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Introduction

The Kempf-Ness theorem is a fundamental result at the intersection of the
complex algebraic geometry and symplectic geometry. It induces a symplectic
structure on quotient algebraic varieties, and then in moduli spaces that arise
there. This point of view has been fundamental in the works of Atiyah, Bott
and Donaldson about the Yang-Mills equations on Riemann surfaces.

The objective of this thesis was to study this relation in the finite dimensional
case: this is the original statement of Kempf and Ness.

The first chapter introduces the main strategy to solve the problem of finding
quotients in algebraic geometry, by means of geometric invariant theory (GIT)
in characteristic 0. In this chapter we expose the link between GIT and (linear)
reductive groups and geometric quotients, which turns out to be fundamental
to prove a result of Nagata and Mumford that implies the existence of quotients
of affine algebraic varieties by reductive groups. We give two examples that
illustrate how GIT works in the practice. Some remarks about the link between
reductive algebraic groups and Lie groups are given, and these are important to
understand the last chapter of the thesis.

The second chapter introduces the symplectic reduction, which is the natural
notion of quotient in symplectic geometry. We treat the same examples that
appear in the first chapter, but from a symplectic point of view. The chapter
concludes with the proof of the Marsden-Winstein-Meyer theorem.

The third chapter states, proves and illustrates (with the examples given in
the first two chapters) the symplectic quotient in the case of affine algebraic
varieties. The proof is slightly different from the one generally given in the
original articles.

I want to thank my advisor Florent Schaffhauser, who patiently introduced
me to the subject.
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Chapter 1

Geometric Invariant Theory

1.1 Affine Quotient

An algebraic group is a group with a structure of affine algebraic variety, such
that the inverse and multiplication maps are morphisms of varieties (i.e. the
component functions of this maps are polynomials).

We will denote with k an algebraically closed field of characteristic 0 and V
a finite-dimensional vector space over k.

Example 1. The main examples that we will work with are:

• (k∗)n is called an algebraic n-torus, and it is an algebraic group.

• The linear groups GL(V ), SL(V ), Sp(V, ω), where V is complex vector
space and ω is a symplectic structure on V , are examples of complex alge-
braic groups.

In this thesis we will be interested in actions of algebraic groups on affine
and projective algebraic varieties defined over the complex numbers. However,
not all the actions are considered. We will consider two cases. If the variety X
is affine and is contained in Cn, then we are interested in actions of G through
a homomorphism ρ : G → GL(Cn) and hence we will focus on linear represen-
tations of the group G on a complex vector space V . On the other hand, if X is
a projective variety contained in CPn = P (Cn+1), then we are interested in the
action of G through a linear representation ρ : G→ GL(Cn+1). This defines an
action on CPn because ρ(g)(λv) = λρ(G)(v) and then ρ(g)[v] = [ρ(g)v].

The main problem, in terms of affine varieties first, is:

Problem 1. Let X be an affine algebraic variety invariant under the linear
action of G. Does the orbit space X/G have a structure of affine algebraic
variety?

This problem is not easy to solve in general. The most common counterex-
ample for such a question is the following:
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Example 2. Consider the action of k∗ on the space k2 given by λ · (x, y) =
(λx, λ−1y). This space has as orbits: {(0, 0)}, the x-axis without (0, 0), the
y-axis without (0, 0) and the sets Oλ := {(x, y) : xy = λ} with λ 6= 0. Now
suppose that the set of orbits is a variety. Then, every point (orbit) must be
closed. Then if we take all k∗-invariant polynomials in two variables, there
should be one that attains different values on any couple of points we pick. In
particular the origin and the x-axis without the origin should be separated by
a k∗-invariant polynomial. But any polynomial is continuous in the Zariski
topology, and even more in the complex topology. Then, if such a polynomial
has value a in the x-axis then it must have value a in the origin. Then there is
no polynomial that distinguishes the two orbits we picked, and hence the orbit
space cannot be a variety.

The strategy to solve this problem goes in two different directions.

• First, we should consider groups for which it is possible to determine if
the quotient will exist.

• Second, we should change our notion of quotient, by a much more suitable
one for the category of algebraic varieties.

Both directions could be translated if one knows a little bit of basic algebraic
geometry. Recall that an affine algebraic set is the zero set of a set of polynomials
in k[x1, . . . , xn]. The ideal generated by such a set of polynomials gives rise to
the same zero set. On the other hand, such an ideal is finitely generated by
Hilbert’s basis theorem. Then we can restrict ourselves to the zero sets of a
finite number of polynomials. Moreover, k[x1, . . . , xn] is Noetherian implies that
the ideal generated by the polynomials mentioned above is Noetherian as well.
Hence, if I(X) is the set of polynomials that vanish in X and V (f1, · · · , fm)
is the set of common zeros of the polynomials f1, · · · , fm, then the quotient
A(V (f1, . . . , fm)) = k[x1, . . . , xn]/I(V (f1, . . . , fm)) is Noetherian as well, and
it is called the affine coordinate ring of V = V (f1, . . . , fm). This means that
A(V (f1, . . . , fm)) is a finitely generated k-algebra.

By the Hilbert’s Nullstellensatz the coordinate k-algebra is reduced, when-
ever k is algebraically closed. Recall on the other hand that if one has a finitely
generated and reduced k-algebra A over an algebraically closed field k, then
there is an algebraic set having A as coordinate algebra. This set is given by
the maximal spectrum of A, Spm(A).

On the other hand, if one has an algebraic set X ⊆ kn, and the action of
any group G on X, this induces an action of G on the coordinate algebra of X

g · f(x) = f(g−1 · x).

Then the coordinate algebra of a possible quotient variety should be given by
A(X)G: the subalgebra of G-invariant elements in A(X). Obviously, a subalge-
bra of a reduced algebra is reduced as well. Thus, to solve our problem we must
ask if in general A(X)G is finitely generated, in order to have a corresponding
variety.
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In general, A(X)G is not finitely generated. However, there is a certain class
of groups for which this holds. This is explained in section 1.1.1.

Finally the second direction to solve the problem stated above is quite subtle,
and depends as well on the description given above. This will be explained in
sections 1.1.2 and 1.1.3.

1.1.1 A few words about reductive groups

A class of groups G that make G-invariant subalgebras inherit finite generated-
ness is the class of reductive groups. To give a definition we have to recall some
concepts of representation theory.

In our context, any group G acts linearly on a complex vector space V . This
means that our actions are actually representations of the group G. Then, for
us, a (linear) representation of G (or a G-module) is a pair (V, ρ) such that V is
a complex vector space, and ρ : G→ GL(V ) is a group homomorphism. If ρ is
clear, we will only mention V , and vice versa.

A G-submodule is a subspace W ≤ V invariant under ρ: this makes sense,
since a ρ-invariant subspace gives rise to a representation ρ′ : G → GL(W ) by
restricting to W the evaluation maps. There are obvious G-submodules: the
trivial one {0} and V itself. A morphism of G-modules is a G-equivariant linear
map ψ : V →W .

A G-module is irreducible if it has no proper, non-trivial G-submodules. The
direct sum of two G-modules V,W is given by the representation ρV ⊕ρW : G→
GL(V ⊕W ) defined by

(ρV ⊕ ρW )(g)(v ⊕ w) = ρV (v)⊕ ρW (w).

A G-module is completely reducible if it can be decomposed as the direct
sum of irreducible G-submodules. A group G is called (linearly) reductive if
any G-module is completely reducible.

Remark 1: Let V be a G-module. We denote V G the G-submodule of invari-
ant elements of V . Moreover, any morphism of G-modules induces a morphism
ψG : V G →WG.

The definition of reductive group we gave above is not the easiest to work
with. This is why we have the following

Proposition 1. Let G be any group. Then the following are equivalent:

1. G is reductive,

2. for any G-module V , if V is a G-submodule then it has a direct complement
which is a G-module,

3. any surjective morphism of G-modules ψ : V → W induces a surjective
map ψG : V G →WG.

Many of the groups we already know are reductive. This makes the notion
of reductive group natural and not too restrictive.
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Example 3 (Finite groups). This is a theorem due to Maschke. For the proof
we use (2) in Proposition 1. Let ρ : G → GL(V ) be a representation and
W a G-submodule. There exist a direct complement U and hence a projection
π : V →W . Define π̃ : V →W as π̃(v) :=

∑
g∈G(g · π(g−1 · v)). π̃ is:

• linear: it is a finite sum of linear operators.

• G-invariant: the action of an element g ∈ G only permutates the sum.

• surjective: for any v ∈W , π̃(v) = |G|v. Since k has 0 characteristic, then
|G| 6= 0

By the isomorphism theorem, V splits as W ⊕ ker π̃. Moreover ker π̃ is ρ-
invariant. Thus G is reductive.

Example 4 (Compact real Lie groups). A compact real Lie group K is reductive
for the following reasons:

• (Haar theorem): If K is a compact Lie group then there exists only one
K-invariant integral (complex-valued linear functional in C(K,C))

∫
K
dg

such that
∫
K
dg = 1.

• Given a Hermitian product 〈, 〉, one can always define a new K-invariant
Hermitian product 〈, 〉K as follows:

〈v, w〉K :=

∫
K

〈g · v, g · w〉 dg

Now we proceed to find a direct complement of any K-invariant subspace W by
means of the K-invariant Hermitian product. Hence K is reductive.

Example 5 (Algebraic tori). Any group isomorphic to Cn is called an algebraic
n-torus. These groups are all reductive. For a proof see [13].

The relation between reductive groups and finitely generated algebras is a
consequence of the following theorem of Hilbert:

Theorem 1. Let k be an algebraically closed field of characteristic 0. If G is a
(linearly) reductive group then k[x1, . . . , xn]G is finitely generated.

Proof. It is clear that A = k[x1, . . . , xn] =
⊕

i≥0Ai (where Ai := k[x1, . . . , xn]Gi
are the degree i elements of k[x1, . . . , xn]) and then

k[x1, . . . , xn]G =
⊕
i≥0

(Ai
⋂
AG).

Now let AG+ :=
⊕

i>0(Ai
⋂
AG) and J be the ideal generated by AG+ in A. Since

J is an ideal of a Noetherian ring, J is finitely generated in A by a finite subset
of AG+ {f1, . . . , fm} (hence all of them of positive degree). Moreover, it is clear
that J and A are k-algebras endowed with a linear action of G. This simply
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says that they are G-modules. This means that φ : A ⊕ · · · ⊕ A → J defined
by φ(h1, . . . , hm) =

∑m
i=1 hifi is a G-modules homomorphism. Note that it is

surjective. Since G is reductive, the induced map φG : AG⊕, . . . ,⊕AG → JG is
surjective.

We want to prove that AG = k[f1, . . . , fm]. (⊇) is clear. Let us prove ⊆: let
h ∈ AG. We proceed by induction on the degree of h. If deg(h) = 0 then it is a
constant polynomial and then h ∈ k[f1, . . . , fm]. If deg(h) > 0 then h ∈ J . Since
h is G-invariant, h ∈ JG. By surjectivity of φG, there are G-invariant elements
hi ∈ AG such that h =

∑m
i=0 hifi. But all the elements fi have positive degree,

then deg(hi) < deg(h). By the induction hypothesis, hi ∈ k[f1, . . . , fm], and
then h ∈ k[f1, . . . , fm].

Remark: If k = C there are other ways to build up invariant hi by using the
Haar integral defined in example 4.

Corollary 1. Let A be a finitely generated k-algebra and G a reductive group.
Then AG is finitely generated.

Proof. Since A is finitely generated, one can build up the following surjective
homomorphism of k-algebras φ : k[x1, . . . , xn]→ A such that xi 7→ ai, and {ai :
1 ≤ i ≤ n} are generators of A. This induces an action of G on k[x1, . . . , xn],
and by the theorem above k[x1, . . . , xn]G is finitely generated. We have then
an induced morphism of G-modules k[x1, . . . , xn]G → AG, which is surjective
by Proposition 1. Hence the image of generator of k[x1, . . . , xn]G is a set of
generators of AG.

Remark 2: For the sake of completeness, a few words should be mentioned
about fields of non-zero characteristic. The problem of determining whether
the set of invariants of a k-algebra under the linear action of a group is or
not finitely generated was formulated by Hilbert. He himself found a class of
groups for which finite generatedness holds in the case of fields of 0 charac-
teristic, and is precisely the same that we described above: linear reductivity.
In general, if the field has arbitrary characteristic, linear reductivity does not
lead to finitely generated k-algebras. That is why there are two more general
notions of reductivity, all of which concide in 0 characteristic: reductivity and
geometric reductivity. Reductivity implies geometric reductivity (this is called
Mumford’s conjecture, and was proved by Haboush), and there is a generaliza-
tion of Hilbert’s theorem in this context (due to Nagata) which asserts that the
algebra of invariants of a k-algebra under the action of a geometrically reductive
group is finitely generated.

Remark 3: In chapter 3 it will be fundamental to understand some relations
between algebraic groups and Lie groups. It is clear that any complex algebraic
group is always a complex Lie group. On the other hand, any compact real Lie
group K is reductive (example 4), and has a complexification KC: this means
that K is a maximal compact subgroup of KC, such that kC ∼= k⊗R C = k⊕ ik.
When building up KC, it becomes clear that it is a complex algebraic group
[2]. This group inherits (linear) reductivity from K: this is a consequence of
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a general version of the so called Weyl’s unitary trick [4]. But this turns out
to be the general situation. Then we will say that G is reductive if it is the
complexification of a compact real Lie group K.

1.1.2 The affine quotient

By the theorem just mentioned, and using the dictionary between algebraic
sets and finitely generated reduced k-algebras, our intuition says that the cor-
responding quotient for the action of G on A(X) is given by Spm(A(X)G).
But we already gave an example of the algebraic torus C∗, and the orbit space
was not a variety. However, our analysis over the category of k-algebras seems
correct. What is the problem?

The problem is the quotient. The right notion of quotient in the category of
algebraic varieties is not the orbit space. To fix this, we can try to formulate our
problem in a more categorical context. Recall that in the category of sets, orbit
spaces have the following property: let X be a set and G any group acting on it
and let π : X → X/G be the projection map. It is clear that π is G-invariant.
Now let Y be any other set and η : X → Y a G-invariant. Then there is a unique
map η̃ : X/G → Y such that η = η̃ ◦ π. But this does not only happens in the
category of sets. For instance, the topological quotient (orbit space with the
quotient topology) has the same property in the category of topological spaces
with continuous maps.

This suggests the following definition:

Definition 1. Let X be an affine algebraic variety and G an algebraic group
acting on it. We say that an affine algebraic variety Z with a G-invariant
morphism ψ : X → Z is a categorical quotient if for every affine algebraic
variety Y and every G-invariant morphism φ : X → Y , there is a morphism
φ : Z → Y such that φ ◦ ψ = ψ.

Now note that if p(x1, . . . , xn) is a polynomial in X ⊆ kn, the action of G
in kn induces an action of G on p:

g · p(x1, . . . , xn) = p(g−1(x1, . . . , xn)).

This means that if a quotient Z exists, then every A(Z) should be isomorphic to
A(X)G. Then if Spm(A(X)G) is a variety (i.e. A(X)G is reduced and finitely
generated) then it is a good candidate to be the categorical quotient. This will
not be completely clear until the end of this section.

The contruction we present here allows one to define the categorical quo-
tient with an inmersion in an affine space. This is a key point to completely
understand the projective quotient.

Since every variety can be regarded as X = Spm(A), where A is its coor-
dinate k-algebra, there is a finite number of generators in A, say {f1, . . . , fm}.
But then, as one usually does, there is a surjective k-algebra homomorphism
φ : k[x1, . . . , xn]→ A such that xi 7→ fi. This induces a morphism of algebraic
sets φ̃ : Spm(A)→ Spm(k[x1, . . . , xn]) = kn, defined by

m 7→ (f1(m), . . . , fm(m)).
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Here, we are regarding fi ∈ A as function by means of the composite map
A → A/m ∼= k (the last k-algebra isomorphism is the only k-linear function
that sends the identity to the identity, taking A/m as a k-vector space). What
we did, is to embed explicitly Spm(A) in kn.

If one slightly modifies the last statement, one has a similar formulation
for Spm(AG) in terms of Spm(A). Let G be reductive. Then AG is finitely
generated by {f1, . . . , fm}, which are G-invariant elements of A. This induces
a G-invariant map

ψ :X → km

x 7→ (f1(x), . . . , fm(x))

Lemma 1. A(ψ(X)) ∼= A(X)G.

Proof. A(ψ(X)) := k[x1, . . . , xm]/I(ψ(X)) and A(X)G = k[f1, . . . , fm]. Define

α : k[x1, . . . , xn]→ k[f1, . . . , fn].

This map is surjective and has kernel

ker(α) = {p ∈ k[x1, . . . , xm] : p(f1, . . . , fm) = 0} = I(ψ(X)).

By G-invariance, ψ is constant on the orbits of X under G. However, not
necessarily two orbits have different values under ψ in km.

Example 6 (ex.2 revisited). It is clear that A(C2) = C[x, y]. Let us cal-
culate C[x, y]C

∗
. Recall that λ · f(x, y) = f(λ−1x, λy). Then, if f(x, y) =∑

α≤n,β≤m aαβx
αyβ,

λ · f(x, y) =
∑

α≤n,β≤m

aαβ(λ−1x)α(λy)β

=
∑

α≤n,β≤m

aαβλ
β−αxαyβ

=
∑

α≤n,β≤m

aαβx
αyβ

by G-invariance. Then λβ−α = 1, and hence β = α. Thus f(x, y) ∈ C[xy].
Obviously a generator of C[xy] is xy, and then ψ(x, y) = xy. This means that
precisely ψ assumes the value 0 in the orbits (0, 0), x-axis without (0, 0) and
y-axis without (0, 0).

Obviously ψ is continuous in the Zariski topology (because it is a regular
map), and then ψ−1(0) must be closed. But the x-axis without (0, 0) is not
closed. Moreover, the closure of this orbit (the whole x-axis) intersects the
closure of the other two orbits with image 0 by ψ. This means that intuitively,
the quotient variety takes the orbit space and identifies orbits whose closures
have non-empty intersection. Then this allows one define a relation between
orbits as follows:
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Definition 2. G · x ∼ G · y if G · x
⋂
G · y 6= ∅

It is clear that ∼ is symmetric and transitive. However, it is not clear at all
that transitivity holds, and then this relation is not necessarily an equivalence
relation.

This leads to the following definition:

Definition 3. Two orbits G · p,G · q are closure-equivalent if there are
a1, . . . , ak ∈ X such that a1 = p, ak = q and G · ai

⋂
G · ai+1 6= ∅ for every

i.

Closure-equivalence is obviously an equivalence relation. In the case of re-
ductive groups, it is equivalent to ∼, and hence ∼ is an equivalence relation.

Theorem 2 (Mumford, Nagata). If G is reductive acting linearly on X, then
G · p,G · q are closure equivalent if and only if G · p

⋂
G · q = ∅. Equivalently

to these statements, in algebraic terms, no f ∈ A(X)G has different values on
G · p and G · q.

Proof. If the closures of two orbits intersect, then both orbits are trivially
closure-equivalent, and by continuity, if f ∈ A(X)G then f(G · p) = f(G · a1) =
· · · = f(G · an−1) = f(G · q). Hence, we only need to prove that if f ∈ A(X)G

does not separate G ·p and G ·q then their closures have non-empty intersection.
Instead, let us prove that if G · p

⋂
G · q = ∅ then there is f ∈ A(X)G such that

f(G · p) 6= f(G · q).
Let I1 := I(G · p), I2 := I(G · q). It is clear that I(A) = I(V (I(A))) for any

set A and that A = V (I(A)). This implies that I1 = I(G · p), I2 = I(G · q).
Then since G · p

⋂
G · q = ∅, V (I1 + I2) = V (I1)

⋂
V (I2) = G · p

⋂
G · q = ∅.

Recall that the Nullstellensatz says that a proper ideal always has a nonempty
zeros set. Then I1 + I2 = A(X).

On the other hand I1 = I(G · p), I2 = I(G · q) implies that I1, I2 are invariant
subspaces. Moreover A(X) = I1 + I2 ∼= I1 ⊕ I2 = A(X), and then the map
I1 ⊕ I2 → A(X) defined by (f, g) 7→ f + g is surjective by the reasoning above.
Since G is reductive, I1

⋂
A(X)G ⊕ I2

⋂
A(X)G 7→ A(X)G is surjective. Hence

there are f ∈ I1
⋂
A(X)G, g ∈ I2

⋂
A(X)G such that its image is 1, i.e. f+g = 1.

Then f(G · p) = 0 and f(G · q) = 1.

The next theorem establishes the main result of this chapter. A few com-
ments are useful to understand the proof below. In order to have that ψ(X) is
a categorical quotient, ψ(X) should be an affine algebraic variety (or equiva-
lently a Zariski closed), and there should be a morphism φ for every morphism
φ : X → Y (φ depends on φ) such that the following diagram commutes:

X ψ(X)

Y

-ψ

?

φ
�
�

��	
φ

.
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By means of the dictionary between affine algebraic sets and finitely reduced
k-algebras, we should have the following diagram

A(X) A(ψ(X))

A(Y )

�ψ
∗

6
φ∗

�
�
�
�3

φ
∗ .

But then lemma 1 says that A(ψ(X)) := k[x1, . . . , xn]/I(ψ(X)) ∼= A(X)G.
Then, we only need to prove that such a φ can be defined.

Theorem 3. Let G be reductive, X an affine algebraic variety and ψ defined
as above. Then,

1. ψ(X) is Zariski closed,

2. ψ : X → ψ(X) is a categorical quotient: i.e. for every φ : X → Y
G-invariant there is a well defined morphism φ which makes ψ(X) a cat-
egorical quotient.

Proof. 1. We want to prove that ψ(X) := V (I(ψ(X)) = ψ(X). Let a =
(a1, . . . , an) ∈ ψ(X) and define the following homorphism

π :A(X)⊕ · · · ⊕A(X)→ A(X)

(g1, . . . , gn) 7→
n∑
i=1

gi(fi − ai)

Note that in this morphism fi ∈ A(X)G and ai are G-invariant. Then
this makes π a morphism of k-algebras. If one takes πG : ⊕ni=1A(X)G →
A(X)G, then π(⊕ni=1A(X)G) under the isomorphism α with A(ψ(X)) is
precisely the maximal ideal Ia in A(X)G that repesents a. This means
that πG is not surjective. But G is reductive, and then π is not surjective.
Let I be the maximal ideal in A(X) that contains Ia. Then A(X)G

⋂
I

is a maximal ideal in A(X)G and contains the maximal ideal Ia. Then
I
⋂
A(X)G = Ia. Then a = ψ(I).

2. Let x ∈ ψ(X). Then x = ψ(x) for some x ∈ X. Define φ(x) := φ(x). Let
us prove it is well defined. Let x̃ ∈ X such that ψ(x̃) = x. By our analysis
above G · x

⋂
(G · x̃) 6= ∅. But φ is G-invariant (hence φ(G · x) = y) and

continuous, hence φ(G · x) = φ(G · x̃) = y.

The following fact is fundamental when dealing with particular examples,
and is a key point to understand the last chapter of this thesis. Roughly speak-
ing, it gives geometric intuition about the quotient.

Theorem 4. Let G be a complex algebraic group acting on an affine variety X.
Then:
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1. for any x ∈ X, G · x is a variety (then it makes sense asking what is its
dimension),

2. any orbit of minimal dimension in a closure-equivalence class is closed,

3. every closure equivalence class contains a closed orbit of minimal dimen-
sion,

4. if G is reductive then the class is unique.

Proof. 1. Recall that the image of a morphism is a constructible set (a finite
union of sets which are open in their closure). This implies that the map
φx : G → X defined by φx(g) = g · x (which is obviously a morphism),
has as image G · x, and therefore is a constructible subset of X. Then
G · x =

⋃n
i=1 Ui =

⋃n
i=1 Ui where Ui are open in Ui. This implies that

G · x is an open set of finite union of closed sets (and then closed), and
hence a variety.

Remark:We should know a few things. If G is a group, the connected
component of the identity G0 is a subgroup, and G/G0 has finitely many
cosets. On the other hand, for any element x ∈ X, the stablizer Gx of x
is a closed subgroup. Then, we have the formula dim(G · x) = dim(G)−
dim(Gx) which makes sense since G · x is a variety.

2. Now, let G · x be of minimal dimension and x ∈
⋂
G·y∈C G · y where C

is a closure equivalence class. Suppose it is not closed. Then for every
y ∈ G · x\G · x, G · y is a closed set of strictly smaller dimension. Indeed,
if not, then one G · y must have the same dimension of G · x (because
dim(G · x) = dim(G · x) and then any other orbit in G · x has at most
the same dimension of G · x). Recall that both orbits are open in their
closure G · x (by the way we picked x, the closures of the orbit of x and y
coincide). Then G · y is a union of connected components of G · x which
do not intersect G ·x . But G ·x is dense in G · x, which is a contradiction.

3. Is a consequence of 2.

4. If G is reductive, and a closure equivalence class has two closed orbits,
then they must intersect, otherwise there is a G-invariant polynomial that
separates the two closed orbits (by Proposition 2). Then they are the
same orbit.

Definition 4. A point is polystable if its orbit is closed. The set of polystable
points of X is denoted by Xps.

After theorem 3 it is easy to assert that there is a bijection between the
points of ψ(X), the orbits of polystable points and closure equivalence classes.
The image of X under ψ is denoted as X//G.

12



Example 7 (Ex. 2 revisited again). We can finally give a conclusion to the
example above. Recall that the image of C2 under ψ is our quotient variety. But
it is obvious that ψ is surjective. This implies that our quotient variety is C.

Let us give another

Example 8. Let us take G = GL(Cn) acting on Mn(C) by conjugation. Then
the orbits of this action are given by the classes of similar matrices. Any matrix
M ∈Mn(C) has a Jordan form, and hence its orbit has an element that can be
written as the sum of a diagonal matrix D and a nilpotent matrix N (N is just
a matrix with zeros in the diagonal, 1’s and zeros in the second upper diagonal
and zeros in the other components). Then suppose that M = D +N . One can
easily find a matrix Aλ such that Aλ ·M = Aλ ·D + Aλ ·N = D + λN . If we
take t→ 0, then D ∈ G ·M . This implies that any closure equivalence orbit has
a diagonal matrix.

Remark: it is formal to take the limit as we did even if we are working
with the Zariski topology. Indeed, the complex topology is finer than the Zariski
topology. Hence, because the closure of a set is the intersection of all the closed
sets containing it, the complex closure is smaller than the Zariski closure. But
taking a limit is just calculating the closure of a sequence of elements.

If M is not diagonalizable we can repeat the process above in order to obtain
a diagonal matrix in the closure of the orbit, which is not in the orbit itself
(otherwise it would be diagonalizable). However, this process cannot be applied
to a diagonalizable matrix. Since a closed orbit has to exist in the closure of
every orbit, this makes clear the fact that the polystable points are exactly the
diagonalizable matrices.

On the other hand, any polystable orbit has only one diagonal form modulo
permutations. This implies that our quotient is in bijection with Cn/Sn, where
Sn stands for the permutation group of a set of n elements. The algebra of
invariants is given hence by C[x1, . . . , xn]Sn .

On the other hand, the algebra of invariants in this case is generated by the
symmetric polynomials (including the trace and the determinant). Then one
has a map ψ : Mn → Cn, because there are n symmetric polynomials. This is
obviously surjective, hence the quotient Mn(C)//GL(Cn) is precisely Cn.

13



Chapter 2

Symplectic Quotients

2.1 Hamiltonian Actions

Recall that given a manifold M and a Lie group G, a smooth action of G
over M is a homomorphism ψ : G → Diff(M) such that its ”evaluation map”
evψ : G ×M → M is C∞. A manifold with an action of a group G is often
called a G-manifold.

There is a correspondence:

{actions of R on M} ←→ {complete vector fields over M}

The correspondence can be written as:

ψ 7−→ X such that Xp =
d

dt t=0
ψ(t, p)

Given any G-manifold M and X an element of the Lie algebra g, we could repeat
the last procedure for the one parameter subgroup determined by the subspace
generated by X under the exponential map: hence, there is an associated field
over M such that if p ∈M then

X#(p) :=
d

dt t=0
(exp(−tX) · p)

(it is called the fundamental field of X or infinitesimal action of X on p).
Given a Lie group G, it can be considered as a G-manifold by considering

the conjugacy action: g ·m = intg(m) := gmg−1. G not only acts on itself, but
also on g (resp. g∗) by the adjoint (resp. co-adjoint) actions. Recall that the
adjoint action is defined by

g ·X = Adg(X) := d(intg)(X)

The co-adjoint action is given by the transpose of the adjoint action.
A symplectic manifold M is an even-dimensional manifold with a non-

degenerate closed 2-form ω.

14



Example 9 (Complex space). Let us consider the space R2n. A natural sym-
plectic form for this space is given by

ωR2n =

n∑
i=1

dxi ∧ dyi

Now let us see R2n as Cn as a complex manifold. Then we could write the form
in the following way (it is an easy calculation)

ωCn =
i

2

n∑
j=1

dzj ∧ dzj =
i

2
∂∂ |z|2

By a theorem due to Darboux, all the symplectic forms are locally like ωR2n .

A symplectomorphism between two symplectic manifolds ψ : (M1, ω1) →
(M2, ω2) is a diffeomorphism such that ψ∗ω2 = ω1. The group of symplecto-
morphisms of M is denoted by Sympl(M,ω) and is a subgroup of Diff(M).
A symplectic smooth action of a Lie group G over M is a homomorphism
ψ : G → Sympl(M) such that its evaluation map is smooth. This means, it
is an action that preserves the symplectic form.

Now, observe that the non-degeneracy of ω gives rise to an isomorphism
TpM → T ∗pM . In terms of vector fields we have the one-to-one correspondence
V ect(M) → Ω1(M) such that if X is a vector field, the corresponding form is
ι(X)ω. Recall that LXω = ι(X)dω + d(ι(X)ω) = d(ι(X)ω) by closedness of ω.
By the correspondence between R-actions and complete fields described above,
this yields:

Definition 5. We say that the vector field X in M is symplectic if the following
equivalent conditions are satisfied:

1. its associated 1-form is closed,

2. its associated R-action is symplectic,

3. LXω = 0.

Remark: Symplectic vector fields are closed under the Lie bracket.
The last example can be brought a little bit further.

Example 10. We now assume that we are working with a complex vector space
V with a Hermitian product 〈, 〉H . Recall that for vector spaces we can identify
the tangent space at each point with V itself. Then, a natural symplectic form
on V is given by

ωp(v, w) := Im 〈v, w〉H .

Indeed, it is skew symmetric, since 〈v, w〉H = 〈w, v〉H and then Im 〈v, w〉H =
−Im 〈w, v〉H . Non-degeneracy comes from the non-degeneracy of the Hermitian
product. This means that we can choose a basis of V as a real vector space, that
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makes it linearly symplectomorphic to RdimRV with its standard symplectic form.
From this we conclude that our form is closed.

Suppose moreover that we have a complex linear action of a Lie group K
on V (this only means that K acts through a complex representation of K on
V ). Then any Hermitian product can be brought to a K-invariant Hermitian
product via the Haar’s integral.

Then suppose that 〈, 〉H is a K-invariant Hermitian product over V . Then
the action of K is symplectic with respect to the form defined by it.

The last definitions make natural to ask: when is a (symplectic) R-action
exact? The vector fields generated by such actions and the R-action itself are
called Hamiltonian. In other words: if ψ is a Hamiltonian R-action, there is
a function H : M → R such that ιX#ω = dH (H is not unique because two
functions differing from a constant have the same derivative). Moreover, if
H : M → R then dH is a 1-form and (by the 1-1 correspondence between
vector fields and 1-forms described above) there is only one field XH such that
ιXHω = dH. Then the action is Hamiltonian if XH = X#. Such a function is
called a Hamiltonian of the field or the action, and it should be thought of as a
moment map.

One would like to have a general notion of Hamiltonian G-actions. A possible
first attempt would be defining a Hamiltonian G-action as a symplectic G-action
such that for each X ∈ g one has that d

dt |t=0exp(−tX)· is a Hamiltonian vector
field: this means that for any one-parameter subgroup generated by the elements
of the Lie algebra, the action is Hamiltonian. These actions are called weakly
Hamiltonian. In other words, we are choosing a function HX for every X ∈ g.
By linearity of the derivative and the symplectic form, one can choose HX in
order to have a well defined linear map

g→ C∞(M).

This is called a comoment map if it is a Lie algebra homomorphism (g with
the Lie bracket and C∞(M) with the Poisson bracket defined by {f, g} :=
ω(Xf , Xg)).

Finally, our objective is to define a function over M that characterizes the
Hamiltonian actions. This is useful because gives rise to level sets in M that
allow one to define symplectic quotients. The definition is the following:

Definition 6. Let G be a Lie group and (M,ω) a symplectic G-manifold. The
action of G is Hamiltonian if there exists a map µ : M → g∗ such that:

• For every X ∈ g, if µX : M → R defined by µX(p) := 〈µ(p), X〉 then

ιX#ω = dµX

• µ is equivariant with respect to the action of G on M and the co-adjoint
action of G on g∗.
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The function µ above is called a moment map. Every comoment φ map
defines a moment map by 〈µ(p), X〉 = φ(X)(p). In the same manner, a moment
map gives rise to a comoment map. It is easy but not completely trivial how
moment and comoment maps are related. More precisely, the first condition
for a moment map is equivalent to being weakly Hamiltonian, and then to have
the correspondence g → C∞(M). However, it is not obvious that equivariance
in the moment map is equivalent to the co-moment map being a Lie algebra
homomorphism. For this see [6], page 163, lemma 5.16.

Example 11. Let K be a compact Lie group acting on a vector space V . Now
let 〈, 〉H be a K-invariant Hermitian product on V . In example 10 we gave
a symplectic structure on V . We saw that the action of K is symplectic with
respect to this symplectic structure. Let us show that such an action is actually
Hamiltonian. However, let us see how the linear K-action can be expressed
explicitly.

First, recall that K acts through a homomorphism ρ : G → GL(V ). This
means that g · v = ρ(g)v which is simply a product of a matrix by a vector.
Then this map has as derivative in the identity a Lie algebra homomorphism
dρ(e) : g → gl(V ). Moreover, recall that for a vector space one identifies the
tangent space at a point with the vector space itself. Then if ξ ∈ g, ξ · v := ξ#v =
d
dt |t=0ρ(exp(tξ))v = d

dt |t=0exp(tdρ(e)(ξ))v = dρ(e)(ξ)v which is a product of a
matrix and a vector.

Now we are ready. To prove that our action is Hamiltonian we give a moment
map explicitly:

〈µ(v), ξ〉 :=
1

2
Im 〈v, ξ · v〉H .

We have to prove that this satisfies:

1. dµξ(v)(w) = ω(ξ#v , w) = Im 〈ξ · v, w〉:

dµξ(v)(w) = d(
1

2
〈µ(v), ξ〉 (w)) =

1

2

d

dt t=0
Im 〈v + tw, (ξ) · (v + tw)〉H

=
1

2
Im

d

dt t=0
〈v + tw, ξ · v + tξ · w〉

=
1

2
Im 〈w, ξ · v〉H +

1

2
Im 〈v, ξ · w〉H .

Now note that since K is compact, then its image under ρ is a subgroup of
U(V, 〈, 〉H) and hence its Lie algebra is the set of skew-Hermitian matrices.
This means that:

〈v, ξ · w〉H = 〈dρ(e)(ξ)∗ · v, w〉H = −〈ξ · v, w〉H = −〈w, ξ · v〉H .

This completes our computation

dµξ(v)(w) =
1

2
Im(〈w, ξ · v〉H − 〈w, ξ · v〉H) =

1

2
Im2(Im 〈w, ξ · v〉H)

= Im(〈w, ξ · v〉H) = ω(ξ#v , w)
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2. Now we need to check that µ is K-equivariant:

〈µ(g · v), ξ〉 = Im 〈g · v, ξ · (g · v)〉H = Im 〈v, ρ(g)∗ · (ξ · (g · v))〉H
= Im 〈v, ρ(g)∗dρ(e)(ξ)ρ(g)v))〉H

Since ρ(g) is unitary, then ρ(g)∗ = ρ(g)−1. Moreover, ρ(g)∗dρ(e)(ξ)ρ(g)(v)
is linear in v, and hence its derivative is itself. Then ρ(g)∗dρ(e)(ξ)ρ(g)(v) =
Adg(ξ) · v. This means,

〈µ(g · v), ξ〉 = Im 〈v,Adg(ξ)v〉H = 〈µ(v), Adg(ξ)〉H
= Adg(µ(v))(ξ).

Thus 12Im 〈v, ξ · v〉H defines a moment map µ : V → k∗

2.2 Symplectic reduction

In general, if the action of a Lie group over a manifold is free and proper, its
space of orbits inherits a manifold structure. In the category of symplectic
manifolds, in particular, the orbit space does not have a symplectic structure:
the new manifold does not even have even dimension. However, at least in
the case of Hamiltonian actions, there is a natural notion of quotient. It is
called reduction because in physics (where it has its origins) one looks for the
reduction of the phase space by the symmetries (Lie group actions) of the phase
space itself. The construction is due to Meyer, Marsden and Weinstein.

At the linear level we have the following:

Lemma 2 (Linear symplectic reduction). Let (V, ω) a symplectic vector space,
and W ≤ V a co-isotropic (this means that Wω ⊆ W ) subspace. Then there is
a symplectic form ωred in W/Wω

Proof. It is natural to define ωred([u], [v]) := ω(u, v), for u, v ∈ W . Hence one
has to check that this form is well defined and that it is non-degenerate (if it is
well defined it is clear that it is alternate).

• (well-defined:) let us write ωred([u], [v]) = ω(u+Wω, v+Wω) = ω(u, v)+
ω(u,Wω) + ω(Wω, v) + ω(Wω,Wω). It is obvious that ω(Wω,−) =
ω(−,Wω) = 0 because W is co-isotropic. Hence ωred([u], [v]) = ω(v, w).

• (non-degenerate:) let u ∈W and ωred([u], [v]) = 0 for every w ∈W . Then
w ∈ (W )ω. Hence w ∈W = [0].

In order to give a motivation let us see how symplectic reduction works when
we have a 1-periodic R-action:
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Example 12 (S1 reduction). Let (M,ω) be a symplectic manifold with an S1-
action. Now let H : M → R be the Hamiltonian, and λ a regular value of
H, such that the action is free in the level hypersurface H−1(λ). Then the
quotient manifold H−1(λ)/S1 inherits a symplectic structure ωred. This means
that i∗ω = π∗ωred where i : H−1(λ)→M is the inclusion and π is the projection
to the quotient.

Freeness and regularity are enough to ensure that the quotient is a manifold,
because S1 is compact. Moreover, the integral curves of a Hamiltonian action
are tangent to the level sets (cfr.[6]). This means that the tangent space is
coisotropic. By the lemma 1 above, the quotient inherits a symplectic form in
each tangent space ωred,p. Closedness of ωred follows from

π∗dωred = dπ∗ωred = di∗ω = i∗dω = 0

But π is surjective, then π∗ is injective and hence ωred = 0

In practice S1 reduction works as follows:

Example 13. Let us study example 11, for some S1-actions on Cn+1. One
says that S1 acts with weights l1, . . . , ln+1 ∈ Z if the action is given by

e2πit · (z1, . . . , zn+1) = (e2πil1tz1, . . . , e
2πiln+1tzn+1)

Note that a representation of S1 would be through diagonal unitary matrices with
the same entry in the diagonal. Then it has as Lie algebra iR (or better skew-
hermitian matrices with the same purely imaginary element in the diagonal).
The exponential of this group is the usual exponential, and then:

d

dt t=0
exp(−irt) · z =

d

dt t=0
(e−2πil1tz1, . . . , e

−2πiln+1tzn+1)

= −(2πil1z1, . . . , 2πiln+1zn+1)

Then,

〈µ(z), X〉 =
Im 〈z, (−2πil1z1, . . . , 2πiln+1zn+1)〉

2

and then the moment map is:

〈µ(z), X〉 = −
n∑
j=1

lj |zj |2

Then for instance, one could pick n = 2, l1 = 1 and l2 = −1:first note that
µ−1(0) = {(x, y) ∈ C : |x| = |y|}. Clearly S1 acts on this set, because if λ ∈ C
then

|λx| = |λ| |x| = |x| = |y| =
∣∣λ−1∣∣ |y| = ∣∣λ−1y∣∣

The action is free as you can easily check. Now, note that given an element
x ∈ C, if y ∈ C such that |x| = |y| then it is clear that there is only one element
λ ∈ S1, such that λx = y. Then there is a bijection between element of C and
S1-classes in µ−1(0). Hence our reduced manifold is C.
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Theorem 5 (Meyer, Marsden-Weinstein). Let (M,ω,G) a Hamiltonian G-
manifold with moment map µ. Suppose that the action of G is free and proper
on µ−1(0) (for instance, the action of any compact group is proper). Then:

1. Mred = X//G := µ−1(0)/G is a manifold,

2. the projection π : µ−1(0)→ µ−1(0)/G is a principal G-bundle,

3. there is a symplectic form ωred on Mred such that: i∗ω = π∗ωred (where i
stands for the inclusion of µ−1(0) in M).

The proof of the theorem is based on the following lemma:

Lemma 3. Under the assumptions of the theorem, the following are true:

1. ker(dµx) = Tx(Gx)ωx(= {X#(x) : X ∈ g}ωx),

2. Im(dµx) = g0x (the anihilator of gx).

Proof. The proof is based on the following formula:

〈dxµ(v), X〉 = ωx(v,X#
x )

1. dµx(v) = 0 ⇔ 〈dµx(v), X〉 = 0 for every X ∈ g ⇔ ωx(v,X#
x ) = 0 which

means that v is in the symplectic complement of {X#(x) : X ∈ g}. Since
we have an equivalence at every step, the fact is proved.

2. Let us first prove (⊆): let X ∈ gx = Lie(Gx) ≤ g, where Gx stands
for the stabilizer of x in G. Thus, X#(x) = d

dt t=0
(exp(−tX) · x). But

exp(−tX) ∈ Gx for every t, which means that it is constant. Then
exp(−tX) · x is constant as well, and hence its derivative is 0. Then
〈dµx(v), X〉 = ωx(v,X#(x)) = 0.

In order to prove the equality, it is enough to calculate dimensions:

dim(Imdµx) = dim(M)− dim(ker dµx) = dimM − (dimM − dimG · x)

= dimG− dimGx = dim(g)− dim(gx) = dim(g0x)

Proof of theorem 5. The proof is based on lemma 5.

1. Let us prove first that µ−1(0) is a manifold: by lemma 3 (part 2) Im(dµx) =
g0x. But dim g=x dim g − dim g0x = dimG − 0 for any x ∈ µ−1(0) since
the action is free there and hence any point has trivial stablizer. Then
dim Imdµx = dimG for any x ∈ µ−1(0), which means that dµx is sur-
jective. This says precisely that 0 is a regular value of µ. Then µ−1(0)
is a manifold. Since the action is free and proper, then it follows that
µ−1(0)/G is a manifold as well.
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2. Follows from the first item.

3. This can be divided into two parts.

First we need to prove that there is a form ωred in Mred such that
i∗ω = π∗ωred. This has to be done in every orbit first. Let us de-
fine ωred([X], [Y ]) := ω(X,Y ) in Tx(µ−1(0)/G) = Txµ

−1(0)/TxOx. To
check it is well defined, we need to use lemma 2. In order to do so,
it is necessary to verify that TxOx is isotropic. If TxOx = Txµ

−1(0)ω,
since TxOx ⊂ Txµ

−1(0) then the statement follows. Thus we prove that
TxOx = Txµ

−1(0)ω: if µ(x) = 0 then µX(x) = 0 for any X ∈ g. This
means that µX is constant and hence has trivial derivative. By the mo-
ment map condition, for any v ∈ Txµ−1(0), ω(X#

x , v) = 0. To prove the
equality it is enough to notice that dim(TxOx) = dim(Ox) = dim(G) be-
cause the action is free. Moreover dim(G) = dim(M) − dim(µ−1(0)) =
codim(µ−1(0)) = dim(Txµ

−1(0))ω.

Finally, we would like to see that ωred is symplectic. Non-degeneracy
follows inmediately from 2) in lemma 2. On the other hand, the form is
closed because π∗(dωred) = dπ∗(ωred) = di∗ω = i∗(dω) = 0. Since π is
surjective, π∗ is injective and hence dωred = 0.

Let us give an example of reduction where the acting group is U(n).

Example 14. Let X = Mn(C) and K = U(n) acting on X by conjugation.
Any matrix M ∈ X has a unique decomposition as the sum of a Hermitian and
a skew-Hermitian matrices as follows:

M =

(
M +M∗

2

)
+

(
M −M∗

2

)
where M+M∗

2 ∈ Hn(Hermitian n × n matrices) and M−M∗

2 ∈ iHn (skew-
Hermitian n×n matrices). Moreover, any hermitian and skew-Hermitain matrix
can be diagonalized through a unitary matrix. In our terms, every K-orbit of a
Hermitian or a skew-Hermitian matrix contains a diagonal matrix.

If M = A+B is a decompostion of this kind, then a way to ensure that both
A,B be diagonalizable by the same matrix is saying that they conmute. Let us
write this down:

AB =

(
M +M∗

2

)(
M −M∗

2

)
=

(
M −M∗

2

)(
M +M∗

2

)
= BA

Then

M2 −MM∗ +M∗M −M∗2 = M2 +MM∗ −M∗M −M∗2

This means that:
[M,M∗] = MM∗ −M∗M = 0
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This is equivalent to say that M is a normal matrix. The important thing here,
is the fact that we have just found a candidate for a moment map. However,
MM∗−M∗M is a Hermitian matrix and then it is not in u(n). But i(MM∗−
M∗M) is skew-Hermitian and then it is in u(n). To have an element in the
dual u(n)∗ we use the isomorphism determined by the Hermitian product. For
reasons that will be clear in the calculation, we will divide i(MM∗ −M∗M) by
2. Then the moment map is the composite map:

µ :Mn(C) −→ u(n)
∼=−→ u(n)∗

M 7−→ (i/2)[M,M∗] 7−→ 〈(i/2)[M,M∗],−〉H
where the Hermitian product is defined as 〈A,B〉H := −tr(AB∗). If this is
a moment map, then µ−1(0) = {normal matrices}. This means that in the
decomposition M = A + B, A and B can be diagonalized simultaneously, and
then the diagonal form of M is D + D̃, where D is diagonal Hermitian (hence
real) and D̃ is diagonal skew-Hermitian (hence purely imaginary). Obviously
any diagonal matrix is normal and any permutation matrix is unitary, and then
X//K is in bijection with the set {diagonal matrices}/{permutation matrices}
and hence with Cn/Sn.

It remains to check that µ above is a moment map. We will show some
simple computations before:

• whenever we have an identification via a Hermitian product it is clear that:
〈〈X,−〉M , Y 〉 = 〈X,Y 〉M where X,Y ∈ u(n)

• X#
p is easy to compute in the case of matrices. Indeed,

X#
p =

d

dt t=0
etX · p =

d

dt t=0
etXpe−tX

=
d

dt t=0
etXp+ p

d

dt t=0
e−tX = Xp− pX

This makes clear that we want the following expressions to be equivalent in
order to verify the first condition of a moment map:

• ωp(ξ#p , Y ) = ωp(ξp− pξ, Y ) = −Im(tr((ξp− pξ)Y ∗)).

• dµ(p)Y :

dµ(p)Y =
d

dt t=0
µ(p+ tY )

=
d

dt t=0
[(p+ tY )(p+ tY )∗ − (p+ tY )∗(p+ tY )]

=
d

dt t=0
[pp∗ + tpY ∗ + tY p∗ + t2Y Y ∗ − (p∗p+ tY ∗p+ tp∗Y + t2Y ∗Y )]

= pY ∗ + Y p∗ − (Y ∗p+ p∗Y )

The latter is skew-Hermitian.

22



• We are ready to prove the equality 〈dµ(p), ξ〉 = ωp(ξ
#
p , Y ) Be the two items

above, we only need to realize that

−Im(tr((ξp− pξ)Y ∗)) =
1

2
〈pY ∗ + Y p∗ − (Y ∗p+ p∗Y ), ξ〉

= −1

2
Im(tr(i(pY ∗ + Y p∗ − (Y ∗p+ p∗Y ))ξ∗)).

It is clear that ξ∗ = ξ. Then −(pY ∗ξ + Y p∗ξ − Y ∗pξ − p∗Y ξ) and

tr(pY ∗ξ + Y p∗ξ − Y ∗pξ − p∗Y ξ)

By using the commutation properties of the trace and conjugating, the equality
follows.
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Chapter 3

The Kempf-Ness theorem

In this chapter we explore the relation between quotients in algebraic geom-
etry and symplectic reduction. The Kempf-Ness theorem states an explicit
correspondence between closure-equivalence classes and points in the symplec-
tic quotient. This relation can be formulated in an explicit way in some cases.
However, the proof of the theorem in its general version relies in the proper-
ties of certain funtions (Kempf-Ness functions), which allow one to study the
polystability of a point.

3.1 Some examples

First let us treat the case of G = C∗ acting on C2 given in the example 2 of
chapter 1. Let us calculate the polystable points. Recall that there are three
kinds of orbits: orbits of points (a, b) such that a, b 6= 0, the x-axis without
(0, 0), the y-axis whithout (0, 0) and (0, 0).

• If a, b 6= 0, then any point (x, y) is in the orbit of(a, b) iff λ · (a, b) = (x, y).
Equivalently λ−1 · (x, y) = (a, b), or even better λ−1x = a, λy = b. This
means that xy = ab gives the points of the orbit. Then all these orbits
are closed.

• If a = 0 and b 6= 0, then obviously limλ→0 λ
−1(a, b) = (0, 0). Hence (0, 0)

is in the closure but not in the orbit. This means that the orbit is not
closed and hence (a, b) is not polystable. (The same works for a 6= 0 and
b = 0).

• Evidently, the orbit of the point (0, 0) is closed.

Then the polystable points modulo G are C.
On the other hand, K = S1 is a maximal compact subgroup of C∗, and C∗

is its complexification. We already treated the case of reduction in this case.
We obtained precisely C as well.
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Then the theorem of Kempf and Ness says several things (recall that µ−1(0) =
{(x, y) ∈ C2 : |x| = |y|}):

• µ−1(0) ⊆ Xps: this is clear since the only points of (x, y) ∈ C2 which are
not polystable are are those in the axes except for the origin. None of
these points has the property that |x| = |y| since one is zero but not both
are 0.

• Xps ⊆ G · µ−1(0): if (x, y) is polystable then x, y 6= 0 or x, y = 0. The
second case is trivial. In the first we want to find λ ∈ C∗ such that
|λx| = |λ−1y|. A solution for this equation in λ is simply |λ| =

√
|y/x|.

• Any G-orbit of a polystable point contains only one K-orbit of µ−1(0).
Existence follows from the item above. To prove the uniqueness we observe
that the only solutions of the last equation are S1 ·λ. This determines the
only S1-orbit.

• There is a bijection

X//G = Xps/G→ X//K = µ−1(0)/K.

It is a direct consequence of the last statements.

Let us treat the second example that we have worked with throughout the
text: G = GL(Cn), K = U(n) and X = Mn(C). The polystable points of X are
the diagonalizable matrices. On the other hand µ−1(0) are the normal matrices.
Repeating the statements above we have:

• µ−1(0) ⊆ Xps: it is clear that any normal matrix is diagonalizable. Indeed,
if M is normal then M = A+B where A is Hermitian, B is skew-Hermitian
and both commute. Then they are simultaneously diagonalizable by a
unitary matrix. Thus M is similar to the sum of a Hermitian and a
skew-Hermitian diagonal matrices. In other words, the sum is a complex
diagonal matrix.

• Xps ⊆ G · µ−1(0): every polystable element M has a diagonal D in its
orbit. Diagonal matrices are normal, and then D ∈ µ−1(0). Hence D,M ∈
G ·D ⊆ G · µ−1(0).

• Any G-orbit of a polystable point contains only one K-orbit of µ−1(0).
Let M be polystable. This means that it is diagonalizable, and then there
is a diagonal, and then normal, matrix D in its orbit. Then the K-orbit of
D is contained in the G-orbit of M . Uniqueness: if two normal matrices
A,B are such that G · A = G · B then they are unitarily diagonalizable,
with diagonal matrix D. This means that D ∈ K ·A

⋂
K ·B and then A

and B are K-similar or equivalently K ·A = K ·B.

• As a consequence there is a bijectionX//G = Xps/G→ X//K = µ−1(0)/K.
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In these two cases, it was easy to check the bijection between the affine GIT
quotient and the symplectic quotient. The construction relied all the time on
the specific structure of each example. The theorem of Kempf and Ness says
that the facts listed above are true in general.

3.2 The statement and proof of the Kempf-Ness
theorem

The following theorem in its most general form is about complex projective
varieties. However, it is easier to understand it first in the case of a complex
vector space.

Theorem 6. [Kempf-Ness] Let G be the complexification of a compact real
Lie group K acting on a finite dimensional complex vector space V through a
representation ρ : G → GLC(V ). Suppose that the action of K is Hamiltonian
with respect to the symplectic form in V induced by a K-invariant Hermitian
product 〈, 〉H . Let X ⊆ V be a smooth G-invariant affine variety. Then:

1. µ−1(0) ⊆ Xps,

2. Xps ⊆ G · µ−1(0),

3. every G-orbit in Xps contains only one K-orbit of µ−1(0).

4. The last two statements induce a bijection

X//G ∼= Xps/G→ X//K := µ−1(0)/K.

Remark: If one wants to have a smooth structure on the reduced space (and
by Marsden-Weinstein-Meyer a symplectic structure), then the action of K on
µ−1(0) should be free.

The proof is based on the properties of the so called Kempf-Ness functions
defined as follows:

ψv :G→ R
g 7→ ||g · v||2

These actually can be seen as the composition of the ”norm” function N : X →
R defined by N(x) = ||x||2 and αv : G→ X defined by αv(g) = g · v. It is clear
that N ◦ αv = ψv. The importance of these functions will become apparent as
we prove the following lemmas.

Remark: Note that the function ψv is defined by means of the norm function
N . The latter is defined using the K-invariant Hermitian product in V , and
hence ψv is K-invariant for every v ∈ V . This means that we can actually define
ψv in the cosets of K\G. Finally, since the group G is reductive then g admits
a splitting k⊕ ik.
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Lemma 4. If G · v is closed (i.e. v is polystable) then ψv attains a minimum.

Proof. Let l := inf{ψv(g) : g ∈ G} ∈ R, which exists because {ψv(g) : g ∈ G}
is positive and then bounded below. Let {gi} ⊆ G be a sequence such that
ψv(gi)→ l. Now it is clear that l ∈ N(G · v).

On the other hand, N is a proper function. Indeed, it is continuous (and
then the preimage of a closed set is closed) and the preimage of a bounded set
in R under N is a bounded set by definition. Moreover, N(G · v) ⊆ N(G · v).
This yields

l ∈ N(G · v) ⊆ N(G · v) = N(G · v) = N(G · v),

where the first equality follows from the fact that if N is proper then it is closed
(this holds for manifolds), and the second equality comes from the assumption
on v.

Remark: the converse of this lemma is also true. We will prove it later.
Now we want to study the behaviour of the Kempf-Ness functions by simple

considerations of differential calculus. The important observation at this point
is that the Kempf-Ness functions are the integral of the moment map in V (and
then in X).

Lemma 5 (Study of ψv). Let λ ∈ k and v ∈ V . Then the following are true:

1. Moment map: d(ψv)(g)(iλ) = 2 〈µ(g · v), λ〉,

2. First derivative: dgψ(v) = 0 if and only if for every λ ∈ k 〈µ(v), λ〉 = 0,

3. Second derivative: d2

dt2 |t=0ψv(itλ) ≥ 0 (this means that the Kempf-Ness

functions are convex). Moreover, d2

dt2 |t=0ψv(itλ) > 0 if and only if λ ∈
k\kx (this says that the Kempf-Ness functions are strictly convex in the
directions not in the infinitesimal stabilizer).

Proof. Suppose λ ∈ k and v ∈ V .

1.

dψv(g)(iλ) =
d

dt t=0
||exp(itλ)g · v||2 =

d

dt t=0
〈exp(itλ)g · v, exp(itλ)g · v〉H

=

〈
d

dt t=0
exp(itλ)g · v, g · v

〉
H

+

〈
g · v, d

dt t=0
exp(itλ)g · v

〉
H

= 〈iλg · v, g · v〉H + 〈g · v, iλg · v〉)H
= i(〈g · v, λg · v〉H − 〈g · v, λg · v〉H)

= i(−2i)Im(〈g · v, iλg · v〉H) = 2Im(〈g · v, iλg · v〉H) = 2 〈µ(g · v), λ〉H .

2. This follows easily from (1).

27



3. This is again a simple calculation:

d2

dt2 t=0
ψv(e) = 2

d

dt t=0
〈µ(exp(iλ) · v), λ〉

= 2
d

dt t=0
Im 〈(exp(iλ) · v), λ(exp(iλ) · v)〉H

= 2Im(〈(iλ · v), λ · v〉H + 〈·v, λiλ · v〉H)

= 2Im(i 〈λ · v, λ · v〉H − 〈λ · v, iλ · v〉H)

= 2Im(i 〈λ · v, λ · v〉H + i 〈λ · v, λg · v〉H)

= 2Im(i(2||λ · v||2)) = 4||λ · v||2 ≥ 0.

To prove the second part of the statement, let us define the infinitesimal
stabilizer kv := {λ ∈ k : λ · v = 0}. On the other hand, ||λ · v|| = 0 only if
λ · v = 0, and hence only if λ ∈ kv.

Remark: In this case convexity was proved along the flow lines exp(itλ) · v
determined by the action of G.

So far we have that if v ∈ Xps (i.e. G · v is closed), then (lemma 4) ψv
attains a minimum, say g · v. By lemma 5, it is a critical point and hence a
zero of the moment map, i.e. µ(g · v) = 0. Then v = g−1(g · v). In other words
v ∈ G · µ−1(0), so we proved part (2) of the theorem.

To prove part (1) of the theorem we need the next lemma. To understand
what it says, we should mention a few things before. If the group G is reductive,
then it is the complexification of a compact real Lie group. Then, G has a Cartan
decomposition, i.e. a diffeomorphism

K × k→ G

such that (k, λ) 7→ kexp(iλ). This implies that if we take the quotient K\G, it is
diffeomorphic to the vector space k. Now let us see this more concretely. Recall
that G acts through a representation and since our Hermitian product is K-
invariant, K acts through unitary matrices. On the other hand, any invertible
matrix A admits a unique polar decomposition A = UeiH , where eiH is a
positive definite Hermitian matrix (and H is skew-Hermitian) and U is unitary.
But skew-Hermitian matrices form a vector space, and have a well defined norm
that inherit from the space of Hermitian matrices by means of the exponential
map. In conclusion, it makes sense if we write |g| → ∞.

Lemma 6. 1. If ψv attains a minimum then lim|g|→∞ ||g · v||2 =∞,

2. If lim|g|→∞ ||g · v||2 =∞ then G · v is closed.

Proof. 1. This is a consequence of the convexity of ψv. Indeed, convex func-
tions tend to infinity at infinity.
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2. Suppose that G · v is not closed. Then there is l ∈ V such that gi · v → l
for a sequence gi in G. Since ||l|| < ∞ then |gi| cannot go to infinity by
hypothesis. Then |gi| is bounded, and hence there is a subsequence such
that gik → g for some g ∈ G. Thus gik · v → g · v, and then l = g · v. This
implies that l ∈ G · v.

By the first part of lemma 5, we know that if the moment map is 0 in v then
the identity is a critical point of ψv. Then by lemma 6 the orbit G · v is closed,
and then v is a polystable point. This proves part 1 of the theorem.

Proof of the theorem 6. To finish the proof of the theorem, we need to show
that if v is polystable, then G · v contains only one K-orbit of a zero of the
moment map. In other words, if a, b ∈ G · v are such that µ(a) = µ(b) = 0, then
a = k · b for some k ∈ K.

We already know that a = g · b and g can be written as keiλ (polar form or
Cartan’s decomposition), where k ∈ K and λ ∈ k. We know that

ψa(g) = ||g · v||2 = ||keiλ · v||2 = ||eiλ · v||2

Moreover, since we proved convexity along exp(iλt) · v, for any t ∈ [0, 1]. This
means that in particular ψa(exp(iλt) · v) ≤ ψa(e) = ψa(g). But ψa(e) = ψa(g)
are global minima, and then ψa(exp(iλt) · v) = ψa(e) = ψa(g). Hence exp(itλ)
is constant, and then λ ∈ ka by the third part of lemma 5. This says that
iλ ∈ ika ⊆ ga. Then exp(iλ) ∈ Ga. In other words

a = g · b = kexp(iλ) · b = k · b.
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