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1.5. LimviT DISTRIBUTIONS AND THE CONTINUITY THEOREM.

Let {Xn,n > 0} be non-negative, integer valued random variables with
{n=0,k=>0)

(1.5.1) PlX, =kl =p™,  Pu(s) = Es*~.

Then X,, converges in distribution to Xy, written X,, = X, if

: (n) _ (@
(1.5.2) nll'n{}opk =P
for k=10,1,2,.... As the next result shows, this is equivalent to
{1.5.3) Fa(s) — Py(s)

for0<s<1asn— co.

Theorem 1.5.1. The Continuity Theorem. Suppose for each n =

1,2,... that {pfcn), k > 0} is a probability mass function on {0,1,2,...} so
that

(e o)
>0, Y =1
k=0

Then there exists a sequence {pECD) .k > 0} such that
(1.5.4) im ™ =p®, k>0,
=00

iff there exists a function Py(s),0 < s < 1 such that

(1.5.5) lim Fu(s) = lim 3" p(Ms* = Ry(s).
k=0

for 0 < s < 1. In this case Pols) = Y0, p)s% and Y% p0 = 1 iff
limgy; Py(s) =: Py(1) = 1.

Remarks. As we will see, this provides an alternative to brute force when
Proving convergence in distribution. Frequently it is easier to prove that the
generating functions converge rather than trying to show the convergence
of a sequence of mass functions.

From (1.5.4) we have

(1.5.6) 0<p™ <1
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(n

since the same is true for p; ) and limn, oo pﬁ") = pg)). But it does not
follow that 3 zeo pg)} = 1 since mass can escape to infinity. As a graphic

example suppose
P ™ 5 = 1, fk=n
P m%n= N0, ifk#n

For any fixed &,

(1.5.7) Jim p{™ =0,

n—00

from which o
(PD P 7) = (0,0,)

This phenomenon arises because we consider the state space {0,1,2,... }.
If we enlarge the state space to {0,1,2,... ,00} then X, = oo and the
limit distribution concentrates all mass at oo.

Proof. Suppose (1.5.2). Fix s € (0,1) and for any € > 0 we may pick m so
large that

]

Z Si‘ < E.

i=m+1

We have
IPa(s) — Pa(s) <D el — o
1

SO
k=m+1

k
M O

k=
m
<> Ip
k=1
m
<>Ip
k=1
Letting n — oo, we get

limsup |P(s) — Po(s)| < ¢

n—oQ

and because ¢ is arbitrary we obtain (1.5.5).

The proof of the converse is somewhat more involved and is deferred to
the appendix at the end of this section, which can be read by the interested
student or skipped by a beginner.
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Example. Harry and the Mushroom Staples.* Each morning, Harry
buys enough salad ingredients to prepare 200 salads for the lunch crowd
at his restaurant. Included in the salad are mushrooms which come in
small boxes held shut by relatively large staples. For each salad, there
is probability .005 that the person preparing the salad will sloppily drop
a staple into it. During a three week period, Harry’s precocious twelfth
grade niece, who has just completed a statistics unit in high school, keeps
track of the number of staples dropped in salads. (Harry’s customers are
not reticent about complaining about such things so detection of the sin
and collection of the data pose no problem.) After drawing a histogram,
the niece decides that the number of salads per day containing a staple is
Poisson distributed with parameter (200)(.005) =1. H

Harry’s niece has empirically rediscovered the Poisson approximation
to the binomial distribution: If X, ~ b(k;n,p(n)) and

(1.5.8) lim np(n) = lim EX, = X € (0, co),
n—0o0 n—o0
then
Xn = XU
as i — oo where Xp ~ p(k; A).
The verification is easy using generating functions. We have

nlin;lo P.(s) :nlin;c Es%n -—-nllngo(l —p{n)+p(n)s)”

- lim (1 . (s - 11)1”:0('-'1)) = pAMe-1)

n-—0o

using (1.5.8).
Appendix: Continuation of the Proof of Theorem 1.5.1.

We now return to the proof of Theorem 1.5.1 and show why convergence
of the generating functions implies convergence of the sequences.

Assume we know the following fact: Any sequence of Mass functions
{{f;"),j > 0}, n > 1} has a convergent subsequence {{f;n),j > 0}}
meaning that for all j

lim £
n —oc
exists. If {pL")} has two different subsequential limits along {n’} and {n"},
by the first half of Theorem 1.5.1 and hypothesis (1.5.3), we would have

Jim 37 p(sk = tim Pu(s) = Pofs)

n'—oo
k=0

*A semi-true story.
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and also

m SOk — o(s) = P,
lim gpk 8 nlErlmPn (s) = Pols).

nw/'f—oo

Thus any two subsequential limits of {psc")} have the same generating func-
tion. Since generating functions uniquely determine the sequence, all sub-
sequential limits are equal and thus limp, .o p.(h") exists for all k. The limit
has a generating function Po(s).

It remains to verify the claim that a sequence of mass functions
{1/ j(n),j > 0}, n > 1} has a subsequential limit. Since for each n we
have

{£™,5 2 0y Cfo, 1,

and [0, 1]° is a compact set {being a product of the compact sets [0, 1)),
we have an infinite sequence of elements in a compact set. Hence a subse-
quential limit must exist.

If the compactness argurnent is not satisfying, a subsequential limit can
be manufactured by a diagonalization procedure. (See Billingsley, 1986,
page 566.)

1.5.1. THE Law oF RARE EVENTS.

A more sophisticated version of the Poisson approximation, sometimes
called the Law of Rare Events, is discussed next.

Proposition 1.5.2. Suppose we have a doubly indexed array of random
variables such that for each n = 1,2,..., {Xnk, k 2 1}, is a sequence of
independent (but not necessarily identically distributed ) Bernoulli random
variables satisfying

(1.5.1.1) P[Xn,k = 1} =p(n)=1- PlXpx= 0],
(1.5.1.2) \ piln) = 8(n) =0, n— oo
1<k<n
(1.5.1.3) Y () =EY Xpp— A€ (0,00, n— oo,
k=1 k=1

If PO()) is a Poisson distributed random variable with mean A then

> Xnx = PO(A)
k=1



