Proyecto Final

Fecha de entrega:

Debe entregar un informe que incluiva:

- 1. Una introducción del problema.
- 2. Respuestas a las preguntas teóricas.
- 3. Código y todos los detalles de implementación (valores de tamaño de las muestras, número de iteraciones, valores de parámetros, etc.).
- 4. Resultados de las simulaciones.
- 5. Discusión de los resultados y conclusiones.

Puede usar todas las funciones disponibles en el lenguaje que use. La fecha de sustentación del proyecto será asignada más adelante.

Este problema presenta las definiciones y propiedades básicas de una cadena de Markov en tiempo discreto con finitos estados, junto con el teorema ergódico de Birkhoff. Se presenta una aplicación en un modelo de inventarios.

Definición 1. Una cadena de Markov con valores en el conjunto S, distribución inicial $a \in \mathbb{R}_+^{|S|}$ y matriz de transición $\mathbf{P} = (p_{ij}) \in \mathbb{R}_+^{|S| \times |S|}$, es una sucesión de variables aleatorias $\{X_n, n \geq 0\}$ con valores en S y definidas en el mismo espacio de probabilidad tales que

- $P(X_0 = i) = a_i \text{ para todo } i \in S$
- $P(X_{n+1} = j | X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i) = p_{ij} \text{ para todo } i, j, i_0, ..., i_{n-1} \in S \text{ tales que } P(X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_n = i) > 0.$

Note que tanto las entradas de a como de cada fila de \mathbf{P} suman 1. Una forma de simular (y construir) una cadena de Markov a partir una de sucesión de variables aleatorias $\{U_n, n \geq 0\}$ i.i.d con distribución uniforme (0,1) es la siguiente:

- I. Defina la función $g(u) = \sum_{i=1}^{|S|} i \mathbf{1}_{(\sum_{k=1}^{i-1} a_k, \sum_{k=1}^{i} a_k]}(u)$.
- II. Defina $X_0 = g(U_0)$.
- III. Defina la función $f(i,u) = \sum_{i=1}^{|S|} j \mathbf{1}_{(\sum_{k=1}^{j-1} p_{ik}, \sum_{k=1}^{j} p_{ik}]}(u)$.
- IV. Para $n \geq 0$, defina $X_{n+1} = f(X_n, U_{n+1})$.
 - 1. Escriba un programa que simule una cadena de Markov a partir del vector a y la matriz de transición **P**.

Las siguientes son las propiedades básicas de una cadena de Markov.

2. Muestre que una cadena de Markov satisface que

$$P(X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i_n) = a_{i_0} p_{i_0 i_1} \cdots p_{i_{n-1} i_n}$$

para todo i_0, \ldots, i_n . Considere también el caso en el que alguno de los $p_{i_k i_{k+1}} = 0$.

3. Muestre que

$$P(X_{n+1} = j_1, \dots, X_{n+m} = j_m | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_1 = j_1, \dots, X_m = j_m | X_0 = i)$$

siempre que $P(X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) > 0$.

4. Muestre que para todo $n \ge 1$

$$P(X_n = j | X_0 = i) = p_{ij}^{(n)},$$

donde
$$\mathbf{P}^n = (p_{ij}^{(n)}).$$

Definición 2. Una distribución de probabilidad sobre S, $\pi \in \mathbb{R}_+^{|S|}$, es una distribución estacionario de la cadena de Markov si $\pi^T = \pi^T \mathbf{P}$.

5. Muestre que si la distribución inicial de la cadena es una distribución estacionaria, entonces $P(X_n = i) = \pi_i$ para todo $n \ge 0$ y $i \in S$.

Bajo ciertas condiciones de la cadena, existe una única distribución estacionaria. En este caso se satisface la siguiente ley fuerte de frandes números.

Teorema (Ergódico de Birkhoff). Sea $f: S \to \mathbb{R}$. Entonces para toda distribución inicial casi siempre se tiene que

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(X_n) = \pi(f) := \sum_{i \in S} f(i)\pi_i,$$

 $donde \pi \ es \ la \ única \ distribución \ estacionaria.$

6. Use el teorema anterior para mostrar que

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} E[f(X_n)] = \pi(f).$$

Calcule, para $i \in S$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P(X_n = i).$$

Un modelo de inventario

Sea $\{X_n, n \geq 0\}$ el nivel de inventario de un producto al final del n-ésimo día, con X_0 el inventario inicial. Sea $\{D_n, n \geq 1\}$ la demanda del producto durante el n-ésimo día. Es sabido que las políticas óptimas que minimizan los costos del manejo del inventario son de la siguiente forma: Dados $0 \leq \underline{s} < \overline{s}$, si el inventario es menor o igual a \underline{s} , entonces se ordena producto hasta llegar a un nivel de inventario \overline{s} , de lo contrario no se hace ninguna orden. De esta forma se tiene que para $n \geq 0$

$$X_{n+1} = \begin{cases} \max\{X_n - D_{n+1}, 0\} & \text{if } \underline{s} < X_n \le \overline{s} \\ \max\{\overline{s} - D_{n+1}, 0\} & \text{if } X_n \le \underline{s} \end{cases}$$

- 7. Asuma que $\{D_n, n \geq 1\}$ son i.i.d. con valores en \mathbb{N} . Muestre que $\{X_n, n \geq 0\}$ es una cadena de Markov con valores en $\{0, \dots, \overline{s}\}$.
- 8. Suponga que D_i se distribuye Bin(10,0.4), $\bar{s} = 8$ y $\underline{s} = 3$. Calcule la matriz de transición **P** y su única distribución invariante π .
- 9. Simule 100 realizaciones del nivel de inventario y grafique $\frac{1}{N} \sum_{n=1}^{N} X_n$ para $N = 1, \dots, 500$. Asuma $X_0 = 0$. Compare con el resultado del Teorema 3.
- 10. Simule 500 realizaciones y haga un histograma de X_{500} . ¿Se parece a algo conocido? Calcule \mathbf{P}^{500} . Conjeture la convergencia en distribución de las variables $\{X_n, n \geq 0\}$.
- 11. Considere ahora el proceso de demanda no satisfecha durante el n-ésimo día, $\{U_n, n \geq 1\}$, dado por

$$U_n = \begin{cases} \max\{D_n - X_{n-1}, 0\} & \text{if } \underline{s} < X_{n-1} \le \overline{s} \\ \max\{D_n - \overline{s}, 0\} & \text{if } X_{n-1} \le \underline{s}. \end{cases}$$

Simule ahora 100 realizaciones de la cadena $\{(X_n, U_n)\}$ y grafique $\frac{1}{N} \sum_{n=1}^N X_n + \frac{1}{2N} \sum_{n=1}^N U_n$ para $N = 1, \ldots, 500$.

12. Encuentre valores de \underline{s} y \overline{s} que hagan el límite anterior lo menor posible.

Mauricio Junca