where νn+n0 = µ2
n+n0

are the eigenvalues of BB∗.

Proof. By lemma 4.30, the angular operator satisfies conditions (T 1), (B1), (A1), (A2), (D1) and
(D2.a), and the domain of the operators S1(λ) does not depend on λ for λ ∈ (|am|,∞). Further,
B∗ is surjective because 0 ∈ ρ(B), so we have

σess(S1) = σess(A) ∩ (|am|,∞) = ∅

by corollary 4.9. Formula (4.38) now follows from theorem 4.23 with c2 = |am| and λe = ∞. Since
D is bounded and

−|am| ‖x‖2 ≤ (x, Dx) ≤ |am| ‖x‖2, x ∈ H,

application of theorem 4.28 with c2 = c+1 = |am| and c−2 = c1 = −|am| yields the estimates (4.39).
By theorem 4.23 we have n0 = min

λ∈(|am|,∞)
dimL(−∞,0)S1(λ). Since (|am|, λm++1) ⊆ ρ(S1) and the

index shift n0 is constant on ρ(S1), also the assertion concerning n0 is proved.

Note that the index shift n0 does not depend on the choice of λ0 ∈ (|am|, λm++1) but, of course, it
depends on the parameters a and m.
The following lemma gives a sufficient condition for the index shift to be nontrivial.
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Lemma 4.33. If there exists an eigenvalue µ of A such that

2 |am| − λm++1 < µ < λm++1, (4.40)

then we have n0 ≥ 1. If in addition λm++1 ≤ 3 |am|, then there is at least one eigenvalue of A in
[−|am|, |am| ].

Proof. Recall that λm++1 is the first eigenvalue of A which is greater than |am|, hence we have
µ ≤ |am|. If we also know λm++1 ≤ 3 |am|, then (4.40) shows that µ > 2|am| − λm++1 ≥ −|am|.
Hence we have that the eigenvalue µ of A lies in [−|am|, |am| ].
It remains to be shown that n0 ≥ 1. Recall that n0 = min

λ>|am|
dimL(−∞,0)S1(λ) and that the right

hand side is constant on the resolvent set ofA and increasing with increasing λ. Hence it follows that
n0 = n(λ) := dimL(−∞,0)S1(λ) for all λ ∈ (|am|, λm++1). Let D be an arbitrary linear manifold
such that D(S1) ⊆ D ⊆ D(s1) independent of λ. In [EL04, lemma 2.5] it has been shown that n0 is
equal to the dimension of every maximal subspace of N (λ) = {x ∈ D : s1(λ)[x] < 0} ∪ {0}. Since
D(s1) = D(B∗) does not depend on λ, it suffices to show that there exists x ∈ D(B∗), x 6= 0 such
that s1(λ0)[x] < 0 for some λ0 ∈ (|am|, λm++1) because then x spans a onedimensional subspace
in N (λ0). Since µ is an eigenvalue of A, there exists an element ( xy ) ∈ D(B∗) ⊕ D(B) such that
(A− µ) ( xy ) = 0, i.e.,

(−D − µ)x+By = 0, B∗x+ (D − µ)y = 0.

In particular, we have (D − λ)−1B∗x = −(D − λ)−1(D − µ)y = −y + (µ − λ)(D − λ)−1y and
(B∗x, y) = (x, By) = (x, (D + µ)x). Thus for every λ > |am|

s1(λ)[x] =
(
x, (−D − λ)x

)
−
(
B∗x, (D − λ)−1B∗x

)
= −λ‖x‖2

2 − (x, Dx) + (B∗x, y)− (µ− λ)
(
(D − λ)−1B∗x, y

)
= (µ− λ)

(
‖x‖2

2 + ‖y‖2
2

)
− (µ− λ)2

(
(D − λ)−1y, y

)
.

Since λ > |am| = ‖D‖, we have 0 < −
(
(D− λ)

−1y, y
)
≤ (λ− |am|)−1‖y‖2. Furthermore, we know

from lemma 2.17(iii) that x(ϑ) = y(π − ϑ) for all ϑ ∈ (0, π) which implies ‖x‖2 = ‖y‖2. Thus we
have

s1(λ)[x] ≤ ‖x‖2
2 (λ− |am|)−1(µ− λ)(µ+ λ− 2|am|).

Set λ0 := λm++1 − 1
2(µ + λm++1 − 2|am|). Then it follows from (4.40) that λ0 ∈ (|am|, λm++1).

Furthermore, we have µ− λ0 < 0 and µ+ λ0 − 2|am| = 1
2(µ+ λm++1)− |am| > 0 by (4.40). Thus

it follows

s1(λ0)[x] ≤ ‖x‖2
2 (λ0 − |am|)−1(µ− λ0)(µ+ λ0 − 2|am|) < 0.

Recall that νn, n ∈ N, denote the eigenvalues of BB∗.

Lemma 4.34. (i) If there exists j0 ≥ 2 such that

√
νn0+j0 −

√
νn0+j0−1 > 2 |am| and

√
νn0+j0+1 −

√
νn0+j0 > 2 |am|, (4.41)

then n0 = m+.

(ii) If ‖B∗−1‖−1 > 2|am|, then the angular operator A has no eigenvalues in [−|am|, |am| ] and
we have n0 = 0 and m+ = 0.
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Proof. (i) From standard perturbation theory, see remark 3.12, we know that

sign(n)
√
ν|n| − |am| ≤ λn ≤ sign(n)

√
ν|n| + |am|, n ∈ Z \ {0}. (4.42)

Hence (4.41) implies that the angular operator A has exactly one eigenvalue in the interval
[√νn0+j0 − |am|, √νn0+j0 + |am| ]. Since by (4.41) and (4.39) both λn0+j0 and λm++j0 lie in
this interval, it follows that n0 = m+.

(ii) Assume that ‖B∗−1‖−1 > 2|am|. Then we have
√
ν1 > 2 |am| for the smallest eigenvalue ν1 of

BB∗. From the estimate (4.42) we obtain that

λ−1 ≤ −
√
ν1 + |am| < −|am|. and λ1 ≥

√
ν1 − |am| > |am|

Hence the angular operator A has no eigenvalues in [−|am|, |am| ] which implies m+ = 0.
For λ > |am| define the set N (λ) as in the proof of lemma 4.33. Since n0 is equal to the maximal
dimension of subspaces of N (λ) for λ ∈ (|am|, λm++1), it suffices to show that N (λ) = {0} for λ
close enough to |am|. To this end fix an arbitrary x ∈ D(s1) = D(B∗). Then it is easy to see that
for all λ > |am|

s1(λ)[x] =
(
x, (−D − λ)x

)
−
(
B∗x, (D − λ)−1B∗x

)
≥ (−|am| − λ) ‖x‖2

2 + (|am|+ λ)−1 ‖B∗x‖2
2

≥ (|am|+ λ)−1 ‖x‖2
2

(
‖B∗−1‖−2 − (λ+ |am|)2

)
.

Since by assumption ‖B∗−1‖−1 > 2|am|, we have s1(λ)[x] > 0 for all x ∈ D(B∗) \ {0} if λ is
sufficiently close to |am|.

Recall that for fixed parameters a, m and ω, we have lim
|k|→∞

‖B−1‖ = 0 by lemma 3.34. Hence, if

the norm of the wave number k is large enough, then the angular operator has no eigenvalues in
[−|am|, |am| ] and the index shift n0 vanishes.

4.2.2 Estimates for the eigenvalues of BB∗BB∗BB∗

In the minimax principle in theorem 4.32, the eigenvalues of BB∗ appear in the formula for the
eigenvalues of the angular operator A. The operator BB∗ is the selfadjoint realisation of a formal
second order differential expression, so Sturm’s comparison theorem allows us to find upper and
lower bounds for the eigenvalues of BB∗.

Definition 4.35. A formal differential expression τ is called a Sturm-Liouville differential expres-
sion on (0, π) if it has the form

τu :=
1
r

(
− d

dϑ

(
p

d
dϑ
u
)

+ qu

)
on (0, π) (SL)

where p, q and r are measurable functions of ϑ on (0, π) such that p, q are real functions, p has
no zeros, r is positive almost everywhere on (0, π) and |r| and |p−1| are locally integrable on (0, π)
(cf. section 2.1). The differential equation τu = 0 is called a Sturm-Liouville differential equation
on (0, π).

It is well known that for every real λ there is a unique solution of the initial value problem

(τ − λ)u = 0, u(ϑ0) = u0, p(ϑ0)u′(ϑ0) = u1

for given ϑ0 ∈ (0, π) and arbitrary initial values u0, u1 ∈ R, see, e.g., [Wei87, chap. 2].
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Fix λ ∈ R and let u be a nontrivial real solution of (τ − λ)u = 0. Then there are real valued
differentiable functions ρ and δ such that

p(ϑ)u′(ϑ) + iu(ϑ) = ρ(ϑ) eiδ(ϑ), ϑ ∈ (0, π).

The transformation from u and pu′ to the new variables δ and ρ is known as Prüfer substitution,
see [Wei87, chap. 13]. Although the phase function δ is determined only modulo 2π, we can always
choose it such that it is differentiable. Obviously, u vanishes at a point ϑ0 ∈ (0, π) if and only if
δ(ϑ0) ∈ {nπ : n ∈ Z}. Furthermore, δ and ρ satisfy the differential equations

δ′(ϑ) =
1

p(ϑ)
cos2 δ(ϑ)− (q(ϑ)− λ) sin2 δ(ϑ), ϑ ∈ (0, π),

ρ′(ϑ) =
( 1
p(ϑ)

+ q(ϑ)− λ
)

sin δ(ϑ) cos δ(ϑ), ϑ ∈ (0, π).

Consider two Sturm-Liouville differential equations

− d
dϑ

(
p〈1〉

d
dϑ
u〈1〉

)
+ q〈1〉u〈1〉 = 0, − d

dϑ

(
p〈2〉

d
dϑ
u〈2〉

)
+ q〈2〉u〈2〉 = 0 (4.43)

on the interval (0, π). For solutions u〈1〉 and u〈2〉 we denote the corresponding phase functions by
δ〈1〉 and δ〈2〉, respectively. If p〈1〉− p〈2〉 and q〈2〉− q〈1〉 are either positive or negative and if the sign
of (δ〈1〉 − δ〈2〉) is known at one point ϑ0 ∈ (0, π), then Sturm’s comparison theorem allows us to
compare the phase functions on the whole interval (0, π).

Theorem 4.36 (Sturm’s comparison theorem). In (4.43), let p〈1〉 ≥ p〈2〉 > 0 and q〈1〉 ≥ q〈2〉.

(i) If there exists a ϑ0 ∈ (0, π) with δ〈2〉(ϑ0) ≥ δ〈1〉(ϑ0), then δ〈2〉(ϑ) ≥ δ〈1〉(ϑ) for all ϑ ∈ (ϑ0, π).
If there exists a ϑ0 ∈ (0, π) with δ〈2〉(ϑ0) > δ〈1〉(ϑ0), then δ〈2〉(ϑ) > δ〈1〉(ϑ) for all ϑ ∈ (ϑ0, π).

(ii) If there exists a ϑ0 ∈ (0, π) with δ〈2〉(ϑ0) ≤ δ〈1〉(ϑ0), then δ〈2〉(ϑ) ≤ δ〈1〉(ϑ) for all ϑ ∈ (0, ϑ0).
If there exists a ϑ0 ∈ (0, π) with δ〈2〉(ϑ0) < δ〈1〉(ϑ0), then δ〈2〉(ϑ) < δ〈1〉(ϑ) for all ϑ ∈ (0, ϑ0).

(iii) If there exist ϑ0, ϑ1 ∈ (0, π) with δ〈2〉(ϑ0) ≥ δ〈1〉(ϑ0) and q〈1〉(ϑ) > q〈2〉(ϑ) for all ϑ ∈ (ϑ0, ϑ1),
then δ〈2〉(ϑ) > δ〈1〉(ϑ) for all ϑ ∈ (ϑ0, π).

(iv) If there exist ϑ0, ϑ1 ∈ (0, π) with δ〈2〉(ϑ0) ≤ δ〈1〉(ϑ0) and q〈1〉(ϑ) > q〈2〉(ϑ) for all ϑ ∈ (ϑ1, ϑ0),
then δ〈2〉(ϑ) > δ〈1〉(ϑ) for all ϑ ∈ (0, ϑ0).

For a proof, we refer the reader to [Wei87, theorem 13.2]. If the solutions u〈1〉 and u〈2〉 have only
finitely many zeros in a right neighbourhood of 0, then the phase functions δ〈1〉 and δ〈2〉 can be
continuously extended to 0 and (iii) holds also for ϑ0 = 0. Analogously, if the solutions have only
finitely many zeros in a left neighbourhood of π, then the phase functions can be continuously
extended to π and and (iv) holds also for ϑ0 = π.

If every solution u of τu = 0 has infinitely many zeros, then the equation is called oscillatory.
Now we use the comparison theorem to compare the eigenvalues of selfadjoint differential operators
associated with Sturm-Liouville differential expressions (SL). The next theorem is an application
of theorem [Wei87, theorem 14.10].

Theorem 4.37. On (0, π) we consider the Sturm-Liouville differential expressions

r〈1〉 = − d
dϑ

p〈1〉
d
dϑ

+ q〈1〉 and r〈2〉 = − d
dϑ

p〈2〉
d
dϑ

+ q〈2〉

with p〈1〉 ≥ p〈2〉 and q〈1〉 ≥ q〈2〉.
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For j = 1, 2, let R〈j〉 be a selfadjoint realisation of r〈j〉 in L 2((0, π),dϑ) with separated boundary
conditions with discrete point spectrum only which is bounded from below. Further, we assume
that all eigenfunctions ψ〈1〉 of r〈1〉 and ψ〈2〉 of r〈2〉 can be continuously extended to 0 and π by
ψ〈1〉(0) = ψ〈1〉(π) = 0 and ψ〈2〉(0) = ψ〈2〉(π) = 0. For j = 1, 2 let

λ
〈j〉
1 < λ

〈j〉
2 < · · · < λ

〈j〉
N〈j〉

be the sequence of eigenvalues of R〈j〉 where N 〈j〉 ∈ N∪{∞}. If N 〈j〉 = ∞, then the sequence above
has to be understood as the infinite series λ〈j〉1 < λ

〈j〉
2 < . . .

Then for all integers n ≤ N 〈1〉, N 〈2〉 we have

λ〈2〉n ≤ λ〈1〉n .

Proof. Let ψ〈j〉m be the (up to a constant factor unique) eigenfunction of R〈j〉 with eigenvalue λ〈j〉m .
By [Wei87, theorem 14.10] we know that the mth eigenfunction ψ〈j〉m has exactly m− 1 zeros in the
interval (0, π). If we denote the corresponding phase functions by δ(ϑ, ψ〈j〉m , λ

〈j〉
m ) and choose them

such that they are zero at ϑ = 0, we obtain

δ(0, ψ〈1〉m , λ〈1〉m ) = δ(0, ψ〈2〉m , λ〈2〉m ) = 0,

δ(π, ψ〈1〉m , λ〈1〉m ) = δ(π, ψ〈2〉m , λ〈2〉m ) = mπ
(4.44)

for all integers m ≤ N 〈1〉, N 〈2〉. Now fix n ∈ N with n ≤ N 〈1〉, N 〈2〉. Then for all λ〈2〉m with
λ
〈2〉
m > λ

〈1〉
n it follows q〈1〉 − λ

〈1〉
n > q〈2〉 − λ

〈2〉
m . Now (4.44) together with statement (iii) in the

comparison theorem 4.36 and the note thereafter yields

nπ = δ(π, ψ〈1〉n , λ〈1〉n ) < δ(π, ψ〈2〉m , λ〈2〉m ) = mπ.

By the above inequality, we have that λ〈2〉m > λ
〈1〉
n implies n < m. Hence n ≥ m implies λ〈2〉m ≤ λ

〈1〉
n

and the theorem is proved if we choose n = m.

Next, we use the preceding theorem to estimate the eigenvalues of BB∗. The selfadjoint operator
BB∗ is associated with the Sturm-Liouville differential expression

b :=
( d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)(
− d

dϑ
+
k + 1

2

sinϑ
+ aω sinϑ

)
= − d2

dϑ2
+ q(ϑ), ϑ ∈ (0, π).

with

q(ϑ) :=
(k + 1

2)2 − (k + 1
2) cosϑ

sin2 ϑ
+ a2ω2 sin2 ϑ+ aω cosϑ+ 2(k + 1

2)aω, ϑ ∈ (0, π). (4.45)

Remark 4.38. The operator BB∗ fulfils the assumptions on R〈1〉 and R〈2〉 of theorem 4.37 for
k ∈ R \ (−1, 0).

Proof. It follows from lemma B.2 in the appendix with m = 0 that for k ∈ R\(−2, 1) the differential
expression b is in the limit point case both at 0 and at π, hence for a selfadjoint realisation of b no
boundary conditions are needed. If k ∈ (−2,−1], then b is in the limit point case at 0 and in the
limit circle case at π; if k ∈ [0, 1), then b is in the limit circle case at π and in the limit point case
at 0. In both cases all selfadjoint realisations of b are given by separated boundary conditions.
Since the operator BB∗ is positive, its spectrum is bounded from below. Furthermore, B−1 is com-
pact by lemma 3.22, hence BB∗ has discrete point spectrum only. From the subsequent lemma 5.1
it follows that for k ∈ R \ (−1, 0) all functions in the domain of B∗ converge to 0 for ϑ → 0 and
ϑ → π, in particular, all eigenfunctions of BB∗ can be extended continuously to the points 0 and
π with value 0.
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Our goal is to find suitable potentials q+ > q and q− < q such that there are corresponding
selfadjoint realisations R± of b± = − d2

dϑ2 +q± that satisfy the assumptions on the operators R〈1〉 and
R〈2〉 of theorem 4.37, respectively. Then the eigenvalues of R± yield estimates for the eigenvalues
of BB∗.

We define the following test potentials

q〈−〉(ϑ) :=
(k + 1

2)2 − (k + 1
2) cosϑ

sin2 ϑ
+ Ω−, ϑ ∈ (0, π), (4.46)

q〈+〉(ϑ) :=
(k + 1

2)2 − (k + 1
2) cosϑ

sin2 ϑ
+ Ω+, ϑ ∈ (0, π), (4.47)

with

Ω− := 2(k + 1
2) aω − |aω|, (4.48)

Ω+ :=

a
2ω2 + 1

4 + 2(k + 1
2) aω if 2aω /∈ [−1, 1],

2(k + 1
2) aω + |aω| if 2aω ∈ [−1, 1].

(4.49)

Theorem 4.39. Let {νn : n ∈ N} be the spectrum of BB∗ enumerated as described in remark 4.31.
Then the following estimates hold.

max
{
0,
(
|k + 1

2 | −
1
2 + n

)2 + Ω−
}
≤ νn ≤

(
|k + 1

2 | −
1
2 + n

)2 + Ω+. (4.50)

Proof. Define the Sturm-Liouville differential expressions

r〈±〉 := − d2

dϑ2
+ q〈±〉 on (0, π)

and their corresponding realisations R〈±〉 in L 2((0, π),dϑ) with domain D(R〈±〉) := D(BB∗). Note
that R〈+〉 − BB∗ and R〈−〉 − BB∗ are bounded and that for ω = 0 we have R〈+〉 = R〈−〉 = BB∗.
Thus it follows from remark 4.38 that also the operators R〈±〉 satisfy the conditions on R〈1〉 and
R〈2〉 of theorem 4.37. Furthermore, we have for all ϑ ∈ (0, π)

a2ω2 sin2 ϑ+ aω cosϑ+ 2(k + 1
2)aω ≥ a2ω2 + 1

4 + 2(k + 1
2) aω + min

ϑ∈[0,π]
{−(aω cosϑ− 1

2)2}

= a2ω2 + 1
4 + 2(k + 1

2) aω − (|aω|+ 1
2)2

= 2(k + 1
2) aω − |aω|

= Ω−,

a2ω2 sin2 ϑ+ aω cosϑ+ 2(k + 1
2)aω ≤ a2ω2 + 1

4 + 2(k + 1
2) aω + max

ϑ∈[0,π]
{−(aω cosϑ− 1

2)2}

= a2ω2 + 1
4 + 2(k + 1

2) aω −

{
0 if 2aω /∈ [−1, 1],
(|aω| − 1

2)2 if 2aω ∈ [−1, 1]

=

{
a2ω2 + 1

4 + 2(k + 1
2) aω if 2aω /∈ [−1, 1],

2(k + 1
2) aω + |aω| if 2aω ∈ [−1, 1]

= Ω+,

thus it follows that q〈−〉 ≤ q ≤ q〈+〉.
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Finally, we have to determine the eigenvalues of R〈±〉. The computation of the eigenvalues of R〈±〉

is similar to the computation of the eigenvalues of the angular operator in the case a = 0, see
section 3.1. We have to solve the differential equations(

− d2

dϑ2
+

(k + 1
2)2 − (k + 1

2) cosϑ
sin2 ϑ

+ Ω± − ν

)
ψ(ϑ) = 0, ϑ ∈ (0, π) (4.51)

with functions ψ ∈ D(R〈±〉) = D(BB∗), that is, with functions satisfying the integrability condition

π∫
0

|ψ(ϑ)|2 dϑ <∞.

If we apply the transformation of the independent variable

x = 1
2(1 + cosϑ), ϑ ∈ (0, π),

then differentiation with respect to ϑ becomes d
dϑ = −

√
x(1− x) d

dx ; the ansatz

v(x) = xα(1− x)βψ(ϑ(x)) with α := 1
2 |k|+

1
4 , β := 1

2 |k + 1|+ 1
4

yields the equivalent differential equation

x(1− x)v′′(x) + (2α+ 1
2 − (1 + 2α+ 2β)x)v′(x) + (ν − Ω± − (α+ β)2)v(x) = 0, x ∈ (0, 1);

and the integrability condition becomes

1∫
0

|v(x)|2 x−(2α+1)(1− x)−(2β+1) dx < ∞.

Note that this system is identical to (3.13 a) with λ2 substituted by ν − Ω±. We already saw in
lemma 3.3 that for ν−Ω± ≥ 0 this equation has a solution satisfying both the differential equation
and the integrability condition if and only if

ν − Ω± ∈
{(
|k + 1

2 | −
1
2 + n

)2 : n ∈ N
}
.

The corresponding solutions are the Jacobi polynomials

v(x) = F (−(n− 1), n+ |k|+ |k + 1|; |k|+ 1; x).

In the case n = 1 this polynomial reduces to a constant function implying that the corresponding
eigenfunction ψ1(ϑ) = xα(1 − x)βF (0, 1 + |k| + |k + 1|; |k| + 1;x) has no zero in (0, π). Since the
mth eigenvalue of R〈±〉 has exactly m − 1 zeros in (0, π), it follows that he smallest eigenvalue is
ν±1 := (|k + 1

2 |+
1
2)2 + Ω±.

Thus all eigenvalues of R〈±〉 are given by

ν±n =
(
|k + 1

2 | −
1
2 + n

)2 + Ω±, n ∈ N.

Application of theorem 4.37 yields ν−n ≤ νn ≤ ν+
n . Furthermore, since BB∗ is a strictly positive

operator (see, e.g., lemma 3.30), we have νn > 0 for all n ∈ N.
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4.2.3 Explicit bounds for the eigenvalues of A

As before, λn denotes the analytic continuation of the eigenvalue λn = sign(n)
(
|k + 1

2 | −
1
2 + n

)
in

the case a = 0. The following theorem combines theorems 4.39 and 4.32.

Theorem 4.40. Let λm++n be the nth eigenvalue of the angular operator A greater than |am|.
Then

max
{
|am|, Re

(√(
|k + 1

2 | −
1
2 + n0 + n

)2 + Ω− − |am|
)}

≤ λm++n ≤
√(

|k + 1
2 | −

1
2 + n0 + n

)2 + Ω+ + |am|, n ∈ N.

The quantities

Ω− = 2(k + 1
2) aω − |aω|,

Ω+ =

2(k + 1
2) aω + |aω| if 2aω ∈ [−1, 1],

a2ω2 + 1
4 + 2(k + 1

2) aω if 2aω /∈ [−1, 1]

have been introduced in (4.48) and (4.49); the index shift n0 = min
λ>|am|

dimL(−∞,0)S1(λ) has been

defined in theorem 4.19.

That the upper bound is always real is proved in remark 4.43 at the end of this section. A
result similar to theorem 4.40 follows directly from standard perturbation theory as explained in
section 3.2 even without the need to determine n0. For convenience, we state this result in the next
theorem.

Theorem 4.41. Let λn be the nth eigenvalue of the angular operator A with the ordering described
above. Then for all n ∈ N we have

Re
(√(

|k + 1
2 | −

1
2 + n

)2 + Ω−
)
−|am| ≤ λn ≤

√(
|k + 1

2 | −
1
2 + n

)2 + Ω+ + |am|.

The functions Ω− and Ω+ are the same as in theorem 4.40.

Proof. In theorem 4.39 we have already provided estimates for the eigenvalues of BB∗. Since B
and B∗ are invertible, the spectrum of B =

(
0 B
B∗ 0

)
is given by σp(B) = {±√νn : νn ∈ σ(BB∗)}.

Now, application of analytic perturbation theory to the operators B and A with m as perturbation
parameter yields

√
νn − |am| ≤ λn ≤

√
νn + |am|.

In the following, we denote the lower bounds in theorems 4.40 and 4.41 by λ[l] and λ[l,SPT], and the
upper bound by λ[u] and λ[u,SPT], that is,

λ[l]
n := max

{
|am|, Re

(√(
|k + 1

2 | −
1
2 + n

)2 + Ω− − |am|
)}
, (4.52)

λ[l,SPT]
n := Re

(√(
|k + 1

2 | −
1
2 + n

)2 + Ω−
)
− |am|, (4.53)

λ[u]
n := λ

[u,SPT]
n :=

√(
|k + 1

2 | −
1
2 + n

)2 + Ω+ + |am|. (4.54)

The next lemma follows immediately from 4.34.
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Lemma 4.42. (i) If there exists j0 ≥ 2 such that

λ
[l]
n0+j0

− λ
[u]
n0+j0−1 > 0 and λ

[l]
n0+j0+1 − λ

[u]
n0+j0

> 0, (4.55)

then n0 = m+.

(ii) If λ[l]
1 > |am|, then the angular operator A has no eigenvalues in [−|am|, |am| ] and we have

n0 = 0 and m+ = 0.

Note that we have

lim
N→∞

λ
[l]
N+1 − λ

[u]
N = −2|am|+ lim

N→∞

√
(|k + 1

2 |+N + 1
2)2 + Ω− −

√
(|k + 1

2 |+N − 1
2)2 + Ω+

= −2|am|+ 1;

therefore, (i) of lemma 4.42 holds whenever |am| < 1
2 .

It should be noted that for large k the bounds λ[l] and λ[u] are approximately linear in the wave
number k. The offset ±|am| is due to the fact that the additive term am cosϑ

(−1 0
0 1

)
arising in the

angular operator is treated as a perturbation.

Remark 4.43. The upper bound λ[u]
n is always real.

Proof. Assume that 2aω ∈ [−1, 1]. Since n ≥ 1 and n0 ≥ 0, the radicand in λ
[u]
n can be estimated

by (
|k + 1

2 | −
1
2 + n0 + n

)2 + Ω+ ≥ (|k + 1
2 |+

1
2)2 + 2(k + 1

2) aω + |aω|
≥ (|k + 1

2 |+
1
2)2 − |k + 1

2 | = |k + 1
2 |

2 + 1
4 > 0.

If 2aω /∈ [−1, 1], then the radicand is also positive which can be seen from(
|k + 1

2 | −
1
2 + n0 + n

)2 + Ω+ ≥
(
|k + 1

2 |+
1
2

)2 + a2ω2 + 1
4 + 2(k + 1

2) aω
= (|k + 1

2 |+
1
2)2 + (aω + k + 1

2)2 + 1
4 − |k + 1

2 |
2

= |k + 1
2 |+

1
2 + (aω + k + 1

2)2 > 0.

Observe that for a = 0 we obtain n0 = 0 from lemma 4.34 and hence

λ
[u]
n = λ

[l]
n = 1

2 |2k + 1| − 1
2 + n, n ≥ 1,

which coincides with the exact formula for the eigenvalues λn obtained in section 3.1.2 in the case
a = 0. Hence it can be expected that at least for small a the estimate presented in theorem 4.40
are better than those obtained in sections 3.3.3 and 5.2.
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Chapter 5

An alternative lower bound for the
modulus of the eigenvalues of A

The bounds for the eigenvalues of the angular operator derived in the previous chapters all contain
an additive term ±|am|. In this chapter we establish another lower bound for the modulus of the
eigenvalues of A that does not depend on am.
In the first section, we investigate the behaviour of functions f ∈ D(B∗) and g ∈ D(B) in a
neighbourhood of 0 and π. Then we introduce certain semibounded sesquilinear forms which give
rise to a new lower bound for the modulus of the eigenvalues of the angular operator A. To this end,
A is subjected to a unitary transformation such that, under certain assumptions on the parameters
k, a and ω, the intersection of the spectra of the operators on the diagonal of the transformed
operator is empty. Operator matrices of this type have been investigated in [LT01]. All entries
of the transformed operator matrix are unbounded. However, the gap between the spectra of the
diagonal entries provides a lower bound for the modulus of the eigenvalues of A.

5.1 Unitary transformation of A

5.1.1 Characterisation of the domains of B and B∗

Recall that the angular operator

A =
(
−D B
B∗ D

)
, D(A) = D(B∗)⊕D(B)

is selfadjoint on the Hilbert space L 2((0, π),dϑ)2; the operator D is a bounded multiplication
operator and B is a closed differential operator of first order (see (3.1)), formally they are given by

D = am cosϑ, B =
d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ, ϑ ∈ (0, π).

In the following lemma we describe the behaviour of functions f ∈ D(B∗) and g ∈ D(B) in a
neighbourhood of the endpoints of the interval (0, π). We show that for k ∈ R\[−1, 0] these functions
tend to zero at the endpoints at least of order

√
ϑ and

√
π − ϑ, respectively. For k ∈ {−1, 0} the

same asymptotic behaviour is proved in the subsequent remark 5.2 for functions f, g such that
(
f
g

)
is an eigenfunction of A. In the proof of lemma 5.1 we use (3.45 a) to estimate the quotient of
tangent functions; recall that this estimate, and alternatively estimate (3.45 c), has been used in
lemma 3.30 and lemma 3.34 to estimate the norm of ‖B−1‖, thus entering the lower bound for the
eigenvalues of A obtained in theorem 3.35. Although, in general, estimate (3.45 c) gives a sharper

101
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lower bound for the modulus of the eigenvalues of A, it cannot be used to obtain a result similar
to that of lemma 5.1.

In the following lemma we again attach a subscript k to the operators B and B∗ to indicate their
dependence on the wave number k.

Lemma 5.1. For k ∈ R \ [−1, 0] let f ∈ D(B∗
k), g ∈ D(Bk). Then we have

|f(ϑ)| ≤ c(k) Γ(k, ω) ‖B∗
kf‖2

√
ϑ(π − ϑ), ϑ ∈ (0, π), (5.1 a)

|g(ϑ)| ≤ c(k) Γ(k, ω) ‖Bkg‖2

√
ϑ(π − ϑ), ϑ ∈ (0, π) (5.1 b)

with Γ(k, ω) ∈ R from lemma 3.30 and

c(k) =
2

1
2
(|2k+1|−2)√

π(|2k + 1| − 1)
.

For k = 0 and arbitrary ε > 0 there exist constants Cε,∗ and Cε such that for all f ∈ D(B∗
0) and

g ∈ D(B0)

|f(ϑ)| ≤ Cε,∗ ‖B∗
0f‖2

√
π − ϑϑ

1
2
−ε, |g(ϑ)| ≤ Cε ‖B0g‖2

√
ϑ (π − ϑ)

1
2
−ε, ϑ ∈ (0, π). (5.2)

Also for k = −1 there exist constants Cε,∗ and Cε such that for all f ∈ D(B∗
−1) and g ∈ D(B−1)

|f(ϑ)| ≤ Cε,∗ ‖B∗
−1f‖2

√
ϑ (π − ϑ)

1
2
−ε, |g(ϑ)| ≤ Cε ‖B−1g‖2

√
π − ϑϑ

1
2
−ε, ϑ ∈ (0, π). (5.3)

Proof. The case k ∈ {−1, 0} is treated separately at the end of the proof.

First we prove (5.1 a). For k > 0 and f ∈ D(B∗
k) the Cauchy-Schwarz inequality shows for arbitrary

ϑ ∈ (0, π)

|f(ϑ)| = |B∗−1
k B∗

kf(ϑ)| =
∣∣∣∣ 1
ϕ(ϑ)

π∫
ϑ

ϕ(t)B∗
kf(t) dt

∣∣∣∣
≤

π∫
ϑ

eaω(cos t−cosϑ)

(
tan ϑ

2

tan t
2

)k+ 1
2

|B∗
kf(t)|dt

≤ sup
{
eaω(cos t−cosϑ) : 0 < ϑ ≤ t < π

}
‖B∗

kf‖2

( π∫
ϑ

(
tan ϑ

2

tan t
2

)2k+1

dt

) 1
2

.

Application of the estimate tan ϑ
2

tan t
2

≤ ϑ
t (see (3.45 a)) yields

|f(ϑ)| ≤ Γ(k, ω) ‖B∗
kf‖2 ϑ

k+ 1
2

( π∫
ϑ

t−2k−1 dt

) 1
2

=
Γ(k, ω) ‖B∗

kf‖2√
2k

(
1−

(
ϑ

π

)2k) 1
2√

ϑ.

The well known equality zν − 1 =
ν∏
j=1

(z − e
2iπj

ν ) for natural numbers ν yields

1−
(
ϑ

π

)2k

= −
2k∏
j=1

(
ϑ

π
− e

2iπj
2k

)
=

1
π

(π − ϑ)
2k−1∏
j=1

(
ϑ

π
− e

2iπj
2k

)
.
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Hence we can continue the estimate of |f(ϑ)|, using |ϑπ − e
2iπj
2k | ≤ 2 for j = 1, . . . , 2k − 1:

|f(ϑ)| ≤
Γ(k, ω) ‖B∗

kf‖2√
2kπ

√
ϑ(π − ϑ)

2k−1∏
j=1

∣∣∣∣ϑπ − e
2iπj
2k

∣∣∣∣ 12 ≤
2k−

1
2 Γ(k, ω) ‖B∗

kf‖2√
2kπ

√
ϑ(π − ϑ).

For k < −1 the assertions are obtained analogously if we use equation (3.45 b) instead of equa-
tion (3.45 a) to estimate the term containing the tangent function:

|f(ϑ)| = |B∗−1
k B∗

kf(ϑ)| =
∣∣∣∣ 1
ϕ(ϑ)

0∫
ϑ

ϕ(t)B∗
kf(t) dt

∣∣∣∣
≤ Γ(k, ω)

∣∣∣∣
0∫
ϑ

(
tan ϑ

2

tan t
2

)−|k+ 1
2
|
|B∗

kf(t)| dt
∣∣∣∣

≤ Γ(k, ω) ‖B∗
kf‖2

( ϑ∫
0

(
tan t

2

tan ϑ
2

)|2k+1|
dt

) 1
2

≤ Γ(k, ω) ‖B∗
kf‖2

( ϑ∫
0

(
π − ϑ

π − t

)|2k+1|
dt

) 1
2

=
Γ(k, ω) ‖B∗

kf‖2

√
π − ϑ√

|2k + 1| − 1

(
1−

(
π − ϑ

π

)−1+|2k+1|
) 1

2

=
Γ(k, ω) ‖B∗

kf‖2

√
π − ϑ√

|2k + 1| − 1

(|2k+1|−1∏
j=1

π − ϑ

π
− e

2iπj
|2k+1|−1

) 1
2

≤
2

1
2
(|2k+1|−2) Γ(k, ω) ‖B∗

kf‖2√
π(|2k + 1| − 1)

√
ϑ(π − ϑ).

Next we prove (5.1 b). For k > 0 and g ∈ D(Bk)

|g(ϑ)| = |B−1
k Bkg| =

∣∣∣∣ 1
ψ(ϑ)

ϑ∫
0

ψ(t)Bkg(t) dt
∣∣∣∣

≤
ϑ∫

0

eaω(cosϑ−cos t)

(
tan t

2

tan ϑ
2

)k+ 1
2

|Bkg(t)| dt

≤ sup
{
eaω(cosϑ−cos t) : 0 < t ≤ ϑ < π

}
‖Bkg‖2

 ϑ∫
0

(
tan t

2

tan ϑ
2

)2k+1


1
2

.



104 5.1. Unitary transformation of A

The estimate tan t
2

tan ϑ
2

≤ π−ϑ
π−t (see equation (3.45 b)) yields

|g(ϑ)| ≤ Γ(k, ω) ‖Bkg‖2 (π − ϑ)k+
1
2

( ϑ∫
0

(π − t)−2k−1 dt

) 1
2

=
Γ(k, ω)‖Bkg‖2√

2k

√
π − ϑ

(
1− (π − ϑ)2k

π2k

) 1
2

=
Γ(k, ω)‖Bkg‖2√

2πk

√
ϑ(π − ϑ)

2k−1∏
j=1

∣∣∣∣π − ϑ

π
− e

2iπj
2k

∣∣∣∣ 12
≤ 2k−

1
2 Γ(k, ω) ‖Bkg‖2√

2πk

√
ϑ(π − ϑ).

The calculation for k < −1 is similar.

It remains to prove the assertions for k ∈ {−1, 0}. We consider the case k = 0 only. For k = −1, the
result can either be obtained by similar calculations or they can be derived by symmetry arguments,
cf. remark 3.29. So we assume k = 0 and fix ε > 0.
Since 0 < tan ϑ

2 ≤ tan t
2 < 1 for all 0 < ϑ ≤ t < π, it follows immediately that

|f(ϑ)| ≤ Γ(0, ω) ‖B∗
0f‖2

( π∫
ϑ

tan ϑ
2

tan t
2

dt
) 1

2

≤
√

2 Γ(0, ω) ‖B∗
0f‖2

√
π − ϑ,

|g(ϑ)| ≤ Γ(0, ω) ‖B0g‖2

( ϑ∫
0

tan t
2

tan ϑ
2

dt
) 1

2

≤
√

2 Γ(0, ω) ‖B0g‖2

√
ϑ,

(5.4)

hence there are constants C̃∗ and C̃ such that |f(ϑ)| ≤ C̃∗‖B∗
0f‖2

√
π − ϑ and |g(ϑ)| ≤ C̃‖B0g‖2

√
ϑ

for ϑ ∈ (0, π). Since for every a ∈ (0, π) the functions

(0, a ] : ϑ 7→ (π − ϑ)
1
2
−ε and [ a, π) : ϑ 7→ ϑ

1
2
−ε

are strictly positive, it suffices for the proof of (5.2) to show that the limites lim
ϑ→0

(ϑ−1+2ε|f(ϑ)|2)
and lim

ϑ→π
((π − ϑ)−1+2ε|g(ϑ)|2) exist and are finite.

A straightforward evaluation of the integrals in (5.4) leads to

|f(ϑ)| ≤ Γ(0, ω) ‖B∗
0f‖2

( π∫
ϑ

tan ϑ
2

tan t
2

dt
) 1

2

=
√

2 Γ(0, ω) ‖B∗
0f‖2 (− tan ϑ

2 ln(sin ϑ
2 ))

1
2 ,

|g(ϑ)| ≤ Γ(0, ω) ‖B0g‖2

( ϑ∫
0

tan t
2

tan ϑ
2

dt
) 1

2

=
√

2 Γ(0, ω) ‖B0g‖2 (− cot ϑ2 ln(cos ϑ2 ))
1
2 .

Since

lim
ϑ→0

ϑ−1+2ε tan ϑ
2 ln(sinϑ) = lim

ϑ→0

tan ϑ
2

ϑ
(ϑ2ε ln(sinϑ)) = 0,

lim
ϑ→π

(π − ϑ)−1+2ε cot ϑ2 ln(cosϑ) = lim
ϑ→π

cot ϑ2
π − ϑ

((π − ϑ)2ε ln(cosϑ)) = 0,

(5.5)

the assertion is proved.
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For ε = 0 the limites in (5.5) do not exist, hence a decay, e.g., of arbitrary functions f ∈ D(B∗)
of order

√
ϑ for ϑ → 0 and k = 0 cannot be obtained with the methods applied in the proof of

the lemma. However, with the theory of ordinary differential equations, we can prove the following
remark.

Remark 5.2. Let k ∈ {−1, 0} and Ψ :=
(
f
g

)
be an eigenfunction of A. Then both f and g decay

of order
√
ϑ(π − ϑ) at ϑ = 0 and ϑ = π.

Proof. We show that for every eigenfunction Ψ of A there exists a positive number c such that
‖Ψ(ϑ)‖ ≤ c

√
ϑ(π − ϑ); here ‖ · ‖ denotes the usual norm on C2. To this end, we first rewrite the

differential equation (A−λ)u = 0 in the equivalent form σ1σ3(A−λ)u = 0 such that the differential
operators are placed on the diagonal of the new block operator matrix; explicitly

0 = σ1σ3(A− λ)u

=
(

0 1
1 0

)(
1 0
0 −1

)((
0 d

dϑ

− d
dϑ 0

)
+ k+ 1

2
sinϑ

(
0 1
1 0

)
+
(
−am cosϑ aω sinϑ
aω sinϑ am cosϑ

)
− λ

)
u

=
((

d
dϑ 0
0 d

dϑ

)
+ k+ 1

2
sinϑ

(
−1 0
0 1

)
+
(
−aω sinϑ −am cosϑ
−am cosϑ aω sinϑ

)
− λ

(
0 −1
1 0

))
u.

Now we show that for k ∈ {−1, 0} there is at least one solution that decays like
√
ϑ near 0. The

decay like
√
π − ϑ in a neighbourhood of π can be proved analogously. Note that

k+ 1
2

sinϑ

(
−1 0
0 1

)
= k+ 1

2
ϑ

(
−1 0
0 1

)
+
(
k+ 1

2
sinϑ −

k+ 1
2

ϑ

) (−1 0
0 1

)
,

where the second term on the right and side is analytic in a complex neighbourhood of 0. To ease
notation, we define the function

T (ϑ) :=
(
k+ 1

2
sinϑ −

k+ 1
2

ϑ

)(−1 0
0 1

)
+
(
−aω sinϑ −am cosϑ
−am cosϑ aω sinϑ

)
− λ

(
0 −1
1 0

)

in a sufficiently small neighbourhood of 0 such that T is analytic. Now we apply a transformation

such that the eigenvalues of the matrix in front of the singular term k+ 1
2

ϑ do not differ by an integer.
We assume k = 0 and set U0(ϑ) :=

(
ϑ 0
0 1

)
. (For k = −1 an appropriate transformation matrix is

U−1(ϑ) =
(

1 0
0 ϑ

)
.) We obtain

0 = U−1
0 σ1σ3(A− λ)U0U

−1
0 u

=
((

d
dϑ 0
0 d

dϑ

)
+

1
ϑ

(
−(k + 1

2) + 1 0
0 k + 1

2

)
+ U−1

0 TU0

)
U−1

0 u

=
((

d
dϑ 0
0 d

dϑ

)
+

1
ϑ

(
−k + 1

2 0
0 k + 1

2

)
+ U−1

0 TU0

)
U−1

0 u.

Since k = 0, both diagonal entries in the coefficient matrix of 1
ϑ are equal to 1

2 . Evaluation of the
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third term gives

U−1
0 T (ϑ)U0 =

1
ϑ

(
0 −(am cosϑ− λ)
0 0

)
+
(
k+ 1

2
sinϑ −

k+ 1
2

ϑ

) (−1 0
0 1

)
+
(
−aω sinϑ 0
−amϑ cosϑ aω sinϑ

)
− λ

(
0 0
ϑ 0

)

=
1
ϑ

(
0 −(am− λ)
0 0

)
+ am(1−cosϑ)

ϑ

(
0 1
0 0

)
+
(
k+ 1

2
sinϑ −

k+ 1
2

ϑ

) (−1 0
0 1

)
+
(
−aω sinϑ 0
−amϑ cosϑ aω sinϑ

)
− λ

(
0 0
ϑ 0

)

=:
1
ϑ

(
0 −(am− λ)
0 0

)
+ T0(ϑ). (5.6)

Note that T0 is analytic in a sufficiently small complex neighbourhood of 0. Summarising the
transformations above, we find that the equation (A− λ)u = 0 is equivalent to

TU−1
0 u :=

((
d
dϑ 0
0 d

dϑ

)
+ 1

ϑ T1 + T0(ϑ)
)
U−1

0 u = 0 (5.7)

with the constant matrix T1 =
(
−k+ 1

2
−(am+λ)

0 k+ 1
2

)
and the matrix function T0 defined in (5.6).

According to [CL55, chap. 4, theorem 4.1], a fundamental system W of the differential equation
Tw = 0 is given by

W (ϑ) = P (ϑ)ϑ−T1

where P (ϑ) = 1 +
∞∑
j=1

Pjϑ
j is an analytic function and

ϑ−T1 := e− log ϑ T1 = ϑ−
1
2

((
1 0
0 1

)
+
(

0 (am− λ) log ϑ
0 0

))
.

Thus a particular solution Ψ0 of the differential equation (A− λ)u = 0 in a neighbourhood of 0 is
given by

Ψ0(ϑ) = U0W (ϑ)
(

1
0

)
= ϑ−

1
2U0 P (ϑ)

((
1 0
0 1

)
+
(

0 (am− λ) log ϑ
0 0

))(
1
0

)
= ϑ−

1
2U0 P (ϑ)

(
1
0

)
= ϑ−

1
2 U0

(
1
0

)
+ ϑ

1
2 U0

∞∑
j=0

Pj+1ϑ
j

(
1
0

)

= ϑ
1
2

(
1
p21

)
+ ϑ

3
2

((
p11

0

)
+ U0

∞∑
j=0

Pj+2ϑ
j

(
1
0

))
,

where P1 =: (pij)i,j=1,2. Since the second term is analytic in a neighbourhood of 0 and tends to 0
for ϑ→ 0, there is a constant c0 such that ‖Ψ0(ϑ)‖ ≤ c0 |ϑ

1
2 | in a neighbourhood of 0. Analogously,

we find a solution Ψπ of (A − λ)u = 0 and a constant cπ such that ‖Ψπ(ϑ)‖ ≤ cπ|(π − ϑ)
1
2 | in

a neighbourhood of π − ϑ. If λ is an eigenvalue of A with eigenfunction Ψ, then we must have
Ψ = d0 Ψ0 = dπΨπ for some constants d0, dπ ∈ C because A is in the limit point case both at 0
and π. Combining the estimates for the decay of Ψ0 and Ψπ, we conclude that there must be a
constant c, such that ‖Ψ(ϑ)‖ ≤ c

√
ϑ(π − ϑ) for all ϑ ∈ (0, π).
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Remark 5.3. If we estimate the integrands in the proof of lemma 5.1 by means of exponential
functions (that is, if we use (3.45 c) instead of (3.45 a) and (3.45 b)), we can show that elements
of D(B∗) and D(B) decay like the square root only for one endpoint of the interval (0, π). For
instance, for k ≥ 0 we obtain

(i) |f(ϑ)| ≤ Γ(ω) ‖B∗f‖√
2k + 1

e−(2k+1)π (e(2k+1)(π−ϑ) − 1)
1
2 , f ∈ D(B∗),

(ii) |g(ϑ)| ≤ Γ(ω) ‖Bg‖√
2k + 1

(1− e−(2k+1)ϑ)
1
2 , g ∈ D(B). ♦

5.1.2 The transformed operator AU

As already mentioned at the beginning of this chapter, there is a unitary transformation that trans-
forms the angular operator into a block operator matrix whose diagonal entries have nonintersecting
spectrum. For the angular operator in the form

A =

(
−am cosϑ d

dϑ + k+ 1
2

sinϑ + aω sinϑ

− d
dϑ + k+ 1

2
sinϑ + aω sinϑ am cosϑ

)
=
(
−D B
B∗ D

)
,

only the off-diagonal entries are unbounded. The operators −D andD on the diagonal are bounded,
but their spectra are not separated, they even coincide:

σ(D) = σ(−D) = [−|am|, |am| ].

Transformation of A with the unitary matrix U = 1√
2

(
I I

−I I

)
leads to

AU := UAU−1 =

(
k+ 1

2
sinϑ + aω sinϑ d

dϑ + am cosϑ

− d
dϑ + am cosϑ −(k+

1
2

sinϑ + aω sinϑ)

)
=:

(
−DU BU
B∗
U DU

)
, (5.8)

where

BU := 1
2(B −B∗) +D = d

dϑ + am cosϑ,

DU := −1
2(B +B∗) = −

(
k+ 1

2
sinϑ + aω sinϑ

)
.

Recall that this transformation was applied already earlier in section 2.2. Since A is selfadjoint
and U is unitary, the operator AU with domain

D(AU ) = UD(A) =
{(

g + f
g − f

)
: f ∈ D(B∗), g ∈ D(B)

}
(5.9)

is also selfadjoint. Although the angular operator A is a block operator matrix, it is not clear
whether the operator matrix AU is also a block operator matrix since its domain is not given
explicitly as a direct sum of two submanifolds. In fact, the next remark shows that for k ∈ {−1, 0}
the block operator AU is not a block operator matrix.

Remark 5.4. For k ∈ {−1, 0} the operator AU is not a block operator matrix.

Proof. We have to show that for wave numbers k ∈ {−1, 0} the domain D(AU ) = UD(A) of AU
cannot be written as a direct sum D(AU ) = DU,1 ⊕ DU,2 with DU,1, DU,2 ∈ L 2((0, π),dϑ). We
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show the assertion for k = 0 only; the case k = −1 follows similarly. Let χ be a smooth function
on (0, π) with values in [ 0, 1 ], such that

χ ≡

{
1 in a neighbourhood of 0,
0 in a neighbourhood of π.

We consider the vector valued function χΨ1 with Ψ1(ϑ) = t(ϑ) ( 1
0 ) and t(ϑ) :=

(
tan ϑ

2

) 1
2 . Recall

that Ψ1, already defined in (2.16), is a solution of the differential equation AΨ = 0 and that it
lies left in L 2((0, π),dϑ). Hence χΨ1 lies in the domain of A, implying that U(χΨ1) = 1√

2
χt ( 1

1 )

lies in the domain of AU . On the other hand, DU (χt) diverges of order ϑ−
1
2 for ϑ → 0, hence it

is not square integrable. Consequently, the vector valued function χt ( 1
0 ) cannot be an element of

the domain of AU which proves the assertion.

Although in general AU is not a block operator matrix, the minimal operator Amin
U , defined by

D(Amin
U ) := UD(Amin) = U

{(
f
g

)
: f, g ∈ C∞0 (0, π)

}
= D(Amin),

Amin
U

(
f
g

)
:= AU

(
f
g

)
always is. We have already shown that Amin is essentially selfadjoint and that A is its selfadjoint
extension (see section 2.1.2). Therefore also Amin

U is essentially selfadjoint with closure AU .

For k ∈ R \ [−1, 0 ], we associate sesquilinear forms with the entries of AU as follows:

dU [u, v] := (u, DUv), u, v ∈ D(dU ) (5.10)

bU [u, v] := (u, BUv). u, v ∈ D(bU ). (5.11)

As domains we choose either D(dU ) = D(bU ) := D(B) or D(dU ) = D(bU ) := D(B∗).

Remark 5.5. (i) For k ∈ R \ [−1, 0 ], the forms are well defined with either domain; in fact, if we
use equation (5.1 b), it is easy to see that for all k ∈ R \ [−1, 0] and u, v ∈ D(B)

|dU [u, v]| = |(u, DUv)| =
∣∣∣∣
π∫

0

(
aω sinϑ+ k+ 1

2
sinϑ

)
u(ϑ)v(ϑ)dϑ

∣∣∣∣
≤ c(k)2 Γ(k, ω)2‖Bu‖ ‖Bv‖

π∫
0

(
aω sinϑ+ k+ 1

2
sinϑ

)
ϑ(π − ϑ) dϑ < ∞.

Since the integrand is bounded, we have proved that the form dU with domain D(B) is well defined.
Using this result and v ∈ D(B) we also find that

|bU [u, v]| = |(u,BUv)| = |(u, (B +DU +D)v)|
≤ |(u,Bv)|+ |(u,DUv)|+ |(u,Dv)| ≤ ‖u‖ ‖Bv‖+ |dU [u, v]|+ |am|‖u‖ ‖v‖ < ∞.

For u, v ∈ D(B∗) similar considerations show that dU and bU with domain D(B∗) are also well
defined.
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aω = 5
aω = −0.5
aω = −5

δ

ϑ
π3π

4
π
4

π
2

10

8

6

4

2

0

−2

−4

Figure 5.1. The plot shows the function δ of lemma 5.6 for k = 0 and aω = −5, −0.5, 5.

(ii) Also in the cases k = −1 and k = 0 the scalar products

(u, DUv) and (u, BUv)

are well defined if u and v are components of eigenfunctions of AU because in that case they also
show a decay proportional to

√
ϑ(π − ϑ) at ϑ = 0 and ϑ = π, see remark 5.2. ♦

In order to determine the spectrum of the operators ±DU = ∓(aω sinϑ+ k+ 1
2

sinϑ ) we have to find the
range of the function

δ : (0, π) −→ R, δ(ϑ) = aω sinϑ+
k + 1

2

sinϑ
. (5.12)

Sample plots of δ for the values k = 0 and aω ∈ {−5, −0.5, 5} are shown in figure 5.1.

Lemma 5.6. The function δ is not bounded from above if k ≥ 0 and not bounded from below if
k ≤ −1. In either case it has a global extremum δ(ϑ0) at ϑ0 given by


ϑ0 =

π

2
with δ0 := δ(ϑ0) = k + 1

2 + aω if εkaω ≤ |k + 1
2 |,

sinϑ0 =
√

aω

k + 1
2

with δ0 := δ(ϑ0) = 2εk

√
aω
(
k + 1

2

)
if εkaω ≥ |k + 1

2 |,

where εk := sign(k + 1
2).

Proof. Assume k ≥ 0. Then it is easy to see that

lim
ϑ→0

δ(ϑ) = lim
ϑ→π

δ(ϑ) = ∞. (5.13)

Since δ is continuously differentiable on (0, π), it is necessarily bounded from below. Its derivative

dδ
dϑ

(ϑ) =
cosϑ(aω sin2 ϑ− (k + 1

2))
sin2 ϑ

(5.14)
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shows that for aω ≤ k+ 1
2 there is only one local extremal point, namely ϑ0 = π

2 , and the behaviour
of δ at the boundary points 0 and π shows that the extremum is a global minimum.

For aω > k + 1
2 there are three extremal points of δ, given by ϑ1 = π

2 and ϑ2 6= ϑ3, such that

sinϑ2 = sinϑ3 =
√

k+ 1
2

aω . In order to find the global minimum of δ we evaluate the function δ at
the points ϑ1, ϑ1 and ϑ3:

δ(ϑ1) = aω + k + 1
2 ,

δ(ϑ2) = δ(ϑ3) = 2
√
aω
(
k + 1

2

)
and compare them:

δ(ϑ1)2 = (aω + k + 1
2)2 = a2ω2 + (k + 1

2)2 + 2aω(k + 1
2) = (aω − (k + 1

2))2 + 4aω(k + 1
2)

≥ 4aω(k + 1
2) = δ2(ϑ2).

By the assumption on aω and k we have that δ(ϑ1) > 0 and δ(ϑ2) > 0, therefore it follows that δ
is minimal for ϑ2 and ϑ3. The case k ≤ −1 can be treated analogously.

The preceding lemma allows us to locate the spectrum of DU .

Corollary 5.7. For εkaω ≤ −|k+ 1
2 | the spectra of DU and −DU intersect, more precisely we have

σ(DU ) ∩ σ(−DU ) = [−|k + 1
2 + aω|, |k + 1

2 + aω|] 6= ∅.

For aω = −εk|k+ 1
2 | = −(k+ 1

2) they have exactly the point 0 in common and for εkaω > −|k+ 1
2 |

the spectra do not intersect.

Proof. Since −DU is the operator of multiplication by the function δ, its spectrum is the closure
of the range of δ which, by the previous lemma, is [δ0, ∞) for k ≥ 0 and (−∞, δ0] for k ≤ −1.
If δ0 = 0, then the spectra of DU and −DU have exactly the point 0 in common; this is the
case if and only if aω = −(k + 1

2). If k ≥ 0 and δ0 < 0 or k ≤ −1 and δ0 > 0, then we have
σ(DU ) ∩ σ(−DU ) = [−|δ0|, |δ0| ]. From the previous lemma it follows that the first case occurs if
and only if k ≥ 0 and aω < −(k+ 1

2), the second case holds if and only if k ≤ −1 and aω > −(k+ 1
2).

In all other cases the spectra of DU and −DU do not intersect. Using the expressions for δ0 of the
previous lemma yields the assertion.

Corollary 5.8. Assume k ≥ 0 and aω ≥ 0. Then we have

(−DUx, x) ≥ k + 1
2 , x ∈ D(DU ), ‖x‖ = 1. (5.15)

For aω > k + 1
2 we even have

(−DUx, x) ≥ 2
(
k + 1

2

)
, x ∈ D(DU ), ‖x‖ = 1. (5.16)

Similar results hold for k ≤ −1 and aω ≤ 0.

Proof. For k ≥ 0 this follows from (−DUx, x) ≥ δ0‖x‖2 for all x ∈ D(DU ). For k ≤ −1 we use
(−DUx, x) ≤ δ0‖x‖2 for all x ∈ D(DU ).
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5.2 A spectral gap around zero

Having located the spectrum of the operators on the diagonal of AU , we are now in a position to
establish a lower bound for the absolute values of the eigenvalues of AU and consequently of A
since the spectra of A and AU coincide.
In the case εkaω ≥ −|k+ 1

2 | the following general theorem provides a lower bound for the modulus
of the eigenvalues of AU . In the case εkaω < −|k+ 1

2 |, however, the theorem does not apply to the
angular operator because the ranges of the functions δ and −δ, and therefore the spectra of −DU

and DU , intersect.

Theorem 5.9. Let H = H̃⊕H̃ be the direct sum of a Hilbert space with itself and let T =
(
T11 T12
T21 T22

)
with domain D(T ) ⊆ H be a selfadjoint block operator matrix such that T11 and T22 are symmetric
and that T21 = T ∗12. Further, suppose that for i, j = 1, 2 there exist sesquilinear forms tij on H̃ with
domain D(tij) ⊇ D(Tij) such that tij [u, v] = (u, Tijv) for all u ∈ D(tij) and v ∈ D(Tij), and that

for all eigenfunctions
(

Ψ1
Ψ2

)
of T we have Ψi ∈ D(tij); in addition suppose tij = t∗ji Finally, let

Ei := {Ψi ∈ H̃ : there exists a Ψ2 ∈ H̃ such that
(

Ψ1
Ψ2

)
is an eigenfunction of T }.

(i) Suppose that there are numbers s1 ≥ s2 such that

t11[Ψ1] > s1 ‖Ψ1‖2, t22[Ψ2] < s2 ‖Ψ2‖2, Ψ1 ∈ E1 \ {0}, Ψ2 ∈ E2 \ {0}.

If λ is an eigenvalue of T with eigenfunction
(

Ψ1
Ψ2

)
, then

λ > s1 and ‖Ψ1‖ > ‖Ψ2‖ or λ < s2 and ‖Ψ1‖ < ‖Ψ2‖. (5.17)

(ii) Suppose that there are numbers s1 ≤ s2 such that

t11[Ψ1] < s1 ‖Ψ1‖2, t22[Ψ2] > s2 ‖Ψ2‖2 Ψ1 ∈ E1 \ {0}, Ψ2 ∈ E2 \ {0}.

If λ is a eigenvalue of T with eigenfunction
(

Ψ1
Ψ2

)
, then

λ < s1 and ‖Ψ1‖ > ‖Ψ2‖ or λ > s2 and ‖Ψ1‖ < ‖Ψ2‖. (5.18)

Proof. We prove (i) only, assertion (ii) follows analogously. Let
(

Ψ1
Ψ2

)
be an eigenfunction of T

with eigenvalue λ. We write the eigenvalue equation (T − λ)
(

Ψ1
Ψ2

)
= 0 as a system of coupled

linear equations

T11Ψ1 − λΨ1 + T12Ψ2 = 0,
T ∗12Ψ1 + T22Ψ2 − λΨ2 = 0.

If we take the scalar product of Ψ1 with the first row of the above system, and that of Ψ2 with the
second row, we obtain the following linear system

t11[Ψ1]− λ‖Ψ1‖2 + t12[Ψ1, Ψ2] = 0,

t22[Ψ2]− λ‖Ψ2‖2 + t∗12[Ψ2, Ψ1] = 0.
(5.19)

By assumptions, all terms in this system exist. The terms t11[Ψ1] and t22[Ψ2] are real, therefore
also t12[Ψ1, Ψ2] and t∗12[Ψ2, Ψ1] must be real which implies t12[Ψ1, Ψ2] = t12[Ψ1, Ψ2] = t∗12[Ψ2, Ψ1].
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Note that system (5.19) is no longer a system of equations for vectors in some Hilbert space, but
a system of linear equations for real numbers.
If Ψ1 = 0, it follows that λ‖Ψ2‖2 = t22[Ψ2] < s2; for Ψ2 = 0 we have λ‖Ψ1‖2 = t22[Ψ1] > s1. Now
we assume Ψ1 6= 0 and Ψ2 6= 0. With t12[Ψ1, Ψ2] = t∗12[Ψ2, Ψ1] it follows from system (5.19) that

t11[Ψ1]− t22[Ψ2]− λ (‖Ψ1‖2 − ‖Ψ2‖2) = 0. (5.20)

Observe that ‖Ψ1‖ 6= ‖Ψ2‖, otherwise we have the contradiction

0 = t11[Ψ1]− t22[Ψ2] > (s1 − s2) ‖Ψ1‖2 ≥ 0.

Hence it follows from (5.20) that

λ =
t11[Ψ1]− t22[Ψ2]
‖Ψ1‖2 − ‖Ψ2‖2

.

Assume that ‖Ψ1‖ > ‖Ψ2‖. Using t11[Ψ1]− t22[Ψ2] > s1 ‖Ψ1‖2 − s2 ‖Ψ2‖, we obtain

λ >
s1‖Ψ1‖2 − s2‖Ψ2‖2

‖Ψ1‖2 − ‖Ψ2‖
= s1 +

(s1 − s2) ‖Ψ2‖2

‖Ψ1‖2 − ‖Ψ2‖2
≥ s1.

Analogously, we can show λ < s2 if ‖Ψ1‖ < ‖Ψ2‖.

The previous theorem, applied to the transformed angular operator AU , yields a lower bound for
the modulus of the eigenvalues of the angular operator A.

Theorem 5.10. Let λ be an eigenvalue of the angular operator A. Then

|λ| > λQ :=


εk(aω + k + 1

2) = |aω + k + 1
2 | if aω ∈ [−|k + 1

2 |, |k + 1
2 | ],

2
√
aω(k + 1

2) if εkaω ≥ |k + 1
2 |.

(5.21)

Corollary 5.11. For εkaω ≥ 0 and all eigenvalues λ of A we have

|λ| >
∣∣k + 1

2

∣∣. (5.22)

For εkaω ≥ |k + 1
2 | we even have

|λ| > 2
∣∣k + 1

2

∣∣. (5.23)

Note that for a = 0 the estimate provided in (5.21) coincides with the one obtained in (3.75) by
the off-diagonalisation of the angular operator.

Proof of theorem 5.10. Recall that εk = sign(k+ 1
2). In remark 5.5 we have seen that for all eigen-

functions
(
u
v

)
of AU the numbers dU [u], dU [v] and bU [u, v] exist, thus AU satisfies the assumptions

of theorem 5.9. If εkaω ≥ −|k + 1
2 |, then the function δ representing the multiplication operator

−DU is either nonpositive or nonnegative and takes on its extremal value δ0 exactly once in (0, ϑ),
see lemma 5.6. Consequently, the spectra of −DU and DU are separated or have only the point 0
in common. If k ≥ 0, then δ(ϑ) ≥ δ0 ≥ 0, ϑ ∈ (0, π), with δ(ϑ) = δ0 for exactly one ϑ ∈ (0, π).
Hence for every eigenfunction ( uv ) of AU with u 6= 0 it follows that

dU [u] = (u, −DUu) =

π∫
0

δ(ϑ)|u(ϑ)|2 dϑ > δ0 ‖u‖2
2.

Application of theorem 5.9 (i) with s1 = −s2 = δ0 yields that λ > s1 = δ0 for all eigenvalues of AU .
If we insert the explicit expression for δ0 given in lemma 5.6 we obtain |λ| ≥ λQ for all eigenvalues
of AU . Since A and AU are unitarily equivalent, the assertion is proved for k ≥ 0. If k ≤ −1, the
assertion follows analogously, if we use theorem 5.9 (ii).



Chapter 6

Comparison of the eigenvalue bounds

6.1 Negative eigenvalues

In chapter 3 and chapter 5 we obtained lower bounds λG and λQ for the modulus of the eigenvalues
of the angular operator. Hence −λG and −λQ are upper bounds for the negative eigenvalues of A.
In section 4.2 we used a variational principle to obtain an exact formula for the eigenvalues of A that
are greater than ‖D‖ = |am|. From that formula, upper and lower bounds for the eigenvalues have
been derived. Since also the operator −A satisfies all the assumptions of the relevant theorems for
the variational principle, they can be applied to −A thus resulting in a formula for the eigenvalues
of A that are less than −‖ −D‖ = −|am|.
For convenience, we summarise the estimates for the negative eigenvalues in the following theorem.

Theorem 6.1. All negative eigenvalues λ of the angular operator A are bounded from above by

λ ≤ min{−λG, −λQ} (6.1)

with the estimates λG from theorem 3.35 and λQ from theorem 5.10. For the nth eigenvalue λm−−n
smaller than −|am| we have

−
√(

|k + 1
2 | −

1
2 + n0 + n

)2 + Ω+ − |am| ≤ λm−−n ≤

min
{
−|am|, Re

(
−
√(

|k + 1
2 | −

1
2 + n0 + n

)2 + Ω− + |am|
)}
, n ∈ N, (6.2)

with Ω± given in theorem 4.40 and the offset n0 = min
λ<−|am|

dimL(0,∞)S1(λ).

Proof. The estimates in (6.1) follow from theorems 3.35 and 5.10 which provide lower bounds for the
modulus of the eigenvalues ofA. In order to obtain relation (6.2) we consider−A; let S(−)

1 (λ) denote
the Schur complement of −A. Observe that −A satisfies the assumptions needed for the variational
principle with the same constants c1, c+1 , c

−
2 , c2 as A so that formula (4.39) gives estimates for the

eigenvalues of −A to the right of ‖ −D‖ = |am|. Since λ is an eigenvalue of −A if and only if −λ
is an eigenvalue of A, estimate (6.2) with the index shift n0 = n0(−A) = min

λ>|am|
dimL(−∞,0)S

(−)
1 (λ)

according to theorem 4.32 is proved. It remains to verify the formula for the index shift n0 in the
assertion. The Schur complement S(−)

1 (λ) of −A is related to the corresponding Schur complement
of A by

S
(−)
1 (λ) = D − λ− (−B)(−D − λ)−1(−B∗) = −(−D + λ−B(D + λ)−1B∗) = −S1(−λ).

113
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Hence

n0 = min
λ>|am|

dimL(−∞, 0)S
(−)
1 (λ) = min

λ>|am|
dimL(0,∞)S1(−λ) = min

λ<−|am|
dimL(0,∞)S1(λ).

Analytic perturbation theory yields the following theorem in analogy to theorem 4.41.

Theorem 6.2. For n ∈ N let λ−n be the −nth eigenvalue of A which, if considered as analytic
function of a, is the −nth negative eigenvalue of A in the case a = 0. Then for all n ∈ N we have
that

−
√(

|k + 1
2 | −

1
2 + n

)2 + Ω+ − |am| ≤ λ−n ≤ −Re
√(

|k + 1
2 | −

1
2 + n

)2 + Ω− + |am|.

Remark 6.3. Another way to obtain the formula for the eigenvalues to the left of −|am| is to use
the symmetry properties of A with respect to change of the physical parameters, see chapter 2.3.
We use the notation A(k, ω), λn(k, ω), S1(λ; k, ω) etc. to express the dependence on the physical
parameters k and ω. It is easy to check that Ω±(−(k + 1),−ω) = Ω±(k, ω). Using remark 3.29 we
obtain

S1(λ; −(k + 1),−ω) = −RS1(−λ; k, ω)R.

Since R is unitary, it follows that

n0(−(k + 1),−ω) = min
λ>|am|

dimL(−∞,0)S1(λ; −(k + 1),−ω) = min
λ<−|am|

dimL(0,∞)S1(λ; k, ω)

which is equal to the index shift n0 asserted in theorem 6.1. From lemma 2.17(ii) it follows that
λn(k, ω) is an eigenvalue of A(k, ω) if and only if −λn(k, ω) is an eigenvalue of A(−(k + 1),−ω).
Hence, for the nth eigenvalue λm−−n(k, ω) of A(k, ω) smaller than −‖D‖ = −|am| we obtain

λm−−n(k, ω) = −λm++n(−(k + 1),−ω)

≥ −
(√

(| − (k + 1) + 1
2 | −

1
2 + n0(−(k + 1),−ω) + n)2 + Ω+(−(k + 1),−ω) + |am|

)
= −

√
(|k + 1

2 | −
1
2 + n0(−(k + 1),−ω) + n)2 + Ω+(k, ω)− |am|, n ∈ N.

Analogously, the lower bound for λm−−n(k, ω) in (6.2) can be derived. ♦
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6.2 Comparison of the estimates

In this section we first compare the various analytical bounds for the eigenvalues of A with each
other, then we compare them with numerically calculated values obtained by Suffern, Fackerell and
Cosgrove in [SFC83] and Chakrabarti in [Cha84]. Using an ansatz of [SFC83] we independently
obtain numerical approximations of the eigenvalues.

Notation

The eigenvalues λn of the angular operator are enumerated such that they are the analytic contin-
uation of the exact eigenvalues λn = |k + 1

2 | −
1
2 + n in the case a = 0, see lemma 3.3.

All numerically obtained values are marked with a superscript num. For the values provided by
Suffern et al. [SFC83], a subscript S, for those of Chakrabarti [Cha84], a subscript C is added.
Evaluating the series ansatz for the eigenvalues suggested in [SFC83] we obtain numerical values
for λ, cf. the section 6.2.2; these values have no additional subscript.
The analytical bounds obtained in theorems 4.40 and 4.41 are denoted by λ[l] and λ[u], and λ[l,SPT]

and λ[u,SPT], respectively. So we have

λ
[l]
n0+n ≤ λm++n ≤ λ

[u]
n0+n, −λ[u]

n−0 +n
≤ λm−−n ≤ −λ[l]

n−0 +n
, n ∈ N,

λ
[l,SPT]
n ≤ λn ≤ λ

[u,SPT]
n , −λ[u,SPT]

n ≤ λ−n ≤ −λ[l,SPT]
n , n ∈ N,

with the index shifts n0 = minλ>|am| dimL(−∞,0)S1(λ) and n−0 = minλ<−|am| dimL(0,∞)S1(λ), see
theorems 4.40 and 6.1.
Further we recall that we have the lower bounds λG and λQ of theorems 3.35 and 5.10: For all
eigenvalues λn, n ∈ Z \ {0}, of the angular operator we have

|λn| ≥ max{λG, λQ};

note, however, that λQ is not defined for all k, aω and that λG might be negative for large values
of |am|.

6.2.1 Analytic lower bounds for the modulus of the eigenvalues

Each of the bounds λG, λ[lin]
G and λ

[exp]
G from theorem 3.35 and the subsequent remark, and λQ

from theorem 5.10 is a lower bound for the modulus of the eigenvalues of the angular operator A.
Hence for every eigenvalue λ of A we have

|λ| ≥ max{λG, λ[lin]
G , λ

[exp]
G , λQ}. (6.3)

Since the explicit formulae for λG and λQ depend on the interval in which aω lies, we set

λ
(1)
G := −|am|+ 2C(ω)−1e−2π|aων−(k+ 1

2
)| |aων − (k + 1

2)|,

λ
(2)
G := −|am|+ C−1(ω) |aων − (k + 1

2)| ,

λ
(1)
Q := |aω + k + 1

2 | ,

λ
(2)
Q := 2

√
aω(k + 1

2) ;

further recall that

λ
[lin]
G = −|am|+ 1

π Γ(k,ω) (|k + 1
2 |+ 1), λ

[exp]
G = −|am|+ 1

Γ(k,ω) |k + 1
2 |,



116 6.2. Comparison of the estimates

k ≤ 0 k ≥ 0

aω ∈ λG λQ aω ∈ λG λQ(
−∞, k + 1

2

)
λ

(2)
G λ

(2)
Q

(
−∞,

k+ 1
2

ν

)
λ

(1)
G not defined(

k + 1
2 , −(k + 1

2)
)

λ
(2)
G λ

(1)
Q

(k+ 1
2

ν , −(k + 1
2)
)

λ
(2)
G not defined(

−(k + 1
2), k+ 1

2
ν

)
λ

(2)
G not defined

(
−(k + 1

2), k + 1
2

)
λ

(2)
G λ

(1)
Q( (k+ 1

2
)

ν , ∞
)

λ
(1)
G not defined

(
k + 1

2 , ∞
)

λ
(2)
G λ

(2)
Q

Table 6.1. Bounds for the modulus of the eigenvalues λ of the angular operator A.

with C(ω) = e|aω(c+−c−)|, see theorems 3.35 and 5.10. The formulae for λG and λQ are summarised
in table 6.1.

Unfortunately, the estimates above only give a lower bound for the modulus of the eigenvalues of
A; they do not distinguish between positive and negative eigenvalues λ. For λG, this is due to
the fact that we had to solve an equation for |λ|. For λQ it follows from the symmetry of the gap
between the spectrum of DU and −DU with respect to 0. The only exception where the sign of λ
plays a role is lemma 3.38. Numerical results, however, show that for a 6= 0 the eigenvalues λ are
not symmetric with respect to 0.

Which of the given estimates is the better one depends on aω and am. As we have already observed,
in the case a = 0 the bounds λG and λQ coincide. For a 6= 0 the lower bound λQ will in general
yield better results provided that it is defined since for fixed k the lower bound λG is decaying
exponentially with increasing |a|. On the other hand, if we fix a and let k grow, then λQ is given
by λQ = k + 1

2 + aω, whereas λG grows like C(ω)−1(k + 1
2) with C(ω)−1 < 1 only.

For fixed k and ω the lower bound λG may even become negative for large m or large a due to the
term −|am| that arises because of the perturbation nature of the estimate. Nevertheless, for aω
such that λQ fails to exist, λG still provides a lower bound for the modulus of the eigenvalues if
|am| is small enough.

Another lower bound for the modulus of the eigenvalues of A is given by λ[l]
1 where it is nonnegative,

see theorem 4.40.

In figures 6.1 and 6.2 the lower bounds are plotted as functions of the Kerr parameter a with the
wave number k, mass m and frequency ω fixed. The bound λ

[l]
1 is plotted only for those values

of a where the index shift n0 is zero according to lemma 4.34 (ii). Interestingly, if the physical
parameters are chosen m = 0.025, ω = 0.75 and k = 0, see figure 6.1, then for each of the lower
bounds λG, λ[exp]

G , λQ and λ[l]
1 there is an interval where it provides a better lower bound than the

other three bounds.

However, it seems that for large |am| the bound λQ generally provides the best lower bound for
the modulus of the eigenvalues of A provided that λQ is defined.
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k = 0
m = 0.025
ω = 0.75

a
1.510.50−0.5−1−1.5−2−2.5−3

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

k = 4
m = 0.025
ω = 0.75

a
43210−1−2−3−4−5−6−7−8

8

7

6

5

4

3

2

1

0

λ[l]λGλ
[exp]
G

λQ

Figure 6.1. Lower bounds for the eigenvalue of A with smallest modulus for k, m and ω fixed.Note that
for k = 0, for each of the plotted estimates there is an interval for a where it provides a larger lower bound
for the modulus of the eigenvalues of A than the other three bounds: for a . −1.06900 the bound λG

yields the best result; for −1.06900 . a . −0.642408, λ[exp]
G gives the sharpest lower bound; then, for

−0.642408 . a . 0.66667, λ[l]
1 is the best lower bound; finally, for 0.66667 . a, the best lower bound is

provided by λQ.
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k = 0
m = 0.25
ω = 0.75

a
21.510.50−0.5−1

1.5

1

0.5

0

a = 1
m = 0.25
ω = 0.75

k
543210−1−2−3−4

6

5

4

3

2

1

0

λ[l]λGλ
[exp]
G

λQ

Figure 6.2. Lower bounds for the modulus of the eigenvalues λ of A for m = 0.25 and ω = 0.75 fixed.In the
first graph, the bounds are plotted as functions of a for k = 0 fixed. The second graph shows the bounds as
functions of k with a = 1 fixed. Note that physically only the values for integral values of k make sense.
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6.2.2 Comparison with numerical values

In the following we compare the various analytic bounds for the eigenvalues of the angular operator
A proved in this work with numerical values from the papers [SFC83] and [Cha84]. When using
the estimates λ[l,SPT] and λ[u,SPT] from theorem 4.41, the main problem is to prove that for given
physical parameters the first positive eigenvalue is the analytic continuation of the first positive
eigenvalue in the case a = 0. For the bounds λ[l] and λ[u] from theorem 4.40 we additionally have
to determine the index shifts m+ and n0.

Comparison with numerical values in [SFC83]

Suffern, Fackerell and Cosgrove [SFC83] obtained numerical approximations of the eigenvalues of
the angular operator by expanding the solution of the angular equation in terms of hypergeometric
functions, resulting in a three term recurrence relation for the coefficients in the series ansatz. Then
λ is expanded with respect to a(m− ω) and a(m+ ω) as

λ =
∑
r,s

Cr,sa
r+s(m− ω)r(m+ ω)s

with the coefficients Cr,s obtained from the recurrence relation. Observe that in [SFC83] the authors
denote the wave number by m (in our terminology it is denoted by k), and that, due to the form
of the differential equations in the cited article, their eigenvalues (which we denote here by λ[num]

S,n )
differ from the eigenvalues given in this work by a factor −1.
Instead of using the coefficients Cr,s, it is also possible to find a numerical approximation for λ from
the continued fraction equation for λ given in [SFC83] directly. We find that the eigenvalues λ[num]

computed in this way with a short Maple programme differ at most slightly from the tabulated
values in [SFC83] for small n; for higher values of am, aω and n, however, there are significant
differences. For instance, for am = 0.25, aω = 0.75 and k = 0 Suffern et al. list the fourth
positive eigenvalue as λ[num]

S,4 = 4.13127, whereas an evaluation of the recurrence relation for λ gives

λ
[num]
4 = 4.13969. The results in [BSW05] seem to favour the latter value for λ, cf. in particular

the appendix in the cited article. In the following, the numerical values λ[num]
S,n , λ[num]

S,−n are all taken
from tables in the article [SFC83].

For fixed values of am and aω, tables 6.2 and 6.3 contain the numerical values for the first positive
and first negative eigenvalues tabulated in [SFC83] and the analytical bounds λG and λQ obtained
in theorems 3.35 and 5.10, together with the lower and upper bounds λ[l]

1 and λ[u]
1 from theorem 4.40

for wave numbers k = −5, . . . , 4. For all physical parameters under consideration, apart from the
case am = 0.25, aω = 0.75, k = −1, we always have εkaω ≥ −|k + 1

2 | so that λQ is defined;
furthermore,

‖B−1‖−1 =
√
ν1 ≥ Re

(√
(|k + 1

2 |+
1
2)2 + Ω−

)
> 2|am|

where ν1 is the first eigenvalue of BB∗, see theorem 4.39, so that we have n0 = 0 and m+ = 0 by
lemma 4.34 (ii). Therefore, the first positive eigenvalue is indeed the analytic continuation of the
first positive eigenvalue in the case a = 0. The case am = 0.25, aω = 0.75, k = −1 is discussed in
the subsequent remark.

Remark 6.4 (am = 0.25, aω = 0.75, k = −1).

(i) In this case, the bound λQ is not defined because of εkaω = −0.75 < −1
2 = −|k + 1

2 |.
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(ii) Theorem 4.39 yields no positive upper bound for ‖B−1‖ so that we cannot use lemma 4.34 (ii)
to conclude n0 = m+ = 0. However, since |am| < 1

2 , it follows from lemma 4.42 (i) that
n0 = m+. By theorem 4.41 we still have

−0.25 ≤
√
ν1 − |am| ≤ λ1 ≤

√
ν1 + |am| ≤ 1.28078 (6.4)

where λ1 is the analytic continuation of the first positive eigenvalue in the case a = 0 and ν1

is the first eigenvalue of BB∗ which we have estimated according to (4.50) of theorem 4.39.
The lower bound can be further improved if we use ‖B−1‖−1 =

√
ν1 and observe that for the

given physical parameters estimate (3.72 a) from lemma 3.34 yields a positive lower bound
for ‖B−1‖−1. Thus we obtain the sharper estimate

−0.13843 ≤ −
√
ν1 − |am| ≤ λ1 ≤

√
ν1 + |am| ≤ 1.28078.

(iii) Even a positive lower bound for λ1 can be obtained by means of analytic perturbation theory if
a is treated as the perturbation parameter. For a = 0 we have λn = sign(n)

(
|k+1

2 |−
1
2+n

)
= n;

hence for the given physical parameters we obtain from lemma 3.9 that

n− 0.75 ≤ λn ≤ n+ 0.75, n ∈ Z \ {0}. (6.5)

In particular it follows that 0.25 ≤ λ1. For all other values of n, however, the bounds λ[l]
n and

λ
[u]
n obtained from the more elaborate estimates in theorem 4.40 (where m plays the role of

the perturbation parameter) yield tighter bounds than the formula above as can be seen in
table 6.4.

Combining (6.4) and (6.5) we obtain 0.25 ≤ λ1 ≤ 1.28078. ♦

Remark 6.5. In some cases, the bounds can be further improved. For am = 0.005 and aω = 0.015
and k ∈ {−5, . . . , 4} we have σ(A)∩[−|am|, |am| ] = ∅ because of |λ±1| ≥ λ

[l]
1 =

√
ν1−|am| > |am|.

Furthermore, ‖B−1‖−1 =
√
ν1 > |am| so that the assumption of lemma 3.38 is satisfied. Hence it

follows:

(i) For k = 0, . . . , 4 we have
(
−‖B−1‖−1,−|am|

)
∩ σ(A) = ∅ by lemma 3.38, hence

λ−1 ≤ ‖B−1‖−1 = −λ[u]
1 − |am|.

(ii) For k = −5, . . . , −1 we have
(
−‖B−1‖−1,−|am|

)
∩ σ(A) = ∅ by lemma 3.38, hence

λ1 ≥ ‖B−1‖−1 = λ
[l]
1 + |am|.

Analogously, for am = 0.25, aω = 0.75 the upper bound for λ−1 can be improved if k = 0, . . . , 4
and the lower bound for λ1 can be improved if k = −5, . . . , −2.
Note, however, that for k = −1 the assumptions of lemma 3.38 are not fulfilled. ♦

The discussion in remarks 6.4 and 6.5 shows that it is very hard to decide a priori which analytic
bound gives the sharpest bound for the eigenvalues of A. It seems that often a combination of the
various estimates yields the best result.
It can be seen from the tables that in most cases the estimate λ[l]

1 yields the sharpest lower bound.
On the other hand, figures 6.1 and 6.2 suggest that for increasing am and aω the estimate λQ
provides a better lower bound for the smallest positive eigenvalue than λ[l] does.
In tables 6.2 and 6.3 we have also listed the numerical values, denoted by λ[num]

1 and λ
[num]
−1 , that
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we have obtained by solving the continued fractions directly since they seem to be more reliable
than the values originally given by the authors in [SFC83].
In figures 6.3 and 6.4 the numerical values λ[num]

S,1 and λ
[num]
S,−1 together with the analytical bounds

±λG and ±λQ as functions of k are plotted.
Figures 6.5 and 6.6 show the upper and lower bounds λ[l]

1 and λ
[u]
1 for the lowest eigenvalues as

functions of the wave number k together with the numerical values λ[num]
−1 and λ[num]

1 from tables 6.2
and 6.3.
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am = 0.25, aω = 0.75

λG λQ λ
[l]
1 λ

[num]
S,1 λ

[num]
1 λ

[num]
S,−1 λ

[num]
−1 λ

[u]
1

k = −5 2.96570 3.75000 3.93330 4.29756 4.29756 -4.34936 -4.34936 4.61606
−4 2.15294 2.75000 2.91228 3.30870 3.30870 -3.37371 -3.37370 3.65037
−3 1.34019 1.75000 1.87132 2.32657 2.32658 -2.41349 -2.41348 2.71221
−2 0.52743 0.75000 0.75000 1.35984 1.35980 -1.48903 -1.48898 1.85078
−1 < 0 undefined (0.25000) 0.44058 0.44025 -0.67315 -0.67284 (1.28078)

0 0.59808 1.22474 0.75000 1.59764 1.59745 -1.47645 -1.47627 1.85078
1 1.41083 2.25000 2.09521 2.65654 2.65651 -2.57663 -2.57661 2.90754
2 2.22359 3.25000 3.21410 3.68229 3.68229 -3.62219 -3.62218 3.93273
3 3.03634 4.25000 4.27769 4.69685 4.69684 -4.64856 -4.64856 4.94707
4 3.84910 5.25000 5.31776 5.70622 5.70622 -5.66583 -5.66583 5.95636

Table 6.2. Analytic bounds and numerical approximations for the first positive and first negative eigenvalue
of A. The estimates λG and λQ from theorems 3.35 and 5.10 are lower bounds for |λ±1|. λ[l]

1 and λ[u]
1 from

theorem 4.40 are upper and lower bounds for λ±1. The values λ[num]
S,1 and λ

[num]
S,−1 for the first positive and

the first negative eigenvalue of A are taken from [SFC83]. We have obtained the numerical values λ[num]
1

and λ[num]
−1 by approximating a solution of the continued fraction equation for λ. Note that for k = 0, . . . , 4

the upper bound for λ−1 can be further improved, while for k = −2, . . . , −5 the lower bound for λ1 can be
improved, see remark 6.5. For k = −1 see the discussion in remark 6.4.

am = 0.005, aω = 0.015

λG λQ λ
[l]
1 λ

[num]
S,1 λ

[num]
1 λ

[num]
S,−1 λ

[num]
−1 λ

[u]
1

k = −5 4.46556 4.48500 4.97998 4.98591 4.98591 -4.98682 -4.98682 4.99299
−4 3.46969 3.48500 3.97997 3.98611 3.98611 -3.98723 -3.98723 3.99373
−3 2.47383 2.48500 2.97996 2.98643 2.98643 -2.98786 -2.98786 2.99498
−2 1.47797 1.48500 1.97994 1.98700 1.98700 -1.98901 -1.98901 1.99749
−1 0.48211 0.48500 0.97989 0.98834 0.98834 -0.99170 -0.99170 1.00500

0 0.50376 0.51500 0.99500 1.01167 1.01167 -1.00836 -1.00836 1.01989
1 1.49962 1.51500 2.00249 2.01300 2.01300 -2.01101 -2.01101 2.01994
2 2.49548 2.51500 3.00498 3.01357 3.01357 -3.01215 -3.01215 3.01996
3 3.49134 3.51500 4.00623 4.01389 4.01389 -4.01278 -4.01278 4.01997
4 4.48720 4.51500 5.00699 5.01409 5.01409 -5.01318 -5.01318 5.01998

Table 6.3. Analytic bounds and numerical approximations for the first positive and first negative eigenvalue
of A. The estimates λG and λQ from theorems 3.35 and 5.10 are lower bounds for |λ±1|. λ[l]

1 and λ[u]
1 obtained

in theorem 4.40 are upper and lower bounds for λ±1. The values λ[num]
S,1 and λ[num]

S,−1 are the first positive and
the first negative eigenvalue of A calculated numerically by Suffern et al. [SFC83], while we have obtained
the values λ[num]

1 and λ
[num]
−1 by approximating a solution of the continued fraction equation for λ. Note

that for k = 0, . . . , 4 the upper bound for λ−1 can be further improved, while for k = −1, . . . , −5 the lower
bound for λ1 can be improved, see remark 6.5.
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±λQ
±λG

λ
[num]
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λ
[num]
S,1

am = 0.25
aω = 0.75

wave number k
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Figure 6.3. The plot shows the lower bounds λG and λQ for the absolute value of the eigenvalues of A
and the numerical values for the first positive and the first negative eigenvalue from [SFC83] in the case
am = 0.25 and aω = 0.75. The bound λQ is not defined for k ∈ (−1.25, 0). For −1.35 . k ≤ −0.5 the
bound λG is negative, so it is replaced by zero in this interval.
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Figure 6.4. The plot shows the lower bounds λG and λQ for the absolute value of the eigenvalues of A
and the numerical values for the first positive and first negative eigenvalue of A from [SFC83] in the case
am = 0.005 and aω = 0.015. The bounds λG and λQ are very close to each other so that they seem to
coincide in the plot above. The bounds have not been plotted in the interval (−1, 0) because for wave
numbers k in that interval the angular operator is not uniquely defined as a selfadjoint operator.
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λ
[u]
1

λ
[l]
1

λ
[num]
S,−1

λ
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S,1
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aω = 0.75

wave number k
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Figure 6.5. The plot shows the numerical values λ[num]
S,±1 for the first positive and the first negative eigenvalue

of [SFC83] for am = 0.25 and aω = 0.75. They are enclosed by the analytic upper and lower bounds ±λ[u]
1

and ±λ[l]
1 which are plotted as functions of k. Note that for −1.65 . k . −0.23 the estimate for ‖B−1‖−1

obtained from theorem 4.39 is not large enough to guarantee n0 = 0 by lemma 4.34 (ii), so the analytic
bounds are plotted only for −1.65 . k and k ≥ 0.

±λ[u]
1

±λ[l]
1

λ
[num]
S,−1

λ
[num]
S,1

am = 0.005
aω = 0.015

wave number k
43210−1−2−3−4−5

6

4

2

0

−2

−4

−6

Figure 6.6. The plot shows the numerical values λ[num]
S,±1 of [SFC83] for the first positive and the first negative

eigenvalue of A for am = 0.005 and aω = 0.015. Here the analytic upper and lower bounds ±λ[u]
1 and ±λ[l]

1

enclose the numerical values so tightly that in this resolution they seem to coincide.
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Finally, we compare higher eigenvalues λ[num]
S,n given in [SFC83] with the analytic bounds λ[u]

n and

λ
[l]
n . In tables 6.5 and 6.4 we have listed the analytical bounds λ[l]

n and λ[u]
n for n = 1, . . . , 5 with the

numerically obtained eigenvalues in the cases am = 0.005, aω = 0.015 and am = 0.25, aω = 0.75
where the wave number k ∈ {−1, 0} is fixed. The numerical results λ[num]

S,n and λ
[num]
S,−n are taken

from [SFC83], the numerical values λ[num]
n and λ[num]

−n have been obtained by solving the continued
fractions equation for λ. The data of these tables are visualised in figures 6.8 and 6.7.
For the case am = 0.25, aω = 0.75, k = −1 we refer to remarks 6.4 and 6.5.
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am = 0.25, aω = 0.75

k = 0 λ
[l]
n λ

[num]
S,n λ

[num]
n λ

[num]
S,−n λ

[num]
−n λ

[u]
n

n = 1 0.75000 1.59764 1.59745 -1.47645 -1.47627 1.85078
2 1.75000 2.22587 2.28748 -2.23549 -2.24221 2.60850
3 2.75000 3.17408 3.18894 -3.16265 -3.16640 3.50000
4 3.75000 4.13127 4.13969 -4.12446 -4.12658 4.44076
5 4.75000 5.10533 5.11069 -5.10083 -5.10217 5.40388

k = −1 λ
[l]
n λ

[num]
S,n λ

[num]
n λ

[num]
S,−n λ

[num]
−n λ

[u]
n

n = 1 (0.25000) 0.44058 0.44025 -0.67315 -0.67284 (1.28078)
2 1.33114 1.84225 1.88562 -1.87948 -1.89090 2.26556
3 2.48861 2.90717 2.92395 -2.92301 -2.92728 3.26040
4 3.55789 3.93475 3.94370 -3.94336 -3.94562 4.25780
5 4.59768 4.94973 4.95529 -4.95513 -4.95653 5.25625

Table 6.4. For am = 0.25, aω = 0.75 and k = 0, −1 the numerical values λ[num]
S,−n and λ[num]

S,n and the lower

and upper bounds λ[l]
n and λ[u]

n from theorem 4.40 are shown. For k = −1, n = 1, we refer to remark 6.4.

am = 0.005, aω = 0.015

k = 0 λ
[l]
n λ

[num]
S,n λ

[num]
n λ

[num]
S,−n λ

[num]
−n λ

[u]
n

n = 1 0.99500 1.01167 1.01167 -1.00836 -1.00836 1.01989
2 1.99500 2.00435 2.00437 -2.00369 -2.00369 2.01249
3 2.99500 3.00273 3.00274 -3.00245 -3.00245 3.01000
4 3.99500 4.00180 4.00200 -4.00184 -4.00184 4.00875
5 4.99500 5.00158 5.00158 -5.00148 -5.00148 5.00800

k = −1 λ
[l]
n λ

[num]
S,n λ

[num]
n λ

[num]
S,−n λ

[num]
−n λ

[u]
n

n = 1 0.97989 0.98834 0.98834 -0.99170 -0.99170 1.00500
2 1.98749 1.99567 1.99570 -1.99636 -1.99636 2.00500
3 2.99000 2.99730 2.99731 -2.99759 -2.99759 3.00500
4 3.99125 3.99803 3.99803 -3.99819 -3.99819 4.00500
5 4.99200 4.99845 4.99845 -4.99855 -4.99855 5.00500

Table 6.5. For am = 0.015, aω = 0.025 and k = 0, −1 the numerical values λ[num]
S,−n and λ

[num]
S,n and the

lower and upper bounds λ[l]
n and λ[u]

n from theorem 4.40 are shown.
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k = −1, am = 0.25, aω = 0.75
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k = 0, am = 0.25, aω = 0.75

n

54321

5

4

3

2

1

0

λ
[num]
S,nλ

[u]
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Figure 6.7. Higher eigenvalues. For am = 0.25 and aω = 0.75, the plots show the numerical values λ[num]
S,−n ,

n = 1, . . . , 4 of [SFC83] and the analytic bounds λ[l] and λ[u] provided by theorem 4.40 as functions of n for
the wave numbers k = −1 (left plot) and k = 0 (right plot), see table 6.4.
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k = −1, am = 0.005, aω = 0.015
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k = 0, am = 0.005, aω = 0.015
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Figure 6.8. Higher eigenvalues. For am = 0.005 and aω = 0.015, the plots show the numerical values
λ

[num]
S,−n , n = 1, . . . , 4, of [SFC83] and the analytic bounds λ[u] and λ[l] provided by theorem 4.40 as functions

of n in the case k = −1 (left plot) and k = 0 (right plot), see table 6.5. The analytical bounds λ[l]
n and λ[u]

n

are so close to the numerical values λ[num]
S,−n that they seem to coincide in this resolution.
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Comparison with numerical values in [Cha84]

In [Cha84], Chakrabarti computed numerical values for the squares of the eigenvalues λ of the
angular operator A. Observe that, due to the form of the angular equation, the eigenvalues λ[num]

C

given by Chakrabarti and the eigenvalues obtained in this work differ by sign, i.e., eigenvalues
λ

[num]
C,n for fixed a, m, ω and k correspond to −λn in this work.

The author expands the solution of the angular equation in a series of spin-weighted spherical
harmonics which leads to an expansion of λ in terms of aω and m

ω . In the article the two smallest
positive eigenvalues in the case k ∈ {0, −1} and the smallest eigenvalue in the case k ∈ {−2, 1} are
calculated for aω = 0.1, 0.2, . . . , 1.0 and m

ω = 0, 0.2, . . . , 0.8, 1.0. The resulting numerical values
for λ are claimed to be reliable up to at least four digits.

For aω = 0.2 and aω = 1.0 the square roots of the original values λ[num]
C of [Cha84] are presented

in tables 6.6 and 6.7, together with the numerical values λ[num] that have been obtained by solving
the continued fractions equation for λ (see the preceding discussion concerning the numerical values
in [SFC83]).

For k = 0 and aω > 0, we have Ω− = 2aω(k + 1
2) − |aω| = 0. Hence it follows from theorem 4.39

for k = 0 and all parameters am and aω under consideration that

‖B−1‖−1 =
√
ν1 ≥

√
(|k + 1

2 | −
1
2 + 1)2 + Ω− = 1.

In table 6.6 we have |am| ≤ 0.2 so that n0 = m+ = 0 by lemma 4.34 (ii).
For table 6.6 this conclusion holds for |am| ≤ 0.2 only. However, for all am of the table it follows
from theorem 4.41 that λ1 ≥ ‖B−1‖−1−|am| ≥ 0 and that λ−1 ≤ −‖B−1‖−1−|am| ≤ 0. Moreover,

theorem 5.10 implies that (−λQ, λQ) ∩ σ(A) = ∅ with λQ =
√
aω(k + 1

2) ≈ 1.41121 > |am|. Hence
for all am under consideration the first positive eigenvalue is greater than |am| and it is the analytic
continuation of the first positive eigenvalue in the case a = 0. Although we could show that m+ = 0
we cannot prove that also n0 = 0; therefore we use the bounds λ[l,SPT] and λ[u,SPT] in table 6.7
for aω = 1.0 since there is no need to determine the index shift n0 for these bounds. Note that in
table 6.6 we have λ[l]

n = λ
[l,SPT]
n and λ[u]

n = λ
[u,SPT]
n .

From the tables and from their graphical representation in figure 6.8 it can be seen that Chakrabarti’s
values are still within the analytical bounds. However, they differ significantly from the numerical
values that we have calculated with the help of the recursion formula for the eigenvalues given
in [SFC83]; for example, for am = aω = 1.0, the values differ even in the leading digit.
It should be mentioned that in the case am = aω the numerical values for λ have been computed
according to an exact formula, see [SFC83].
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k = 0, aω = 0.2

n = 1 n = 2

am λ
[l]
1 λ

[num]
C,1 λ

[num]
1 λ

[u]
1 λ

[l]
2 λ

[num]
C,2 λ

[num]
2 λ

[u]
2

0.00 1.000000 1.136135 1.136116 1.183216 2.000000 2.058001 2.058002 2.097618
0.04 0.960000 1.124034 1.148441 1.223216 1.960000 2.055153 2.061228 2.137618
0.08 0.920000 1.112156 1.160994 1.263216 1.920000 2.052685 2.064837 2.177618
0.12 0.880000 1.100499 1.173773 1.303216 1.880000 2.050594 2.068830 2.217618
0.16 0.840000 1.089061 1.186776 1.343216 1.840000 2.048877 2.073209 2.257618
0.20 0.800000 1.077840 1.200000 1.383216 1.800000 2.047530 2.077973 2.297618

Table 6.6. The table shows the analytic bounds λ[l] and λ[u] for the two lowest positive eigenvalues and
the numerical value λ[num] obtained by solving the continued fractions relation for λ. The numerical values
λ

[num]
C are taken from [Cha84].

k = 0, aω = 1.0

n = 1 n = 2

am λ
[l,SPT]
1 λ

[num]
C,1 λ

[num]
1 λ

[u,SPT]
1 λ

[l,SPT]
2 λ

[num]
C,2 λ

[num]
2 λ

[u,SPT]
2

0.00 1.000000 1.720028 1.720243 1.802776 2.000000 2.362204 2.364111 2.500000
0.20 0.800000 1.677631 1.766714 2.002776 1.800000 2.347623 2.386963 2.700000
0.40 0.600000 1.639603 1.818185 2.202776 1.600000 2.341359 2.418308 2.900000
0.60 0.400000 1.605706 1.874453 2.402776 1.400000 2.343150 2.458034 3.100000
0.80 0.200000 1.575667 1.935199 2.602776 1.200000 2.352702 2.505900 3.300000
1.00 0.000000 1.549193 2.000000 2.802776 1.000000 2.369680 2.561553 3.500000

Table 6.7. The table shows the analytic bounds λ[l,SPT] and λ[u,SPT] for the two lowest positive eigenvalues
and the numerical value λ[num] obtained by solving the continued fractions relation for λ. The numerical
values λ[num]

C are taken from [Cha84].
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k = 0, aω = 0.2

n = 1 n = 2

am
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k = 0, aω = 1.0

n = 1 n = 2
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3

2

1

0

am

1.00.80.60.40.20

3

2

1

0

λ
[num]
C,n , n = 1, 2

λ
[num]
n , n = 1, 2

λ
[u,SPT]
n , n = 1, 2

λ
[l,SPT]
n , n = 1, 2

λQ

λG

Table 6.8. The plots show the numerical values λ[num]
C,n , n = 1, 2, given in [Cha84] and the numerical

values λ[num]
n obtained by solving the continued fractions relation for k = 0 and aω = 0.2 and aω = 1.0,

respectively. In addition, the analytical bounds λ[l,SPT]
n and λ[u,SPT]

n are plotted. Since λG is a lower bound
for the modulus of eigenvalues of A, it is displayed only where it is nonnegativ. For increasing |am|, the
bound λQ becomes the sharpest lower bound of all analytic bounds under consideration.
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Appendix A

The variational principle of [EL04]

The results in chapter 4 are based on a general variational principle for selfadjoint operator functions
proved by Eschwé and Langer in [EL04]. For convenience, we state here their main theorem.

First, let us fix the notation used in the theorem. Let H be a Hilbert space, ∆ ⊆ R an open,
half-open or closed interval with endpoints −∞ ≤ α < β ≤ ∞ and

S : ∆ −→ L (H)

a selfadjoint operator function, i.e., for every λ ∈ ∆, the operator S(λ) with domain D(S(λ)) is a
selfadjoint operator in the Hilbert space H. Let

λe :=

{
inf σess(S) if σess(S) 6= ∅,
β if σess(S) = ∅

and define ∆′ := {λ ∈ ∆ : λ < λe}. To the operator valued function S we associate a function s

with values in the sesquilinear forms on H

s(λ)[u, v] := (u, S(λ)v), D(s(λ)) := D(S(λ)).

In theorem A.1, the following conditions are used.

(i) Either D(S(λ)) does not depend on λ or for all λ ∈ ∆ the form s(λ) is closable with closure
s̃(λ) and there exists a linear manifold D of H such that

D(S(λ)) ⊆ D ⊆ D(s̃(λ)), λ ∈ ∆.

If condition (i) holds, then, for fixed x ∈ D, we define

σx : ∆ −→ R, σx(λ) := s̃(λ)[x].

(ii) The function S is continuous in the generalised sense, i.e., in norm resolvent topology. Further,
the function σx is continuous for all x ∈ D.

(iii) For every x ∈ D \ {0}, the function σx is decreasing at value zero on ∆.

(iv) There exists a λ0 ∈ ∆ such that dimL(−∞,0)S(λ0) <∞.
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If conditions (i)–(iii) hold, then, for fixed x ∈ D, there is at most one p(x) ∈ ∆ with σx(p(x)) = 0.
If σx has no zero, we set

p(x) :=

{
∞ if σx(λ) > 0 for all λ ∈ ∆,
−∞ if σx(λ) < 0 for all λ ∈ ∆.

For λ ∈ ∆, let n(λ) := dimL(−∞,0)S(λ) and N λ := {x ∈ D : s(λ)[x] < 0} ∪ {0}. It can be shown
([EL04, lemma 2.5]) that n(λ) is equal to the dimension of any maximal subspace of N λ.
If β /∈ ∆, we define N β :=

⋃
λ∈∆

N λ and denote by n(β) the dimension of maximal subspaces of N β .

For n ∈ N set

µn := inf
L⊆D

dim L=n

sup
x∈L×

p(x).

As usually let L× = L \ {0}. Finally, for a supplementary result, the following condition is used.

(v) For every λ ∈ ∆ and ε > 0 with λ+ ε < β, there exists a δ = δ(λ, ε) > 0 such that we have
the implication

0 < σx(λ) < δ for an x ∈ D with ‖x‖ = 1 =⇒ σx(λ+ ε) < 0.

Theorem A.1 ([EL04, theorem 2.1]). Assume that the conditions (i)–(iv) hold and suppose
that ∆′ is not empty. If α ∈ ∆′, then we set n0 := n(α); otherwise there exists an α′ ∈ ∆′ such
that (α, α′) ⊆ ρ(S) and we set n0 := n(α′). In both cases, n0 is a finite number.
The spectrum of S in ∆′, σ(S) ∩ ∆′, consists only of a finite or infinite sequence of eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λN , counted according to their multiplicity, with N ∈ N ∪ {∞} given by

N =

{
n(β)− n0 + dim kerS(β) if β ∈ ∆ and σess(S) = ∅,
n(λe)− n0 otherwise.

Then the eigenvalues λn of S in ∆′ are given by

λn = µn+n0 = min
L⊆D

dim L=n+n0

max
x∈L×

p(x).

If N = ∞, then lim
n→∞

λn = λe.

If N <∞ and σess(S) = ∅, then µn = ∞ for n > n0 +N .
If N <∞, λe < β and assumption (v) is fulfilled, then µn = λe for n > n0 +N .



Appendix B

The Schur complements of A

In section 4.1 we gave formulae for the eigenvalues λ in some right half plane of selfadjoint block
operator matrices T =

(
T11 T12
T ∗12 T22

)
with D(T ) = D(T ∗12) ⊕ D(T12) ⊆ H1 ⊕ H2 satisfying certain

assumptions on the entries Tij . The main tool was to associate with T the operator valued function
S1, the so-called Schur complement, such that the spectrum of S1 and that of T coincide in some
right half plane. To the function S1 we then applied the variational principle [EL04, theorem 2.1].
To obtain the Schur complement, we have first introduced the minimal Schur complement

D(S[min]

1 (λ)) = {x ∈ D(T ∗12) : (T22 − λ)−1T ∗12x ∈ D(T12)},

S[min]

1 (λ)x =
(
T11 − λ− T12(T22 − λ)−1T ∗12

)
x

for λ ∈ (c2,∞) ⊆ ρ(T22) and then used the theory of sesquilinear forms to construct selfadjoint
extensions S1(λ), the so-called Friedrichs extensions.

Observe that in the special case of the angular operator the above mentioned construction leads to
uniquely defined selfadjoint Schur complements S1(λ), λ ∈ (|am|,∞), for all wave numbers k ∈ R
although in section 2.1.2 we have shown that the minimal angular operator Amin with domain
D(Amin) = C∞0 (0, π)2 is essentially selfadjoint only for k ∈ R \ (−1, 0).

In this section we investigate the Schur complement of A from the point of view of spectral theory
of differential operators. To this end, we consider the formal differential expression S1(λ) on (0, π)
associated with the Schur complement; for λ > |am| it is defined by

S1(λ) := −D− λ−B+(D− λ)−1B−

= −am cosϑ− λ−
(

d
dϑ + k+ 1

2
sinϑ + aω sinϑ

)
(am cosϑ− λ)−1

(
− d

dϑ + k+ 1
2

sinϑ + aω sinϑ
)

(B.1)

where D is the formal operator of multiplication by am cosϑ on (0, π). To S1(λ) we associate the
following operators and forms that are minimal from the point of view of the theory for differential
operators:

D(Smin
1 (λ)) := C∞0 (0, π), Smin

1 (λ)f := S1(λ)f, (B.2)

D(smin
1 (λ)) := C∞0 (0, π), smin

1 (λ)[f, g] :=
(
f, Smin

1 g
)

(B.3)

=
(
f, (−D − λ)g

)
−
(
B∗f, (D − λ)−1B∗g

)
.

Observe that Smin
1 (λ) ( S[min]

1 (λ). In lemma B.4 we show that the Friedrichs extensions of both
operators are equal. From the theory of linear differential operators it is well known that all
selfadjoint extensions of Smin

1 (λ) are given by restrictions of the maximal operator Smax
1 (λ) =
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Smin
1 (λ)∗ in terms of boundary conditions. In the second part of this chapter we identify the

boundary conditions that correspond to the Friedrichs extension of Smin
1 (λ). We show that for

k ∈ R \ (−2, 1) there is no need to specify boundary conditions since in this case Smin
1 (λ) is

essentially selfadjoint. For k ∈ (−2,−1] ∪ [0, 1), one boundary condition is necessary while for
k ∈ (−1, 0) we need two coupled boundary conditions to obtain the Schur complement S1(λ), cf.
lemma B.7.

The minimal Schur complement Smin
1

The formal differential expression S1 associated with the Schur complement of A has already been
given in (B.1). In the subsequent calculations, however, we often use the following differential
expression, defined for λ > |am| on the interval (0, π):

T1(λ) := S1(λ) + D + λ = −B+(D− λ)B−

= −
(
− d

dϑ + k+ 1
2

sinϑ + aω sinϑ
)
(am cosϑ− λ)−1

(
d
dϑ + k+ 1

2
sinϑ + aω sinϑ

) (B.4)

with the associated minimal operator and sesquilinear form

D(Tmin
1 (λ)) := C∞0 (0, π), Tmin

1 (λ)f := T1(λ)f = Smin
1 (λ)f + (D + λ)f, (B.5)

D(tmin
1 (λ)) := C∞0 (0, π), tmin

1 (λ)[f, g] := −
(
B∗f, (D − λ)−1B∗g

)
(B.6)

= smin
1 (λ)[f, g] +

(
f, (D + λ)g

)
.

The operators Smin
1 and Tmin

1 are symmetric and their adjoint operators are the maximal operators

D(Smax
1 (λ)) = D(Tmax

1 (λ))

= {f ∈ L 2((0, π),dϑ) : f, f ′ absolutely continuous, S1(λ)f ∈ L 2((0, π),dϑ)},

Smax
1 (λ)f = S1(λ)f, Tmax

1 (λ)f = T1(λ)f,

see [Wei87, chap. 3].
Obviously, we have Smin

1 (λ) ⊆ S[min]

1 (λ) ⊆ S1(λ) and Tmin
1 (λ) ⊆ T [min]

1 (λ) ⊆ T1(λ), λ > |am|. In
the following we study the question whether the minimal operator Smin

1 (λ) is already essentially
selfadjoint. Since the operator −(D + λ) is bounded, it suffices to consider the operator Tmin

1 (λ)
instead of Smin

1 (λ).

Remark B.1. The formal differential expressions S1(λ) and T1(λ) are of the form (2.13) with

r(ϑ) = 1, p1(ϑ) = (am cosϑ− λ)−1,

p0(ϑ) = d
dϑ

(
(am cosϑ− λ)

(
k+ 1

2
sinϑ + aω sinϑ

))
+ (am cosϑ− λ)

(
k+ 1

2
sinϑ + aω sinϑ

)2
+ p̃0(ϑ),

where p̃0(ϑ) = 0 for T1(λ) and p̃0(ϑ) = −am cosϑ− λ for S1(λ). ♦

As in section 2.1.2, we use Weyl’s alternative to investigate the selfadjoint realisations of the
differential expression T1(λ).
The (essential) selfadjointness of Tmin

1 (λ) depends on the behaviour of the solutions of T1(λ)u = 0
at the points 0 and π, so the next lemma is crucial for our question.

Lemma B.2. For λ ∈ ρ(D) ∩ R = R \ [−|am|, |am| ] a fundamental system of the differential
equation T1(λ)u = 0 is given by {ψ, h}, where ψ(ϑ) = e−aω cosϑ(tan ϑ

2 )k+
1
2 is a solution of B−u = 0,

cf. lemmata 2.8 and 3.21, and h solves the differential equation

(D− λ)−1B−h = ϕ,
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with ϕ(ϑ) = eaω cosϑ(tan ϑ
2 )−(k+ 1

2
) being a solution of B+u = 0 (see lemmata 2.8 and 3.21). For ψ

and h the following equivalences hold:

ψ lies left in L 2((0, π),dϑ) ⇐⇒ k > −1,

ψ lies right in L 2((0, π),dϑ) ⇐⇒ k < 0,

h lies left in L 2((0, π),dϑ) ⇐⇒ k < 1,

h lies right in L 2((0, π),dϑ) ⇐⇒ k > −2.

Proof. It is clear that ψ and h are solutions of T1(λ)u = 0. They are linearly independent because
B−h 6= 0 but ϕ lies in the kernel of B−. The assertions concerning ψ have been shown in the proof
of lemma 2.8, so we give a proof only for the behaviour of h. By definition, h solves the differential
equation (

− d
dϑ

+
k + 1

2

sinϑ
+ aω sinϑ

)
h(ϑ) = (am cosϑ− λ)ϕ(ϑ), ϑ ∈ (0, π). (B.7)

If we apply the ansatz h(ϑ) = c(ϑ)ϕ(ϑ)−1 and use the relation ϕ(ϑ)−1 = ψ(ϑ), we obtain the
differential equation

− d
dϑ

c(ϑ) = (am cosϑ− λ)ϕ2(ϑ), ϑ ∈ (0, π)

for the function c. In the following, we consider the behaviour of h at the point 0. We have to
distinguish several cases.
Case 1. Let k ∈ (−∞,−1

2 ]; then a solution of (B.7) is given by

h(ϑ) = −ϕ(ϑ)−1

ϑ∫
0

(am cos t− λ)ϕ2(t) dt, ϑ ∈ (0, π). (B.8)

There is an M1 > 0 such that |am cos t− λ| eaω(2 cos t−cosϑ) ≤ M1 for all t, ϑ ∈ (0, π). For k ≤ −1
2

and t ∈ (0, π) the function (tan t
2)−2k−1 is nondecreasing, hence 0 < (tan t

2)−2k−1 ≤ (tan ϑ
2 )−2k−1

holds for 0 ≤ t ≤ ϑ < π. This shows that for any d ∈ (0, π)

d∫
0

|h(ϑ)|2 dϑ =

d∫
0

ϕ(ϑ)−2

( ϑ∫
0

(am cos t− λ)ϕ2(t) dt

)2

dϑ

≤ M2
1

d∫
0

(
tan

ϑ

2

)2k+1
( ϑ∫

0

(
tan

t

2

)−2k−1
dt
)2

dϑ

≤ M2
1

d∫
0

(
tan

ϑ

2

)−2k−1
( ϑ∫

0

1 dt
)2

dϑ < ∞

and, consequently, h lies left in L 2((0, π),dϑ).

Case 2. Let k ∈ (−1
2 , 1), hence 2k + 1 > 0; then a solution of (B.7) is given by

h(ϑ) = ϕ(ϑ)−1

π∫
ϑ

(am cos t− λ)ϕ2(t) dt, ϑ ∈ (0, π). (B.9)
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Now, if we fix d ∈ (0, π) and use the inequalities 0 < tan ϑ
2 = sin ϑ

2

cos ϑ
2

≤ ϑ
2 cos d

2

for 0 < ϑ ≤ d < π and

0 < (tan t
2)−1 = cos t

2

sin t
2

≤ π
t for t ∈ (0, π), we obtain for k 6= 0

d∫
0

|h(ϑ)|2 dϑ ≤ M2
1

d∫
0

(
tan

ϑ

2

)2k+1
( π∫
ϑ

(
tan

t

2

)−2k−1
dt

)2

dϑ

≤ M2
1 π

2(2k+1)

(2 cos d2)2k+1

d∫
0

ϑ2k+1

( π∫
ϑ

t−2k−1 dt

)2

dϑ

=
M2

1 π
2(2k+1)

(2k)2(2 cos d2)2k+1

d∫
0

ϑ2k+1(π−4k − 2π−2kϑ−2k + ϑ−4k) dϑ

=
M2

1 π
2(2k+1)

(2k)2(2 cos d2)2k+1

[
π−4k

2k + 2
ϑ2k+2 − π−2k ϑ2 +

1
−2k + 2

ϑ−2k+2

]d
0

< ∞.

The case k = 0 furnishes technical problems only. We can show by a direct calculation involving
the logarithm that the integral on the left hand side is finite also in this case. Hence, for every
k ∈ (−1

2 , 1), the function h lies left in L 2((0, π),dϑ).

Case 3. Let k ∈ [1,∞); also in this case (B.9) is a solution of (B.7). Now we show that the
function h does not lie left in L 2((0, π),dϑ). To this end we fix some d0 ∈ (0, π). Since |λ| > |am|
by assumption, there is a constant M2 > 0 such that |am cos t − λ| eaω(2 cos t−cosϑ) ≥ M2 for all
t, ϑ ∈ (0, π). Therefore we can estimate

d0∫
0

|h(ϑ)|2 dϑ =

d0∫
0

ϕ(ϑ)−2

( π∫
ϑ

(am cos t− λ)ϕ2(t) dt

)2

dϑ

≥ M2
2

d0∫
0

(tan ϑ
2 )2k+1

( d0∫
ϑ

(tan t
2)−2k−1 dt

)2

dϑ.

In lemma 3.24 we have seen that the function (0, π) → R, x 7→ tan x
2

x is monotonously increasing,

hence
(
tan t

2

)−(2k+1) ≥
(
d−1

0 tan d0
2

)−(2k+1)
t−(2k+1) for all t ∈ (0, d0). It is well known that the

function (0, π) → R, x 7→ sinx
x is continuous and converges to 1 for x → 0. Hence there exists a

d ∈ (0, d0) such that

tan ϑ
2

ϑ
≥ 1

2
sin ϑ

2
ϑ
2

≥ 1
4
, ϑ ∈ (0, d).
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If we set M = M2
2

(
d−1

0 tan d0
2

)−2(2k+1)
we obtain

d0∫
0

|h(ϑ)|2 dϑ ≥ M

d∫
0

(tan ϑ
2 )2k+1

( d∫
ϑ

t−2k−1 dt

)2

dϑ

=
M

(2k)2

d∫
0

(tan ϑ
2 )2k+1(d−2k − ϑ−2k)2 dϑ

=
M

(2k)2

d∫
0

(tan ϑ
2 )2k+1ϑ−4k − 2d−2k

(
tan ϑ

2
ϑ

)−2k

tan ϑ
2 − d−4k(tan ϑ

2 )2k+1 dϑ.

Obviously, the integral over the last two terms converges since they are bounded in (0, d), whereas
the integral over the first summand diverges, which implies that the function h does not lie left in
L 2((0, π),dϑ).

It remains to consider the behaviour of solutions of h at the point π. To this end we use symmetry
properties of the function h. We attach subscripts k and a to the functions so that we can distinguish
between solutions for different wave numbers k and Kerr parameters a. As already pointed out in
remark 3.29, for k ∈ R the function ϕ satisfies

ϕk,a(ϑ) = ϕ−k−1,−a(π − ϑ), ϑ ∈ (0, π).

In the case k ≤ −1
2 this yields

hk,a(π − ϑ) = −ϕk,a(π − ϑ)−1

π−ϑ∫
0

(am cos t− λ)ϕ2
k,a(t) dt

= −ϕk,a(π − ϑ)−1

π∫
ϑ

(am cos(π − t)− λ)ϕ2
k,a(π − t) dt

= −ϕ−k−1,−a(ϑ)−1

π∫
ϑ

(−am cos t− λ)ϕ2
−k−1,−a(t) dt = h−k−1,−a(ϑ).

A similar computation shows that hk,a(π − · ) = h−k−1,−a holds also for k > −1
2 . Consequently,

hk,a is square integrable at π if and only if h−k−1,−a is square integrable at 0. Since the square
integrability does not depend on the value of a, it follows from the above considerations that h lies
right in L 2((0, π),dϑ) if and only if k ≥ −2.

The foregoing lemma shows that h ∈ D(Tmax
1 (λ)) for all k ∈ (−2, 1) and that ψ ∈ D(Tmax

1 (λ)) for
all k ∈ (−1, 0). It also provides information about selfadjoint extensions of the minimal operators
Smin

1 (λ) and Tmin
1 (λ).

Lemma B.3. Let λ ∈ ρ(D)∩R = R\ [−|am|, |am| ]. For k ∈ R\(−2, 1) the operators Tmin
1 (λ) and

Smin
1 (λ) are essentially selfadjoint. For k ∈ (−2,−1 ] ∪ [ 0, 1) all selfadjoint extensions of the oper-

ators Tmin
1 (λ) and Smin

1 (λ) are one-dimensional restrictions of Tmax
1 (λ) and Smax

1 (λ), respectively,
while for k ∈ (−1, 0) they are two-dimensional restrictions.

Proof. It follows from lemma B.2 that the differential expression T1(λ) is in the limit point case at
0 if and only if k ∈ R\(−1, 1) and that it is in the limit point case at π if and only if k ∈ R\(−2, 0).
Thus the assertions are direct consequences of [Wei87, theorem 5.7].
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Recall that S1(λ) is the Friedrichs extension of S[min]

1 (λ) for λ > |am|. Although Smin
1 (λ) (

S[min]

1 (λ), the next lemma shows that their Friedrichs extensions coincide.

Lemma B.4. The Friedrichs extensions of Smin
1 (λ) and of the Schur complement S1(λ) are equal.

Proof. First we show that for λ ∈ ρ(D) ∩ R = ρ(−D) ∩ R the forms smin
1 (λ) and tmin

1 (λ) are
symmetric, semibounded and closable. The symmetry of Smin

1 (λ) implies that

smin
1 (λ)[u, v] = (u, Smin

1 (λ)v) = (Smin
1 (λ)u, v) = (v, Smin

1 (λ)u) = smin
1 (λ)[v, u]

for all u, v ∈ D(smin
1 (λ)), hence the form is symmetric. Next we show that the form sign(λ)smin

1 (λ)
is bounded from below. Since |λ| > ‖D‖ = |am| by assumption, it follows that (|λ| − sign(λ)D)−1

is a positive operator, thus we have for all u ∈ D(smin
1 (λ))

sign(λ)smin
1 (λ)[u] = sign(λ)

(
u, (−D − λ)u

)
− sign(λ)

(
u, B(D − λ)−1B∗u

)
= −

(
u, (sign(λ)D + |λ|)u

)
+
(
B∗u, (|λ| − sign(λ)D)−1B∗u

)
≥ −(|λ|+ ‖D‖) ‖u‖2.

Since the above calculation also implies that the operator Smin
1 (λ) is semibounded, it follows that

the form smin
1 (λ) is closable, see [Kat80, chap. VI, corollary 1.28]. The corresponding assertions

for the form tmin
1 (λ) can be shown analogously.

In the following we denote the closures of smin
1 (λ) and tmin

1 (λ) by s1(λ) and t1(λ), respectively.
Obviously, we have D(t1(λ)) = D(s1(λ)). Now we show that the domains of the closed forms are
given by

D(s1(λ)) = D(t1(λ)) = D(B∗).

Since s1(λ) is the closure of smin
1 (λ), an element u ∈ L 2((0, π),dϑ) lies in D(s1(λ)) if and only if

there is a sequence (un)n∈N ⊆ D(smin
1 (λ)) = C∞0 (0, π) such that un → u and smin

1 (λ)[un − um] → 0
for m,n → ∞. In L 2((0, π),dϑ), the operators −D − λ and (D − λ)−1 are bounded and either
strictly positive or strictly negative for λ ∈ R \ [−|am|, |am| ]. Hence it follows that

s1(λ)[un − um] =
(
un − um, (−D − λ)(un − um)

)
−
(
B∗(un − um), (D − λ)−1B∗(un − um)

)
−→ 0

for m,n→∞ is equivalent to(
B∗(un − um), B∗(un − um)

)
= ‖B∗(un − um)‖2 −→ 0, m, n→∞.

Since B∗ is closed, this is equivalent to u ∈ D(B∗).
Comparing with lemma 4.30, we find that s1(λ) = s[min]

1 (λ). Since the Schur complement S1(λ)
is defined as the selfadjoint operator associated with the closure of s[min]

1 (λ), it follows that S1(λ)
is also the selfadjoint operator associated with the closure s1(λ) of smin

1 (λ). Hence the Friedrichs
extension of Smin

1 (λ) is equal to the Schur complement S1(λ).

The lemma shows that the domain of the forms is independent of λ and thus justifies the definitions

D(t1) := D(s1) := D(t1(λ)) = D(s1(λ)) = D(B∗).

Of course, assertions analogous to those from lemmata B.3 and B.4 hold for the minimal operator
Smin

2 (λ). They are summarised in the following lemma.
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Lemma B.5. For λ ∈ ρ(−D) ∩ R = R \ [−|am|, |am| ], the formal differential expression

S2(λ) = D− λ−B−(−D− λ)−1B+

is in the limit point case at 0 if and only if k ∈ R \ (−2, 0); it is in the limit point case at π if and
only if k ∈ R \ (−1, 1). Therefore, the operator

D(Smin
2 (λ)) := C∞0 (0, π), Smin

2 (λ)f = S2(λ)f (B.10)

is essentially selfadjoint if and only if k ∈ R \ (−2, 1).
The Schur complement S2(λ) and the Friedrichs extension of Smin

2 (λ) coincide. The domain of the
corresponding closed form is given by

D(s2) := D(t2) := D(t2(λ)) = D(s2(λ)) = D(B).

Remark B.6. For k ∈ (−2,−1 ] ∪ [ 0, 1) the block operator matrices(
S1(λ) 0

0 D − λ

)
and

(
−D − λ 0

0 S2(λ)

)
with domain C∞0 (0, π)2 are symmetric, but not essentially selfadjoint; this means that their domains
are not large enough. However, the products(

I B(D − λ)−1

0 I

)(
S1(λ) 0

0 D − λ

)(
I 0

(D − λ)−1B∗ I

)
, (B.11)

(
I 0

B∗(−D − λ)−1 I

)(
−D − λ 0

0 S1(λ)

)(
I (−D − λ)−1B
0 I

)
(B.12)

with domain C∞0 (0, π)2 are essentially selfadjoint since they are equal to the minimal operator Amin.
This corresponds to the fact that for k ∈ (−2,−1]∪ [0, 1) the ranges of B and B∗ are large enough
to guarantee the essential selfadjointness of the products. For example, fix some k ∈ [0, 1). Then
there are two linearly independent solutions ξj , j = 1, 2, of S1(λ)u = 0 which lie both left in
L 2((0, π),dϑ). Formally, we can define the vectors

Ξj :=
(

ξj
−(D− λ)−1B−ξj

)
, j = 1, 2,

which satisfy the differential equation

(A− λ)Ξj =
(
I B(D− λ)−1

0 I

)(
S1(λ) 0

0 D− λ

)(
I 0

(D− λ)−1B− I

)
Ξj = 0.

Since A is in the limit point case at 0, it follows that at least for one j ∈ {1, 2} the function Ξj
cannot lie left in L 2((0, π),dϑ). ♦

Boundary conditions

If k ∈ (−2, 1), then the operators Smin
1 (λ), λ > |am|, are not essentially selfadjoint, hence it follows

from the theory of linear differential operators that there are infinitely many selfadjoint extensions
each given as a restriction of Smax

1 (λ) in terms of boundary conditions.
For simplicity we work with the differential expression T1(λ) instead of S1(λ). Then all results are
easily carried over to the Schur complement since T1(λ) is a selfadjoint extension of Tmin

1 (λ) if and
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only if S1(λ) := −(D + λ) + T1(λ) is a selfadjoint extension of Smin
1 (λ). Also the corresponding

boundary conditions are the same.

For ϑ ∈ [0, π] and functions u, v ∈ D(Tmax
1 (λ)) let

[u, v]ϑ := (D − λ)−1(uv′ − u′v)(ϑ) = (am cosϑ− λ)−1
(
u(ϑ)v′(ϑ)− u′(ϑ)v(ϑ)

)
, ϑ ∈ (0, π).

For ϑ = 0 and ϑ = π this definition has to be understood as the limit of [u, v]ϑ for ϑ → 0 and
ϑ→ π respectively. By [Wei87, theorem 3.10], this limit always exists. Furthermore, let

[u, v]τϑ := [u, v]τ − [u, v]ϑ, ϑ, τ ∈ [0, π].

For u, v ∈ D(Tmax
1 (λ)) Green’s formula

[u, v]π0 = (Tmax
1 (λ)u, v)− (u, Tmax

1 (λ)v)

holds. These square bracket expressions contain information about the behaviour of functions when
subject to integration by parts and therefore we can use them to characterise selfadjoint extensions
of the minimal operator Tmin

1 (λ). By [Wei87, theorem 5.8], all selfadjoint extensions of Tmin
1 (λ) are

given by

D(T ηπ
1 (λ)) = {u ∈ D(Tmax

1 (λ)) : [ηπ, u]π = 0} if k ∈ (−2,−1],

D(T η01 (λ)) = {u ∈ D(Tmax
1 (λ)) : [η0, u]0 = 0} if k ∈ [0, 1),

D(T η
1
0 ,η

2
0 ,η

1
π ,η

2
π

1 (λ)) = {u ∈ D(Tmax
1 (λ)) : [ηj0, u]0 − [ηjπ, u]π = 0, j = 1, 2} if k ∈ (−1, 0)

where η0, ηπ are non-vanishing real solutions of T1(λ)u = 0 and ηj0, η
j
π, j = 1, 2, are solutions of

T1(λ)u = 0 such that η1
0 + η1

π and η2
0 + η2

π are linearly independent modulo D(Tmin
1 (λ)) and that

[ηiπ, η
j
π]π − [ηi0, η

j
0]0 = 0, i, j = 1, 2.

Lemma B.7. The Friedrichs extension S1(λ) of Smin
1 (λ) is given by

(i) S1(λ) = Sηπ
1 (λ) = T ηπ

1 (λ)−D − λ with ηπ = h if k ∈ (−2,−1 ],

(ii) S1(λ) = Sη01 (λ) = T η01 (λ)−D − λ with η0 = h if k ∈ [0, 1),

(iii) S1(λ) = S
η1
0 ,η

2
0 ,η

1
π ,η

2
π

1 (λ) = T
η1
0 ,η

2
0 ,η

1
π ,η

2
π

1 (λ)−D − λ with η1
0 = η1

π = ψ and η2
0 = η2

π = h if
k ∈ (−1, 0).

Here ψ and h are the functions from lemma B.3, i.e., ψ(ϑ) = e−aω cosϑ(tan ϑ
2 )k+

1
2 is a solution of

B−u = 0 and h is solution of (D− λ)−1B−u = ϕ.

Proof. We show that T ηπ
1 (λ), T η01 (λ) and T

η1
0 ,η

2
0 ,η

1
π ,η

2
π

1 (λ) are the Friedrichs extensions of Tmin
1 (λ).

Then the corresponding assertions for Smin
1 (λ) follow from the boundedness of −D−λ. Lemma B.2

shows that the differential expression T1(λ) is quasi-regular at 0 if and only if k ∈ (−1, 1) and that
it is quasi-regular at π if and only if k ∈ (−2, 0). Moreover, we know that h ∈ D(Tmax

1 (λ)) for all
k ∈ (−2, 1) and ψ ∈ D(Tmax

1 (λ)) for all k ∈ (−1, 0). From B−ψ = 0 and the definition of h in (B.7)
it follows that

ψ′(ϑ) = −B−ψ +
(
k+ 1

2
sinϑ + aω sinϑ

)
ψ(ϑ) =

(
k+ 1

2
sinϑ + aω sinϑ

)
ψ(ϑ),

h′(ϑ) = −B−h(ϑ) +
(
k+ 1

2
sinϑ + aω sinϑ

)
h(ϑ) = −(am cosϑ− λ)ϕ+

(
k+ 1

2
sinϑ + aω sinϑ

)
h(ϑ).
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Hence we obtain

[h, ψ]ϑ = (am cosϑ− λ)−1(h(ϑ)ψ′(ϑ)− h′(ϑ)ψ(ϑ))

= (am cosϑ− λ)−1
((

k+ 1
2

sinϑ + aω sinϑ
)
h(ϑ)ψ(ϑ)

+ (am cosϑ− λ)ϕ(ϑ)ψ(ϑ)−
(
k+ 1

2
sinϑ + aω sinϑ

)
h(ϑ)ψ(ϑ)

)
= 1

for all ϑ ∈ (0, π) and then also for ϑ = 0, π. Now we show that the functions h and ψ do not lie
in the domain of the closure of Tmin

1 (λ). Note that for k ∈ R \ (−2, 1) we have h /∈ L 2((0, π),dϑ)
and that for k ∈ R \ (−1, 0) we have ψ /∈ L 2((0, π),dϑ), hence ψ, h /∈ D(Tmin

1 (λ)) in these cases.
For the remaining cases, we slightly modify the proof of [Wei87, theorem 5.4]. Let k ∈ (−1, 1)
and fix a function ψ0 ∈ D(T1(λ)max) such that ψ0 = ψ in a neighbourhood of 0 and ψ0 = 0 in a
neighbourhood of π. Such a function exists since ψ lies left in L 2((0, π),dϑ) and it follows that

[h, ψ0]ϑ = 1 and [h, ψ0]τ = 0

for ϑ in a neighbourhood of 0 and τ in a neighbourhood of π. If we assume h ∈ D(Tmin
1 (λ)) then

Green’s formula and the fact that Tmax
1 (λ)∗ = Tmin

1 (λ) ⊆ Tmax
1 (λ) show that

−1 = −[h, ψ]0 = [h, ψ0]π0 =
(
Tmax

1 (λ)h, ψ0

)
−
(
h, Tmax

1 (λ)ψ0

)
=
(
Tmax

1 (λ), h
)
ψ0 −

(
Tmax

1 (λ)∗h, ψ0

)
= 0.

a contradiction. If k ∈ (−2, 0), we use a function ψπ ∈ D(Tmax
1 (λ)) such that ψπ = 0 in a

neighbourhood of 0 and ψπ = ψ in a neighbourhood of π to obtain a contradiction as above.
Analogous considerations show that ψ /∈ D(Tmin

1 (λ)) for k ∈ (−1, 0). Now we consider the three
cases of the lemma.

(i) Assume k ∈ (−2, 1]. Since all selfadjoint extensions are one-dimensional restrictions of Tmax
1 (λ)

and since we have already shown that h /∈ D(Tmin
1 (λ)), it suffices to show that h lies in the domain

of both selfadjoint extensions T1(λ) and T h1 (λ). The latter inclusion is obvious. To show the first
one, we note that h ∈ D(t1(λ)). Since for all u ∈ D(t1(λ)) we find

t1(λ)[u, h] = (u, T1(λ)h) = 0,

the function h lies in the domain of the Friedrichs extension T1(λ) and T1(λ)h = 0 holds.

(ii) For k ∈ [0, 1) the assertion follows analogously.

(iii) In the case k ∈ (−1, 0) the selfadjoint extensions of Tmin
1 (λ) are two-dimensional restrictions

of Tmax
1 (λ). We have already shown that h, ψ /∈ D(Tmin

1 (λ)) and that the functions h and ψ
are linearly independent. As in the first and second case, it follows that these functions lie in
D(T1(λ)); further, they also lie in D(Tψ,h,ψ,h1 (λ)). Hence it remains to prove that h and ψ are
linearly independent modulo D(Tmin

1 (λ)). Just as in the beginning of the proof we can show that
no linear combination of these two functions lies in D(Tmin

1 (λ)) which completes the proof.

Remark B.8. For k ∈ (−2,−1 ] ∪ [ 0, 1) we can show h /∈ D(Tmin
1 (λ)) also without using Green’s

formula. We have seen in lemma 3.30 that for k ∈ R\(−1, 0) there are C(ω) 6= 0 and δ(k, ω) 6= 0 such
that the inequalities ‖Bf‖ ≥ C(ω)δ(k, ω)‖f‖, f ∈ D(B), and ‖Bg‖ ≥ C(ω)δ(k, ω)‖g‖, g ∈ D(B∗),
hold. Now assume h ∈ D(Tmin

1 (λ)). Because of Tmin
1 (λ) ⊆ T1(λ) it follows that h lies in the kernel



144

of Tmin
1 (λ). Hence there exists a sequence (un)n∈N ⊆ D(Tmin

1 (λ)) = C∞0 (0, π) such that un → h
and Tmin

1 (λ)un → 0. Obviously, ((D − λ)−1B∗un)n∈N ⊆ C∞0 (0, π) ⊆ D(B∗). This leads to the
contradiction

0 = lim
n→∞

‖Tmin
1 (λ)un‖ = lim

n→∞
‖B(D − λ)−1B∗un‖

≥ C2(ω) δ(k, ω)2 ‖D − λ‖−1 lim
n→∞

‖un‖ = C2(ω) δ(k, ω)2 ‖D − λ‖−1 ‖h‖ > 0. ♦

It should be observed that in the case k ∈ (−1, 0) the Friedrichs extension is given by coupled
boundary conditions, although there exist selfadjoint extensions of Smin

1 (λ) with separated bound-
ary conditions.
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Notation

The following table lists some frequently used symbols and their usual meaning together with the
page of their first occurrence.

General notation

z complex conjugation
[x] Gauß bracket; [x] := max{n ∈ Z : n ≤ x}
〈·, ·〉 scalar product in Cm with the convention 〈x, y〉 =

∑m
j=1 xjyj for

x, y ∈ Cm,
(·, ·) scalar product in Hilbert spaces; for L 2-spaces of Cm-valued

functions it is defined as usual by (f, g) =
∫
〈f, g〉 (x)dx

A, B, . . . operator matrices
A, B, . . . linear operators
A∗ adjoint operator
Amin minimal operator associated with a formal differential expression
A, B, . . . formal differential operators
a, b, . . . sesquilinear forms or formal differential expressions
C∞0 (0, π) space of smooth functions with compact support in (0, π)
C (H) space of all closed operators on a Hilbert space H
D(A) domain of the operator A
ker(A) kernel of the operator A
H general (usually complex) Hilbert space
I, In identity operator
L× := L \ {0} for linear spaces L
L (H) space of all linear operators on the Hilbert space H
L 2((0, 1),dx) space of square integrable functions on (0, 1)
N = {1, 2, 3, . . . }, the natural numbers
o, O Landau symbols; a function f is of order o(g) for x → x0 if

f(x)/g(x) → 0 for x → x0; a function f is of order O(g) for
x→ x0 if f(x)/g(x) is bounded for x→ x0

rg(A) range of the operator A
W (A), W (a) numerical range of the operator A or the sesquilinear form a

W 2(A) quadratic numerical range of a block operator matrix A
ρ(A) resolvent set of the operator A
σ(A) spectrum of the operator A
σd(A), σess(A) discrete spectrum, essential spectrum of the linear operator A
σp(A) point spectrum of the linear operator A

149
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The angular operator and its associated operators

Â untransformed angular part of the coupled system in the Kerr-
Newman background

10

Âs = V0 Â 11
A(d) untransformed angular part of the decoupled Dirac equation in

the Kerr-Newman background
11

A transformed angular part of the decoupled Dirac equation in the
Kerr-Newman background

17

A0,Aπ restriction of A to (0, c] and [c, π) respectively 20
A0
U , Aπ

U formal differential expression, unitarily equivalent to A0, Aπ re-
spectively

22

Ab bounded part of A 17
Au = A− Ab, singular part of A 17
Amin minimal operator with domain D(Amin) = C∞0 (0, π) associated

with A

19

Amin
u minimal operator associated with Au 17

A0min
, Aπmin minimal operators associated with A0, Aπ 20

A the angular operator, defined as the closure of Amin and maximal
operator associated with A, A =

(−D B
B∗ D

) 19

Au = A−Ab, singular part of A 17
Ab bounded part of A 19
Amax
u maximal operator associated with Au 19

A0,Aπ selfadjoint extensions of A0min and Aπmin, respectively 21
AU operator unitarily equivalent to A 107
Bµ =

(
0 B+−µ

B−−µ 0

)
46

Bµ selfadjoint realisation of Bµ 46
B = B0 20, 46

Other operators, functions and parameters

B± formal differential operators, formally adjoint to each other,

B± = ± d
dϑ + k+ 1

2
sinϑ + aω sinϑ

20

B, B− = B∗ closed differential operators, adjoint to each other,

B = d
dϑ + k+ 1

2
sinϑ + aω sinϑ

20

BU entry of the block operator matrix AU , BU = d
dϑ + am cosϑ 107

b formal differential expression associated with BB∗ 95
bU sesquilinear form, bU [u, v] = (u,BUv) 108
c(k) 102
c± 51
C(ω) 53
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D formal multiplication operator, D = am cosϑ 10
D multiplication operator, D = am cosϑ 27

DU entry in AU , DU = −
(
k+ 1

2
sinϑ + aω sinϑ

)
107

dU sesquilinear form, dU [u, v] = (u,DUv) 108
HD = ~α · ~p+ βm, Dirac operator in flat spacetime 28
Ĥs = R̂s + Âs, Dirac operator in the Kerr-Newman metric 11
~J = ~L+ ~S, total angular momentum operator 29
K spin-orbit operator 29
K̂ block spin-orbit operator 29
~L angular momentum operator 28
L
t,ϕ
± , L± entries of Â, A 10, 11

m+ index shift 90
n0 index shift 79
P parity operator 31
~p = i∇, momentum operator 28
q potential in BB∗ 95
q〈±〉 test potentials for BB∗ 96
R̂ untransformed radial part of the coupled Dirac equation in the

Kerr-Newman background
10

R̂s = V0 R̂ 11
R(d) radial part of the decoupled Dirac equation in the Kerr-Newman

background
11

Rt,ϕ, R± entries in R̂, R(d) 10
~S spin operator 28
S± angular components of Ψ̂, depending on ϑ 11
S1(λ), S2(λ) Schur complements 68, 76
S[min]

j (λ), j = 1, 2 minimal Schur complements 69
S1(λ) formal differential expression associated with the Schur comple-

ment S[min]

1 (λ)
135

Smin
1 (λ) minimal operator associated with S1(λ) 135

s1(λ) closure of s[min]

1 (λ) and smin
1 (λ) 74, 140

s[min]

1 (λ) form associated with S[min]

1 (λ) 73
smin
1 (λ) form associated with Smin

1 (λ) 135
sign(x) = x/|x| if x ∈ R \ {0} and sign(0) = 0
T1(λ) formal differential expression 136
Tmin

1 (λ) minimal operator associated with T1(λ) 136
t1(λ) closure of tmin

1 (λ) 140
tmin
1 (λ) form associated with Tmin

1 (λ) 136
X± radial components of Ψ̂, depending on r 11

~α :=
(

0 ~σ
~σ 0

)
28

β :=
(
I2 0
0 −I2

)
28

γ± 51
γ5 :=

(
0 I2
I2 0

)
29

Γ(ω), Γ(ω, k) 54, 55
∆(r) 9
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δ(k, ω) 53, 56
δ(ϑ) phase function 22, 94
µn variational characterisation of the eigenvalues of the angular op-

erator A
79

µn eigenvalues of B 91
νn = µ2

n, eigenvalues of BB∗ 84
ρ0 51
Σ(r, ϑ) 9
σx1 function associated with s1 77
σj , j = 1, 2, 3 Pauli spin matrices 28
τ formal differential expression, Sturm-Liouville differential ex-

pression
15, 93

ϕ[µ], ϕ solutions of (B+ − µ)ϕ[n] = 0 and B+ϕ = 0, respectively 47
Ψ̂ spinor with four components 10
ψ[µ], ψ solutions of (B− − µ)ψ[µ] = 0 and B−ψ = 0, respectively 47
Ω± terms in the test potentials for BB∗ 96
∇ = (∂x, ∂y, ∂z), nabla operator 28

Physical quantities and eigenvalues

a Kerr parameter (angular momentum parameter) of the black
hole

9

j quantum number for the total angular moment of the fermion;
j(j + 1) is an eigenvalue of J2

31

jz eigenvalue of Jz 31
k wave number 11
M mass of the black hole 9
m mass of the fermion 10
Q charge of the black hole 9
κ = k + 1

2 32
κ̃ eigenvalue of the spin-orbit operator K 31
λ eigenvalue of the angular operator A 11
λn analytic continuation of the nth eigenvalue λn =

(
|k+ 1

2 |−
1
2 +n

)
of A in the case a = 0

λ
[l]
n , λ[u]

n lower and upper bound for the nth eigenvalue of the angular
operator A

98

λ
[l,SPT]
n , λ[u,SPT]

n lower and upper bound for the nth eigenvalue of the angular
operator A

98

λG, λ[lin]
G , λ[exp]

G lower bounds for the modulus of the eigenvalues of the angular
operator A

65

λQ lower bound for the modulus of the eigenvalues of the angular
operator A

112

r± black hole horizons 9
ω energy eigenvalue 11
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Index

angular momentum operator, 28
angular operator, 19

block operator matrix, 19
bounded-holomorphic family of linear opera-

tors, 37
Boyer-Lindquist coordinates, 9

comparison theorem, 94

defect index, 68

family of linear operators
bounded holomorphic, 37
holomorphic, see holomorphic family
selfadjoint, 37

Friedrichs extension, 77, 140

Green’s formula, 142

holomorphic family
of type (A), 37
of type (a), 73
of type (B), 73

Jacobi polynomials, 36

Kerr-Newman metric, 9
extreme Kerr-Newman metric, 10

Kerr-Newman parameter, 10

Landau symbol, 39
left in, 16
limit circle case, 16
limit point case, 16

m-sectorial operator, 73
minimal operator, 15

numerical range
of a sesquilinear form, 72

oscillatory differential equation, 94

parity operator, 31
perturbation theory, 37

Prüfer substitution, 22, 94

QNR, 80
quadratic numerical range, 80
quasi-derivative, 15
quasi-regular, 16

resolvent set of an operator function, 71
right in, 16

Schur complement, 43, 69, 76, 135
Schur factorisation, 43
sesquilinear form, 72

closure of, 72
extension of, 72
numerical range of, 72
restriction of, 72
sectorial, 72

spectrum
discrete, 71
essential, 71

spectrum of an operator function, 71
spin matrices, 28
spin operator, 28
spin-orbit operator, 29
Sturm’s comparison theorem, 94
Sturm-Liouville differential equation, 93

total angular momentum, 29

Weyl’s alternative, 16
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