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Abstract. We examine a moduli problem for real and quaternionic vector
bundles on a smooth complex projective curve with a fixed real structure,
and we give a gauge-theoretic construction of moduli spaces for semi-stable
such bundles with fixed topological type. These spaces embed onto connected
subsets of real points inside a complex projective variety. We relate our point
of view to previous work by Biswas, Huisman and Hurtubise ([BHH10]), and
we use this to study the Gal(C/R)-action [E] �→ [σ∗E] on moduli varieties of
stable holomorphic bundles on a complex curve with given real structure σ. We
show in particular a Harnack-type theorem, bounding the number of connected
components of the fixed-point set of that action by 2g +1, where g is the genus
of the curve. In fact, taking into account all the topological invariants of σ, we
give an exact count of the number of connected components, thus generalising
to rank r > 1 the results of Gross and Harris on the Picard scheme of a real
algebraic curve ([GH81]).
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1. Introduction

Let (X,OX) be a scheme of finite type over R such that M := X(C) is an
irreducible, smooth, complex projective curve. We shall call such a scheme a real
algebraic curve. The complex conjugation of C induces a continuous action of the
group G := Gal(C/R) on the complexified scheme

(XC := X ×SpecR SpecC, OXC
:= OX ⊗R C) .

M is the set of closed points of XC, so the Galois action onXC induces an involution
σ of M , whose tangent map is C-antilinear. In differential geometric terms, M is
a compact, connected Riemann surface (with an integral Kähler metric, which we
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take to be of unit volume), and σ is an anti-holomorphic, involutive isometry of M .
The quotient space M/σ is the set of closed points of X = XC/G. We denote p the
projection p : XC −→ X = XC/G. Then G acts on the sheaf p∗OXC

, and one has
OX � (p∗OXC

)G. Similarly, if OM denotes the sheaf of holomorphic functions on
M , G acts on p∗OM by

(σ · f)(x) = f
(
σ(x)

)
,

where f is any holomorphic function defined on a σ-invariant open subset of M
(in particular, f is real-valued on Mσ, the fixed-point set of σ in M). In differ-
ential geometric terms, the ringed space (M/σ, (p∗OM )G) is called a Klein surface
([AG71]). The boundary of M/σ is diffeomorphic to X(R), the set of real points of
X . In particular, it might be empty. Topologically, Mσ = X(R) is a disjoint union
of k circles embedded in M = X(C). By Harnack’s theorem, one has 0 ≤ k ≤ g+1,
where g is the genus of M . We note that M/σ topologically is a compact connected
real surface which, necessarily, is either non-orientable or has non-empty boundary
(it can be both, but orientable surfaces without boundary are excluded). In the
figure below, we denote |X | the set of closed points of a scheme X , and Proj R the
homogeneous spectrum of a graded ring R.

σ � Mσ = X(R)

M = X(C) = |XC|

X(R)

M/σ = |X | = |XC|/G
Figure 1. X = P1

R
= Proj (R[X0, X1])

For any r ≥ 1 and any integer d, we denote M r,d
M,σ the coarse moduli scheme

parametrising S-equivalence classes of semi-stable vector bundles of rank r and
degree d on M = X(C), and N r,d

M,σ the open sub-scheme of M r,d
M,σ parametrising

isomorphism classes of stable bundles of rank r and degree d on M . We recall
that N r,d

M,σ = M r,d
M,σ if, and only if, r ∧ d = 1. As X is defined over R, so are

the moduli schemes M r,d
M,σ and N r,d

M,σ, and, in the present paper, we are interested
in the topology of the set N r,d

M,σ(R) as a subset of the complex variety N r,d
M,σ(C),

endowed with its complex topology. We recall that, for g ≥ 2, N r,d
M,σ(C) is a smooth,

connected, complex quasi-projective variety of dimension r2(g−1)+1 (in particular,
the dimension does not depend on d). Our main result is a precise count of the
connected components of N r,d

M,σ(R), which nicely generalises the results of Gross and
Harris on the Picard scheme of a real algebraic curve ([GH81]). Note that in the
r = 1 case, more is known : any given connected component of PicdX(R) = M1,d

M,σ(R)

is a real g-dimensional torus Rg/Zg, g being the genus of X .
To be able to state our result, let us recall the topological classification of real

algebraic curves, first obtained by Felix Klein ([Kle63]). Given an algebraic curve
X defined over R, let us denote g(X) the genus of X , k(X) the number of connected
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components of X(R), and a(X) the number defined by

a(X) = 0 if X(C) \X(R) is not connected,

a(X) = 1 if X(C) \X(R) is connected.

Equivalently, a(X) = 0 if X(C)/G is orientable, and a(X) = 1 if X(C)/G is non-
orientable; for that reason is a(X) sometimes called the orientability index of X .
Given two real algebraic curves X and X ′, Klein’s classification theorem says that
there exists a Galois-equivariant homeomorphism between X(C) and X ′(C) if, and
only if,

g(X) = g(X ′), k(X) = k(X ′), and a(X) = a(X ′).
The classification of real compact connected surfaces shows that this is in fact
equivalent to X(C)/G and X ′(C)/G being homeomorphic. Moreover, one has :

• 0 ≤ k(X) ≤ g(X) + 1 (Harnack’s theorem),
• if k(X) = 0 then a(X) = 1, and if k(X) = g + 1 then a(X) = 0,
• if a(X) = 0, then k(X) ≡ (g + 1) (mod 2),

and Klein proved that all triples (g(X), k(X), a(X)) satisfying the conditions above
occur for some real algebraic curve X . Our main result then is as follows.

Theorem 1.1. Let X ↔ (M,σ) be a real algebraic curve of topological type (g, k, a),
g ≥ 2, and let N r,d

M,σ be the coarse moduli scheme parametrising isomorphism classes
of stable holomorphic vector bundles of rank r and degree d on X(C). We consider
the real structure induced on the smooth, connected, complex quasi-projective variety
N r,d
M,σ(C) by the functor E 
−→ σ∗E.

(1) Assume that k > 0.
(a) If r ≡ 1 (mod 2), then N r,d

M,σ(R) is non-empty and has 2k−1 connected
components. For fixed r and d, these connected components are pair-
wise homeomorphic.

(b) If r ≡ 0 (mod 2) and d ≡ 1(mod 2), then N r,d
M,σ(R) is non-empty and

has 2k−1 connected components.
(c) If r ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

M,σ(R) is non-empty and
has 2k−1 + 1 connected components.

(2) Assume that k = 0.
(a) If r(g − 1) ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

M,σ(R) is non-
empty and has 2 connected components. For fixed r and d, and if
g ≡ 1(mod 2), these two connected components are homeomorphic.

(b) If r(g − 1) ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
M,σ(R) is empty.

(c) If r(g − 1) ≡ 1 (mod 2), then N r,d
M,σ(R) is non-empty and has 1 con-

nected component.

As a corollary to the above result combined with Harnack’s theorem, we obtain
an upper bound, depending only on the genus of X , on the number of connected
components of N r,d

M,σ(R).

Corollary 1.2. Given a real algebraic curve X of genus g, the number of connected
components of N r,d

M,σ(R) is lower than 2g + 1.

We recall that, when g, r and d remain fixed while k or a (the real structure of X)
changes, N r,d

M,σ(C) stays the same topologically, but the topology of the connected
components of N r,d

M,σ(R) may change (see Section 6.3 of [BHH10]).
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2. Vector bundles on a real algebraic curve

2.1. Real and quaternionic vector bundles. Our motivation to study real
points of coarse moduli schemes of vector bundles comes from an attempt at for-
mulating a moduli problem for vector bundles on a real algebraic curve. The fun-
damental tool in that endeavour is the notion of real space, which is due to Atiyah
([Ati66]). In the special context of real algebraic geometry (from which the notion
of real space originates), Atiyah’s observation is that the category of real algebraic
vector bundles on a real algebraic curve X is equivalent to the category of holomor-
phic vector bundles on M = X(C), endowed with a C-antilinear involution covering
the natural involution σ of M .

Definition 2.1 (Real vector bundles). A real vector bundle on (M,σ) is a
pair (E , σ̃) where E is a holomorphic vector bundle and σ̃ : E −→ E is an anti-
holomorphic map satisfying the following conditions :

(1) the diagramme

E σ̃−−−−→ E� �
M

σ−−−−→ M
is commutative,

(2) the map σ̃ is C-antilinear,
(3) σ̃2 = IdE .

We shall refer to the map σ̃ as the real structure of E . It induces a C-linear
isomorphism ϕ, covering the identity of M , between σ∗E and E . This isomor-
phism satisfies σ∗ϕ = ϕ−1 and, as a matter of fact, giving a C-linear, invertible
homomorphism ϕ : σ∗E → E satisfying σ∗ϕ = ϕ−1, is equivalent to giving an anti-
holomorphic, fibrewise C-antilinear, invertible bundle map σ̃ : E −→ E covering σ
and squaring to the identity. A homomorphism of real holomorphic vector bundles
is a homomorphism of holomorphic vector bundles (covering the identity map of M
and) commuting to the respective real structures. One may observe that the two
equivalent categories of real algebraic vector bundles on X and real holomorphic
vector bundles (in the sense of Atiyah) on M = X(C), are equivalent to a third one,
namely the category of dianalytic vector bundles (complex vector bundles which ad-
mit an atlas whose transition maps are either holomorphic or anti-holomorphic) on
the Klein (=dianalytic) surface M/σ, as shown in [Sch11]. In that sense, and pro-
vided that one accepts to work in the dianalytic category, studying vector bundles
on a compact surface which is either non-orientable or has non-empty boundary
is equivalent to studying vector bundles on a real algebraic curve. At any rate,
what is starting to shape here is that real holomorphic vector bundles define real
points of the moduli schemes N r,d

M,σ. But, as it turns out, there might be real points
of a slightly different type, due to the presence of non-trivial automorphisms for
stable vector bundles on M . Indeed, a real vector bundle E on M certainly is self-
conjugate (meaning that σ∗E � E), but the converse is not true, even if E only has
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scalar automorphisms, and this leads to the notion of quaternionic vectors bundles
(or symplectic vectors bundles, as they are called in [Dup69] and in [Har78]).

Definition 2.2 (Quaternionic vector bundles). A quaternionic vector bundle
on (M,σ) is a pair (E , σ̃) where E is a holomorphic vector bundle and σ̃ : E −→ E
is an anti-holomorphic map satisfying the following conditions :

(1) the diagramme

E σ̃−−−−→ E� �
M

σ−−−−→ M
is commutative,

(2) the map σ̃ is C-antilinear,
(3) σ̃2 = −IdE .

We shall refer to the map σ̃ as the quaternionic structure of E . It induces a
C-linear isomorphism ϕ, covering the identity of M , between σ∗E and E . This
isomorphism satisfies σ∗ϕ = −ϕ−1 and, as a matter of fact, giving a C-linear,
invertible homomorphism ϕ : σ∗E → E satisfying σ∗ϕ = −ϕ−1, is equivalent to
giving an anti-holomorphic, fibrewise C-antilinear, invertible bundle map σ̃ : E −→
E covering σ and squaring to minus the identity. A homomorphism of quaternionic
holomorphic vector bundles is a homomorphism of holomorphic vector bundles
(covering the identity map of M and) commuting to the respective quaternionic
structures. One may observe here that, when Mσ = ∅, the complex rank of a
quaternionic bundle is allowed to be odd, while when Mσ �= ∅, it must be even,
for the fibres of E|Mσ →Mσ are left modules over the field of quaternions. In the
present work, stability always means slope stability (see Definition 2.5).

Proposition 2.3 ([BHH10]). Assume that E is a stable holomorphic bundle on M ,
and that σ∗E � E. Then E is either real or quaternionic, and it cannot be both.

Proof. We recall that a stable bundle only has scalar automorphisms, because its
endomorphism ring is a field (a non-zero homomorphism between stable bundles
of equal slope is an isomorphism) that contains C as a sub-field (the sub-field
of scalar endomorphisms), and its elements are algebraic over C by the Cayley-
Hamilton theorem, so they are contained in C. We then proceed with the proof
of the Proposition. A C-linear isomorphism ϕ : σ∗E �−→ E covering IdM is the
same as a C-antilinear map σ̃ : E → E covering σ. As σ2 = IdM , the map σ̃2 is
a C-linear map covering IdM . Since E only has scalar automorphisms, this implies
that σ̃2 = λ ∈ C∗. Replacing σ̃ with σ̃/

√|λ| if necessary, we may assume that
|λ| = 1. Moreover, λσ̃ = (σ̃2)σ̃ = σ̃(σ̃2) = σ̃(λ·) = λσ̃, so λ = λ. As a consequence,
λ = ±1, making E real or quaternionic. If σ̃′ is another C-antilinear map covering
σ, then, as E only has scalar automorphisms, σ̃′ ◦ σ̃ = ν ∈ C∗, so

(σ̃′)2(σ̃)2 = σ̃′(ν·)σ̃ = ν σ̃′σ̃ = |ν|2IdE ,
with |ν|2 > 0. Therefore, σ̃ and σ̃′ are either both real or both quaternionic. �

As the Galois action on N r,d
M,σ(C) is induced by the functor E 
→ σ∗E , which pre-

serves rank, degree, and slope stability of a holomorphic vector bundle, we see
that real points of N r,d

M,σ may consist of real and quaternionic vector bundles alike.
The precise situation will become clearer after we have identified the connected
components of N r,d

M,σ(R).
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2.2. Topological classification. Any attempt at finding moduli for real and qua-
ternionic bundles onX(C) begins with the determination of some discrete invariants
specifying a topological (or smooth) type for those bundles. Such a classification
result was obtained by Biswas, Hurtubise and Huisman in [BHH10] (Propositions
4.1, 4.2, and 4.3). We formulate their result in the additional presence of a smooth
Hermitian metric on the vector bundles that we consider. In this context, a real
or quaternionic structure σ̃ on a Hermitian, smooth complex vector bundle E is
assumed to be an isometry.

Theorem 2.4 ([BHH10]). One has :
• For real bundles :

– if Mσ = ∅, then real Hermitian bundles on (M,σ) are topologically
classified by their rank and degree. It is necessary and sufficient for a
real Hermitian bundle of rank r and degree d to exist that

d ≡ 0 (mod 2).

– if Mσ �= ∅ and (E, σ̃) is real, then (Eσ̃ →Mσ) is a real vector bundle
in the ordinary sense, on the disjoint union

Mσ = γ1 � · · · � γn
of at most (g + 1) circles, and we denote

w(j) := w1(E
σ̃
∣∣
γj
) ∈ H1(S1;Z/2Z) � Z/2Z

the first Stiefel-Whitney class of Eσ̃ →Mσ restricted to γj.
Then real Hermitian bundles on (M,σ) are topologically classified by
their rank, their degree, and the sequence (w(1), · · · , w(n)). It is neces-
sary and sufficient for a real Hermitian bundle with given invariants
r, d and (w(1), · · · , w(n)) to exist that

w(1) + · · ·+ w(n) ≡ d (mod 2).

• For quaternionic bundles :
Quaternionic Hermitian bundles on (M,σ) are topologically classified by
their rank and degree. It is necessary and sufficient for a topological quater-
nionic bundle of rank r and degree d to exist that

d+ r(g − 1) ≡ 0 (mod 2).

2.3. Stability. As a next step into the moduli problem for algebraic vector bundles
on a real algebraic curve, it certainly is necessary to have a notion of stability at
our disposal in order to proceed. In the context of vector bundles on a curve,
slope stability probably is the obvious choice, but it is perhaps not so clear whether
one should test that condition over all sub-bundles of E , or over real sub-bundles
only (that is, over sub-bundles on which σ̃ induces a real structure). This is an
important matter because, as it turns out, different choices at this stage lead to
different answers later. We therefore devote some time to analysing the different
notions of stability for real and quaternionic bundles, and comparing them.

The slope of a non-zero holomorphic vector bundle E is the quotient

µ(E) := deg E
rk E

of its degree by its rank.

Definition 2.5 (Stability conditions for real and quaternionic bundles). Let (E , σ̃)
be a real (resp. quaternionic) holomorphic vector bundle on (M,σ). We call a sub-
bundle of E non-trivial if it is distinct from {0} and from E. Then (E , σ̃) is said to
be



REAL POINTS OF MODULI SCHEMES OF VECTOR BUNDLES 7

(1) stable if, for any non-trivial σ̃-invariant sub-bundle F ⊂ E, the slope sta-
bility condition

µ(F) < µ(E)
is satisfied.

(2) semi-stable if, for any non-trivial σ̃-invariant sub-bundle F ⊂ E, one has

µ(F) ≤ µ(E).
(3) geometrically stable if the underlying holomorphic bundle E is stable,

that is, if, for any non-trivial sub-bundle F ⊂ E, one has

µ(F) < µ(E).
(4) geometrically semi-stable, if the underlying holomorphic bundle E is

semi-stable, that is, if for any non-trivial sub-bundle F ⊂ E, one has

µ(F) ≤ µ(E).
Various comments are in order. First, we notice that, when (E , σ̃) is real, it is of the
form E = E(C) for some algebraic vector bundle E −→ X defined over the reals,
and geometric stability means stability of the bundle E(C) of geometric points of
E. Geometric stability is, for instance, the notion of stability chosen in [HN75]
(Section 1.1, page 217). Second, we see that (3) ⇒ (1), and (4) ⇒ (2). We prove
below that (2) ⇒ (4), but (1) �⇒ (3).

Proposition 2.6. Let (E , σ̃) be a semi-stable real (resp. quaternionic) vector bundle
on (M,σ). Then (E , σ̃) is geometrically semi-stable.

Proof. Let ϕ : σ∗E −→ E be the isomorphism determined by the real (resp. quater-
nionic) structure on E . Assume that (E , σ̃) is not geometrically semi-stable, and let
F be the destabilising bundle of E (the unique maximal rank bundle among sub-
bundles of E the slope of which is maximal). Then ϕ(σ∗F) and F are sub-bundles
of E which have the same rank and degree. By unicity of F , one has ϕ(σ∗F) = F .
So F is σ̃-invariant, and therefore µ(F) ≤ µ(E), which contradicts the assumption
that F is the destabilising bundle for E . �

Proposition 2.6 is actually a (very) special case of a result by Langton ([Lan75],
Proposition 3), who proves, under very general assumptions (for instance if the
field extension under consideration is separable and algebraic), that semi-stability
is a notion invariant under base change for torsion-free coherent sheaves on a non-
singular projective variery.
To show that (1) does not necessarily imply (3), we identify all bundles (E , σ̃)
which are stable in the real (resp. quaternionic) sense. We note that when F is
any holomorphic vector bundle, there is a commutative diagramme

σ∗F σ̃−−−−→ F� �
M

σ−−−−→ M
where σ̃ is an invertible, C-antilinear map covering σ and such that

σ̃ ◦ σ̃−1 = IdF , and σ̃−1 ◦ σ̃ = Idσ∗F .

Therefore, on F ⊕ σ∗F , we may define

σ̃+ =

(
0 σ̃
σ̃−1 0

)
and σ̃− =

(
0 −σ̃
σ̃−1 0

)
.
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σ̃+ and σ̃− are C-antilinear maps from F ⊕σ∗F to itself, covering σ, and satisfying

σ̃+ ◦ σ̃+ =

(
IdF 0
0 Idσ∗F

)
= IdF⊕σ∗F ,

and

σ̃− ◦ σ̃− =

(−IdF 0
0 −Idσ∗F

)
= −IdF⊕σ∗F .

In other words, (F⊕σ∗F , σ̃+) is a real bundle, and (F⊕σ∗F , σ̃−) is a quaternionic
bundle. We also note that, if (E , σ̃) is any real (resp. quaternionic) bundle, the
bundle End(E) � E∗ ⊗ E of endomorphisms of E always has a real structure given
by

ξ ⊗ v 
−→ (ξ ◦ σ̃−1)⊗ σ̃(v).

If we still denote σ̃ this real structure, the bundle of real (resp. quaternionic)
endomorphisms of (E , σ̃) is the bundle

(
End(E))σ̃ of σ̃-invariant elements of End(E).

Proposition 2.7. Let (E , σ̃E ) be a stable real (resp. quaternionic) vector bundle.
(1) Then either (E , σ̃E ) is geometrically stable, or there exists a holomorphic

vector bundle F , stable in the holomorphic sense, such that E = F ⊕ σ∗F .
In the latter case, if (E , σ̃) is real then σ∗F �= F and σ̃E = σ̃+, and if (E , σ̃)
is quaternionic, then σ̃E = σ̃−.

(2) In the geometrically stable case, the set of real (resp. quaternionic) endo-
morphisms of (E , σ̃E ) is(

End(E))σ̃E
= {λIdE : λ ∈ R} �R R,

and, if E = F ⊕ σ∗F , then(
End(E))σ̃E

= {(λIdF , λIdF) : λ ∈ C} �R C.

Note that the isomorphisms given in part (2) of the Proposition are isomorphisms
of real vector spaces. Also, a real (resp. quaternionic) bundle which is stable in the
real (resp. quaternionic) sense but not geometrically stable, is necessarily of even
rank.

Proof. Let (E , σ̃E) be a stable real (resp. quaternionic) vector bundle.
(1) Assume that (E , σ̃E ) is not geometrically stable. Then there exists a non-

trivial sub-bundle F of E satisfying µ(F) ≥ µ(E). Since, by Proposition
2.6, E is semi-stable in the holomorphic sense, we in fact have µ(F) = µ(E)
and F is also semi-stable. As (E , σ̃E ) is real (resp. quaternionic), there is a
canonical C-linear isomorphism ϕ : σ∗E −→ E which allows us to identify
σ∗F with a sub-bundle of E . We denote E ′ the sub-bundle generated by the
σ̃E -invariant subsheaf F ∩ σ∗F of E , and E ′′ the sub-bundle generated by
the σ̃E -invariant subsheaf F + σ∗F of E . Then we have an exact sequence

0 −→ E ′ −→ F ⊕ σ∗F −→ E ′′ −→ 0 ,

where the map F ⊕ σ∗F −→ E ′′ is a homomorphism of real (resp. quater-
nionic) bundles when F ⊕σ∗F is endowed with the real structure σ̃+ (resp.
the quaternionic structure σ̃−). Assume now that E ′ and E ′′ are non-trivial
sub-bundles of E . Since E ′ and E ′′ are σ̃E -invariant sub-bundles of E and E
is stable in the real (resp. quaternionic) sense, one has

d′

r′
:= µ(E ′) < µ(E) and

d′′

r′′
:= µ(E ′′) < µ(E) .

But
µ(E) = µ(F) =:

d

r
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so d′r < dr′ and d′′r < dr′′, and therefore

d′r + d′′r < dr′ + dr′′.

Moreover, since deg(σ∗F) = deg(F) and rk(σ∗F) = rk(F), the exact se-
quence above implies that d′ + d′′ = 2d and r′ + r′′ = 2r, so

d′ + d′′

r′ + r′′
=

2d

2r
=
d

r
,

and therefore d′r+d′′r = dr′+dr′′, contradicting the strict inequality above.
So E ′ = {0} and E ′′ = E , which means that E � F ⊕ σ∗F as a real (resp.
quaternionic) bundle. The bundle F necessarily is stable as a holomorphic
bundle, otherwise a non-trivial sub-bundle F ′ of F satisfying µ(F ′) ≥ µ(F)
gives a non-trivial, σ̃±-invariant sub-bundle F ′⊕σ∗F ′ of (E , σ̃E ) with slope
equal to µ(F ′) ≥ µ(F) = µ(E), contradicting the fact that (E , σ̃E) is stable
as a real (resp. quaternionic) bundle (note that σ̃|σ∗F ′ maps σ∗F ′ to F ′ by
definition of σ∗F ′). Moreover, when (E , σ̃E) is real, σ∗F is not isomorphic
to F , otherwise the diagonal embedding F −→ F ⊕ σ∗F � F ⊕ F would
provide a σ̃+-invariant sub-bundle, contradicting the stability of E as a real
bundle. We note that, in the quaternionic case, the diagonal embedding
does not provide a σ̃−-invariant sub-bundle and so does not contradict the
stability of E as a quaternionic bundle. Indeed, we now give an example
of a stable quaternionic bundle of the form (F ⊕ σ∗F , σ̃−) with F stable
as a holomorphic bundle and satisfying σ∗F � F : consider a real line
bundle (L, σ̃) on a real algebraic curve (M,σ) satisfying Mσ �= ∅, then
σ∗L � L and (L⊕L, σ̃−) is a stable quaternionic bundle, for a sub-bundle
contradicting this would be a quaternionic line bundle on (M,σ) and there
are no quaternionic line bundles on (M,σ) when Mσ �= ∅.

(2) If (E , σ̃E) is geometrically stable, then

End(E) = {λIdE : λ ∈ C} � C,

and the real structure of End(E) acts as λ 
−→ λ on such endormophisms,
so (

End(E))σ̃E
= {λIdE : λ ∈ R} �R R.

If (E , σ̃E ) is stable but not geometrically stable, then E = F⊕σ∗F for some
F stable in the holomorphic sense (so σ∗F is also stable in the holomorphic
sense), and

End(E) = {(λIdE , µIdE) : (λ, µ) ∈ C⊕ C} � C⊕ C.

The real structure of End(E) acts as (λ, µ) 
−→ (µ, λ) on such endomor-
phisms, so (

End(F ⊕ σ∗F)
)σ̃E

= {(λ, λ) : λ ∈ C} �R C.

�

Proposition 2.7 also proves that a bundle E which admits a stable but not geomet-
rically stable real structure σ̃+, also admits the stable quaternionic structure σ̃−.
The example in the last part of the proof of (1) shows that the converse is not
necessarily true. As a final observation, we point out that, when r∧d = 1, a bundle
(E , σ̃) which is stable in the real or quaternionic sense, necessarily is geometrically
stable (as it is geometrically semi-stable, which implies that it is geometrically sta-
ble when r ∧ d = 1). The previous results suggest that, if we want to think of
real points of M r,d

M,σ as moduli of real and quaternionic bundles, we should restrict
our attention, either to the case where r ∧ d = 1, or to the open sub-scheme N r,d

M,σ,
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whose complex points are isomorphism classes of geometrically stable bundles. The
next result formalises this point of view.

Proposition 2.8. Let (E , σ̃) and (E ′, σ̃′) be two geometrically stable real (resp.
quaternionic) bundles, and assume that E and E ′ are isomorphic as holomorphic
vector bundles. Then E and E ′ are isomorphic as real (resp. quaternionic) vector
bundles.

Proof. The assumption of the Proposition is that ϕ : E ′ �−→ E . Replacing σ̃′ with
ϕσ̃′ϕ−1 if necessary, we may assume that σ̃ and σ̃′ are two distinct real structures
on the same vector bundle E . Then σ̃σ̃′ is C-linear and, as E is stable, this implies
that σ̃σ̃′ = λ ∈ C∗. This in turn implies that

σ̃ = λ(σ̃′)−1 = ±λ(σ̃′) = ±λσ̃−1(λ·) = ±λ(±σ̃)(λ·) = |λ|2σ̃,
so λ = eiθ for some θ ∈ R, whence one obtains

σ̃ = eiθσ̃′ = ei
θ
2 σ̃′(e−i

θ
2 ·),

showing that σ̃ and σ̃′ are conjugate by an automorphism of E . �

Thus, not only do real points of N r,d
M,σ represent isomorphism classes of geometrically

stable bundles that admit either a real or a quaternionic structure (by Proposition
2.3), but this real or quaternionic structure is unique up to real or quaternionic
isomorphism. Moreover, the automorphism group of a geometrically stable real or
quaternionic bundle is equal to R∗ by Proposition 2.7. So we see that N r,d

M,σ(R) has
many of the good properties that one might expect from a coarse moduli space for
objects defined over the field of real numbers.

2.4. Jordan-Hölder filtrations. Seshadri has shown ([Ses67]) that, if E is a semi-
stable holomorphic bundle, it admits a holomorphic Jordan-Hölder filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ El = E ,
the successive quotients of which are stable bundles of slope µ(E). The associated
graded object

gr(E) = E1/E0 ⊕ · · · ⊕ El/El−1

is a direct sum of stable bundles of equal slope and is called a poly-stable bundle
(necessarily, the slope of such a direct sum is equal to the slope of any of its terms).
Its graded isomorphism class does not depend on the choice of the filtration, and is
called the S-equivalence class of E . In this subsection, we analyse the corresponding
situation for semi-stable real and quaternionic bundles. We begin with a definition.

Definition 2.9. Let (E , σ̃) be a real (resp. quaternionic) bundle. A real (resp.
quaternionic) Jordan-Hölder filtration of (E , σ̃) is a filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E
by σ̃-invariant holomorphic sub-bundles, whose successive quotients are stable in
the real (resp. quaternionic) sense.

Let us now study Jordan-Hölder filtrations of semi-stable real and quaternionic
bundles of fixed slope µ. We denote Bunss,µ the category of semi-stable holomorphic
bundles of slope µ. It is an Abelian category. In particular, if u : E1 −→ E2
is a homomorphism of semi-stable bundles of slope µ, Keru and Imu are semi-
stable bundles of slope µ and there is an isomorphism E/Keru � Imu. Moreover,
Bunss,µ is Artinian, Noetherian, stable by extensions, and the simple objects of
Bunss,µ are the stable bundles of slope µ, which in particular implies the existence
of Jordan-Hölder filtrations in the holomorphic sense for semi-stable bundles of
slope µ ([Ses67, VLP85]).
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Theorem 2.10. Let Bun R
ss,µ (resp. Bun H

ss,µ) denote the category of semi-stable
real (resp. quaternionic) bundles of slope µ on (M,σ). By Proposition 2.6, it is
a strict sub-category of the category Bunss,µ of semi-stable holomorphic bundles of
slope µ. Moreover :

(1) If u : (E1, σ̃1) −→ (E2, σ̃2) is a homomorphism of real (resp. quaternionic)
bundles, then the bundles Keru and Imu are semi-stable real (resp. quater-
nionic) bundles of slope µ, and the isomorphism E/Keru � Imu is an iso-
morphism of real (resp. quaternionic) bundles. As a consequence, Bun R

ss,µ

(resp. Bun H
ss,µ) is an Abelian category.

(2) The Abelian category Bun R
ss,µ (resp. Bun H

ss,µ) is Artinian, Noetherian, and
stable by extensions. If (E , σ̃) is stable in the real (resp. quaternionic)
sense, then its endomorphism ring (EndE)σ̃ is a field which is an algebraic
extension of R, so it is either R or C.

(3) The simple objects of Bun R
ss,µ (resp. Bun H

ss,µ) are the real (resp. quater-
nionic) bundles of slope µ on (M,σ) that are stable in the real (resp. quater-
nionic) sense. In particular, a semi-stable real (resp. quaternionic) bundle
(E , σ̃) admits a real (resp. quaternionic) Jordan-Hölder filtration.

Proof.
(1) Since Bun R

ss,µ (resp. Bun H
ss,µ) is a sub-category of the Abelian category

Bunss,µ, it suffices to prove that, if u : (E1, σ̃1) −→ (E2, σ̃2) is a homomor-
phism of real (resp. quaternionic) bundles, then the semi-stable bundles of
slope µ, Keru and Imu, are in fact real (resp. quaternionic) bundles, so
they are objects of Bun R

ss,µ (resp. Bun H
ss,µ). This follows from the fact that

Keru is σ̃1-invariant and Imu is σ̃2-invariant.
(2) Because the rank of a vector bundle is finite, it is obvious that decreasing

and increasing sequences of sub-bundles are stationary. Moreover, it follows
from (1) that, if u : (E1, σ̃1) −→ (E2, σ̃2) is a non-zero homomorphism
between stable real (resp. quaternionic) bundles of equal slope, then u is
an isomorphism. In particular, (End E)σ̃ is a field, which contains R as the
sub-field of scalar endomorphisms. Since the characteristic polynomial of
an element in (End E)σ̃ has real coefficients, the Cayley-Hamilton Theorem
implies that the elements of the field (End E)σ̃ are algebraic over R.

(3) Let (E , σ̃) be a stable real (resp. quaternionic) bundle of slope µ. Then
it does not admit a non-trivial sub-object in Bun R

ss,µ (resp. Bun H
ss,µ), for

such a sub-object would have slope µ, contradicting the fact that E is
stable in the real (resp. quaternionic) sense. So (E , σ̃) is a simple object
in Bun R

ss,µ (resp. Bun H
ss,µ). Conversely, if (E , σ̃) is a simple object in

Bun R
ss,µ (resp. Bun H

ss,µ) and F is a non-trivial σ̃-invariant sub-bundle of
E , then µ(F) < µ(E), because µ(F) ≤ µ(E) by the semi-stability of E and
µ(F) �= µ(E) by the simplicity of E . So (E , σ̃) is in fact stable in the real
(resp. quaternionic) sense. The existence of a real (resp. quaternionic)
Jordan-Hölder filtration is then proved in the usual way : since increasing
sequences are stationary, there is a strict sub-object F of (E , σ̃) which is not
contained in any strict sub-object. This F in turn contains such a strict sub-
object, and one constructs in this way a decreasing sequence of sub-objects
of E . As this sequence is stationary, we get a filtration, whose successives
quotients are simple by construction (of course, in this particular category,
there is a somewhat simpler proof by induction on the rank).

�

The point to make here is that we need to include the real (resp. quaternionic) bun-
dles which are stable but not necessarily geometrically stable in order to guarantee



12 FLORENT SCHAFFHAUSER

the existence of real (resp. quaternionic) Jordan-Hölder filtrations for semi-stable
real (resp. quaternionic) bundles : a simple real (resp. quaternionic) bundle might
only be stable in the real (resp. quaternionic) sense and not geometrically sta-
ble, so a semi-stable real (resp. quaternionic) bundle (E , σ̃E ) might only admit
a Jordan-Hölder filtration whose successive quotients are stable in the real (resp.
quaternionic) sense. As an example, consider the bundle (E , σ̃E ) � (F ⊕ σ∗F , σ+),
with F stable as holomorphic bundle and such that σ∗F �� F . Then (E , σ̃E ) is sta-
ble as a real bundle, so it admits a real Jordan-Hölder filtration of length one, while
it admits no Jordan-Hölder filtration the successive quotients of which are geomet-
rically stable real bundles (note that the diagonal embedding is not C-linear when
σ∗F �� F). Moreover, any holomorphic Jordan-Hölder filtration of E � F⊕σ∗F has
length two, showing that it does not coincide with the real Jordan-Hölder filtration
in general.
The graded object associated to a real (resp. quaternionic) Jordan-Hölder filtration
of a semi-stable real (resp. quaternionic) bundle (E , σ̃) is a poly-stable object in
the sense of the following definition.

Definition 2.11 (Poly-stable real and quaternionic bundles). A real (resp. quater-
nionic) vector bundle (E , σ̃) on (M,σ) is called poly-stable if there exist real (resp.
quaternionic) bundles (Fj , σ̃j)j of equal slope, stable in the real (resp. quaternionic)
sense, such that

E � F1 ⊕ · · · ⊕ Fk
and

σ̃ = σ̃1 ⊕ · · · ⊕ σ̃k.

By Proposition 2.7, a poly-stable real (resp. quaternionic) bundle is poly-stable
in the holomorphic sense. We recall that the holomorphic S-equivalence class of
a semi-stable holomorphic bundle E is, by definition ([Ses67]), the graded isomor-
phism class of the poly-stable bundle gr(E) associated to any Jordan-Hölder filtra-
tion of E .

Corollary 2.12. The S-equivalence class, as a holomorphic bundle, of a semi-
stable real (resp. quaternionic) bundle (E , σ̃) contains a poly-stable real (resp.
quaternionic) bundle in the sense of Definition 2.11. Any two such objects are
isomorphic as real (resp. quaternionic) poly-stable bundles.

The proof is given below. In particular, there is a well-defined notion of real (resp.
quaternionic) S-equivalence class for a semi-stable real (resp. quaternionic) bundle
(E , σ̃).
Definition 2.13 (Real and quaternionic S-equivalence classes). The graded iso-
morphism class, in the real (resp. quaternionic) sense, of the poly-stable real (resp.
quaternionic) bundle gr(E , σ̃) associated to any real (resp. quaternionic) Jordan-
Hölder filtration of (E , σ̃), is called the real (resp. quaternionic) S-equivalence
class of (E , σ̃).
Proof of Corollary 2.12. The first part follows from the existence of a real (resp.
quaternionic) Jordan-Hölder filtration in the sense of Theorem 2.10. As for the
second part, it is enough to show that two real (resp. quaternionic) bundles (E1, σ̃1)
and (E2, σ̃2) which are stable in the real (resp. quaternionic) sense and isomorphic
as holomorphic bundles, are in fact isomorphic as real (resp. quaternionic) bundles.
Because the holomorphic Jordan-Hölder filtrations of E1 and E2 must have equal
lengths, there are exactly two cases to consider before proceeding by induction :

• (E1, σ̃1) � (F1 ⊕ σ∗F1, σ̃
±) and (E2, σ̃2) � (F2 ⊕ σ∗F2, σ̃

±), with Fi geo-
metrically stable (and not isomorphic to σ∗Fi in the real case),
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• E1 and E2 are geometrically stable.
In the first case, the existence of an isomorphism of real (resp. quaternionic) bundles
between (E1, σ̃1) and (E2, σ̃2) is immediate because, since E1 and E2 are poly-stable
and isomorphic as holomorphic bundles, one has F1 � F2 or F1 � σ∗F2. In
the second case, the assumption is that there is an isomorphism ϕ : E2 �−→ E1
of geometrically stable holomorphic bundles, and this is exactly the situation of
Proposition 2.8. �

We point out that a same poly-stable object may admit, however, both a real and a
quaternionic structure, showing that it belongs both to a real and to a quaternionic
S-equivalence class (for instance, F ⊕ σ∗F admits the real structure σ̃+ and the
quaternionic structure σ̃−). A final instructive example is given as follows.

Example 2.14. Let (L, σ̃) be a real (resp. quaternionic) line bundle on (M,σ).
Then L⊕L admits two non-conjugate, non-stable, real (resp. quaternionic) struc-
tures, namely

σ̃ ⊕ σ̃ and σ̃+ =

(
0 σ̃
σ̃ 0

)
.

We note that σ̃+ is indeed quaternionic when σ̃ is quaternionic. The two non-
conjugate poly-stable real (resp. quaternionic) structures σ̃⊕σ̃ and σ̃+ are, however,
S-equivalent in the real (resp. quaternionic) sense. Indeed,

gr(L ⊕ L, σ̃ ⊕ σ̃) = (L, σ̃)⊕ (L, σ̃)
and (L ⊕ L, σ̃+) admits the real (resp. quaternionic) Jordan-Hölder filtration

{0} ⊂ L∆ ⊂ L⊕ L ,
where L∆ is the image of the diagonal embedding

L −→ L⊕ L
u 
−→ (u, u) .

In particular, (L∆, σ̃
+|L∆) is isomorphic to (L, σ̃) as a real (resp. quaternionic)

bundle. Moreover, the map

(L ⊕ L)/L∆ −→ L
(v, w) 
−→ i(v − w)

is an isomorphism of real (resp. quaternionic) bundles with respect to σ̃+ and σ̃,
so

gr(L ⊕ L, σ̃+) � (L, σ̃)⊕ (L, σ̃).
We conclude the present subsection by pointing out that the occurrence of stable
objects that are direct sums of stable holomorphic bundles (here, F ⊕ σ∗F with F
geometrically stable) has appeared before in related contexts, such as the study of
orthogonal and spin bundles on a curve ([Ram81]), or, more recently, the study of
U(p, q)-Higgs bundles on a curve ([BGPG03]).

2.5. Real points of moduli schemes of semi-stable vector bundles. We pro-
posed, in subsection 2.3, a notion of moduli (real points of N r,d

M,σ) for geometrically
stable real and quaternionic bundles, which includes the usual "good case" where
r ∧ d = 1 (the coprime case) : in this case, M r,d

M,σ(C) = N r,d
M,σ(C), and points of

M r,d
M,σ(R) = N r,d

M,σ(R) are in bijection with isomorphism classes of geometrically
stable real and quaternionic bundles of rank r and degree d. But when r and d
are not coprime, there are holomorphic vector bundles on X(C) which are semi-
stable but not stable, and M r,d

M,σ(C) is defined as the set of S-equivalence classes of
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semi-stable vector bundles of rank r and degree d. As the functor E 
−→ σ∗E pre-
serves the rank and degree of a holomorphic vector bundle, it sends a holomorphic
Jordan-Hölder filtration {0} = E0 ⊂ E1 ⊂ · · · ⊂ El = E of E to the holomorphic
Jordan-Hölder filtration

{0} = σ∗E0 ⊂ σ∗E1 ⊂ · · · ⊂ σ∗El = σ∗E
of σ∗E , so it induces an involution

[gr(E)] 
−→ [gr(σ∗E)]
of the moduli variety M r,d

M,σ(C), which is precisely the Gal(C/R)-action induced by
the real structure of X . If E is stable as a holomorphic bundle, then gr(E) � E , so, if
E is a real point of N r,d

M,σ ⊂ M r,d
M,σ, then Proposition 2.3 shows that E is either real

or quaternionic, and cannot be both. Moreover, by Proposition 2.8, the real (resp.
quaternionic) structure thus defined on E is unique up to real (resp. quaternionic)
isomorphism. The situation is not quite as nice, however, when E is semi-stable
but not stable, and satisfies gr(σ∗E) � gr(E). Let us for instance analyse the case
where the holomorphic Jordan-Hölder filtration of E has length two. Then we write

gr(E) = F1 ⊕F2 ,

where F1 and F2 are stable holomorphic bundles of equal slope. So σ∗F1 ⊕ σ∗F2

is isomorphic to F1 ⊕F2 if and only if one of the following two options occurs :
- σ∗F1 � F1 and σ∗F2 � F2. This implies that each Fi is either real or

quaternionic, and cannot be both. Their direct sum, however, might be of
neither type, for instance if (F1, σ̃1) is real, (F2, σ̃2) is quaternionic, and
F1 ⊕F2 is endowed with the C-antilinear map σ̃1 ⊕ σ̃2.

- σ∗F1 � F2 and σ∗F2 � F1. Then E = F ⊕ σ∗F , and this semi-stable
holomorphic bundle may be endowed with the real structure

σ̃+
E =

(
0 σ̃
σ̃−1 0

)
,

or the quaternionic structure

σ̃−
E =

(
0 −σ̃
σ̃−1 0

)
,

where σ̃ is the invertible C-antilinear map

σ∗F σ̃−−−−→ F� �
M

σ−−−−→ M.

So, in sum, S-equivalence classes of semi-stable real or quaternionic bundles always
are fixed points of the involution [gr(E)] 
−→ [gr(σ∗E)], but the converse is not
true : there may be fixed points which are S-equivalence classes of semi-stable
holomorphic bundles that are neither real nor quaternionic (for instance the direct
sum of a stable real bundle and a stable quaternionic bundle of equal slope), and
there may be fixed points which are S-equivalence classes of semi-stable holomorphic
bundles that admit both real and quaternionic structures. So we see that real points
of M r,d

M,σ only give a good notion of moduli for semi-stable real and quaternionic
bundles when r∧d = 1, in which case such bundles are in fact stable. For arbitrary
r and d, a real point of M r,d

M,σ is not necessarily the real (resp. quaternionic)
S-equivalence class of a semi-stable real (resp. quaternionic) bundle. The gauge-
theoretic construction that we present in the next section, however, gives a nice
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notion of moduli space for a larger class of real (resp. quaternionic) bundles than
just the geometrically stable ones, namely those that are semi-stable and real (resp.
quaternionic) and have a fixed topological type : in Theorem 3.7, we show that
real (resp. quaternionic) S-equivalence classes of such bundles are in bijection with
the points of certain Lagrangian quotients defined using anti-symplectic involutions
of the space of unitary connections on a fixed real (resp. quaternionic) Hermitian
bundle. As a consequence of the construction, these Lagrangian quotients embed
onto connected subsets of real points of M r,d

M,σ and, if we restrict our attention to
geometrically stable bundles, we obtain in this fashion (Theorem 3.8) exactly the
connected components of N r,d

M,σ(R).

3. The differential geometric approach

3.1. The momentum map picture. We now recall the general framework in
which we shall prove our result. It is commonly known as the Atiyah-Bott-Donald-
son momentum map picture, and the foundational, key result in this approach is
Donaldson’s formulation of the Narasimhan-Seshadri theorem ([NS65], [Don83]). If
one chooses a Hermitian metric on a fixed smooth complex vector bundle of rank
r and degree d on the compact Riemann surface M , holomorphic structures on
E correspond bijectively to G C

E -orbits of unitary connections on E (we denote GE
the group of unitary automorphisms of E and G C

E the group of all complex linear
automorphisms of E, respectively called the gauge group and the complex gauge
group). Explicitly, the holomorphic sections of the holomorphic bundle (E, dA)

defined by a unitary connection A are the elements of kerd(0,1)A , the kernel of the
(0, 1) part of the covariant derivative

dA : Ω0(M ;E) −→ Ω1(M ;E) = Ω1,0(M ;E)⊕ Ω0,1(M ;E).

The space AE of all unitary connections on E is an infinite-dimensional affine space,
whose group of translations is Ω1(M ; u(E)), and, provided that one considers L2

1

connections with L2 curvature instead of C∞ such objects, AE is a Banach manifold
with a Kähler structure : its complex structure is induced by the Hodge star of M ,
and the symplectic form is given by

ωA(a, b) =

∫
M

−tr(a ∧ b)

for all a, b ∈ TAAE � Ω1(M ; u(E)). Likewise, if one considers L2
2 gauge transfor-

mations, the gauge group is a Banach Lie group, acting on AE by

u(A) = A+ (dA u)u
−1.

As noted by Atiyah and Bott, this action is Hamiltonian, the momentum map being
the curvature map

F :
AE −→ Ω2(M ; u(E))
A 
−→ FA

.

In what follows, we denote ∗ the Hodge star of M . In particular, it sends a section
of u(E) to an element in Ω2(M ; u(E)).

Theorem 3.1 (Donaldson, [Don83]). A holomorphic vector bundle E of rank r and
degree d on M is stable if, and only if, the corresponding G C

E -orbit O(E) of unitary
connections on E contains an irreducible, minimal Yang-Mills connection, meaning
a unitary connection A such that :

(1) StabG C

E
(A) = C∗,
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(2)

FA = ∗



i2π dr

. . .
i2π dr


 .

Moreover, such a connection is unique up to a unitary automorphism of E.

Connections satisfying Condition (2) are absolute minima of the Yang-Mills func-
tional A 
→ ∫

M ‖FA‖2 on E, and the last part of the theorem says that if A and A′

are two irreducible, minimal Yang-Mills connections which are G C

E -conjugate, then
they are GE-conjugate. Poly-stable bundles of rank r and degree d are seen to be
those which admit a unitary connection having curvature FA = ∗i2π dr IdE , so the
set of S-equivalence classes of semi-stable vector bundles is in bijection with gauge
orbits of minimal Yang-Mills connections. In other words,

M r,d
M,σ(C) � F−1

({∗i2πd
r
IdE}

)/GE ,
a Kähler quotient obtained from the infinite-dimensional manifold AE .

3.2. Real structures on spaces of unitary connections. We now come to
the heart of this paper : the existence of a finite family of real structures (anti-
symplectic, involutive isometries) of the space AE , along with compatible involu-
tions of the gauge group GE and the space Ω2(M ; u(E)) (which may be identified
to (Lie(GE))∗), all of them determined by the choice of a real or quaternionic Her-
mitian structure σ̃ on E, and such that the associated Lagrangian quotients

Lσ̃ :=

(
F−1

({∗i2πd
r
IdE}

))σ̃ /Gσ̃E
are the connected components of M r,d

M,σ(R) when r ∧ d = 1. The key, albeit easy,
property of the various involutions that we shall consider, is that their fixed points
are precisely the unitary connections that define real or quaternionic holomorphic
structures on the fixed real or quaternionic Hermitian bundle (E, σ̃). It should be
noted that it is also an involution that shall characterise unitary connections defin-
ing quaternionic holomorphic structures, as opposed to an automorphism squaring
to minus the identity.
Let (E, σ̃) be a real or quaternionic Hermitian bundle of rank r and degree d
(σ̃2 = +IdE or −IdE), and let ϕ : σ∗E → E be the corresponding isomorphism
(σ∗ϕ = ϕ−1 or σ∗ϕ = −ϕ−1). For any unitary connection A ∈ AE , we define A
to be the connection given by

dAs = ϕ
(
dσ∗A(ϕ

−1s)
)

for any smooth global section s of E (observe that this formula is similar to the
gauge action, except that ϕ is not an endomorphism of E, and σ∗A is the connection
induced by A on σ∗E). Thus, starting from a map

dA : Ω0(M ;E) −→ Ω1(M ;E),

we obtain a new map
dA : Ω0(M ;E) −→ Ω1(M ;E)

which, locally, is given by

dAs = ds+ ϕσ∗Aϕ−1.

This transformation is involutive, for
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ϕ
(
σ∗(ϕσ∗Aϕ−1)

)
ϕ−1 = (ϕσ∗ϕ)A(σ∗ϕ−1 ϕ−1)

= (±IdE)A(±IdE)

= A,

as the minus signs cancel out in the quaternionic case.

Proposition 3.2. The involution A 
→ A is an anti-symplectic isometry of AE.

Proof. The tangent map to A 
→ A is

Ω1(M ; u(E)) −→ Ω1(M ; u(E))
a 
−→ ϕσ∗aϕ−1,

which is C-antilinear. Moreover, as tr(XY ) is real-valued on anti-Hermitian matri-
ces and σ is an orientation-reversing isometry of M , one has :

ωA(a, b) =

∫
M

−tr(a ∧ b)

=

∫
M

σ∗(− tr(a ∧ b))
= −

∫
M

−tr(a ∧ b)
= −ωA(a, b).

�

We now observe that, when E has a real structure, so do all the spaces Ωk(M ;E),
and when E has a quaternionic structure, so do all the spaces Ωk(M ;E). In both
cases, these structures may be written, in slightly abusive notation (pulling back
the differential form followed by applying the real or quaternionic structure),

Ωk(M ;E) −→ Ωk(M ;E)
η 
−→ σ̃ ◦ η ◦ σ.

Definition 3.3 (Real and quaternionic connections). Let (E, σ̃) be a real Hermitian
bundle. A unitary connection

dA : Ω0(M ;E) −→ Ω1(M ;E)

is called real if it commutes to the respective real structures of Ω0(M ;E) and
Ω1(M ;E). Likewise, a unitary connection on a quaternionic Hermitian bundle
(E, σ̃) is called quaternionic if it commutes to the respective quaternionic struc-
tures of Ω0(M ;E) and Ω1(M ;E).

The point of this definition is that, if dA is real, then the real structure of Ω0(M ;E)

leaves ker d
(0,1)
A invariant, so (E, σ̃, dA) is a real holomorphic bundle (its space of

holomorphic sections has a real structure). Likewise, if dA is quaternionic, then the
quaternionic structure of Ω0(M ;E) induces a quaternionic structure on kerd

(0,1)
A ,

so (E, σ̃, dA) is a quaternionic holomorphic bundle. The observation is then as
follows.

Proposition 3.4. Let (E, σ̃) be a real (resp. quaternionic) smooth Hermitian
bundle, and let

A 
−→ A

be the involution of AE associated to σ̃. Then a unitary connection A on E is real
(resp. quaternionic) if and only if A = A.
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Proof. Let us assume that σ̃ is a real structure. The key observation is that, for
any s ∈ Ω0(M ;E),

dA(σ̃ ◦ s ◦ σ) = σ̃(dAs)σ,

which follows from the definition of A. Since A is real if and only if

dA(σ̃ ◦ s ◦ σ) = σ̃(dAs)σ,

we obtain that A is real if, and only if, dA = dA. The exact same proof works if σ̃
is a quaternionic structure. �

It remains to prove that the involutionA 
→ A preserves the fibre F−1
({∗i2π dr IdE})

of the momentum map, and takes a gauge orbit to a gauge orbit. This is classically
proved by showing the existence of an involution of GE , inducing an involution of
(LieGE)∗ � Ω2(M ; u(E)), both of which are compatible with A 
→ A. We define

GE −→ GE
u 
−→ ϕσ∗uϕ−1

and

Ω2(M ; u(E)) −→ Ω2(M ; u(E))
R 
−→ ϕσ∗Rϕ−1,

where ϕ is, as earlier, the isomorphism ϕ : σ∗E �−→ E determined by the real
or quaternionic structure of E. Note that σ∗u and σ∗R define endomorphisms of
σ∗E, so the proposed formulae make sense. In the following, we simply denote
u 
→ u and R 
→ R the involutions above. It is a simple matter to verify that the
second involution is induced by the first one under the identification (LieGE)∗ �
Ω2(M ; u(E)).

Proposition 3.5. One has the following compatibility relations
(1) between the involution A 
→ A and the gauge action :

u(A) = u (A),

(2) and between the involution A 
→ A and the momentum map of the gauge
action :

FA = FA.
Proof.

(1) One has

u(A) = A+ (dAu)u−1

= A+ (dAu)u−1

= A+ (dAu)u
−1

= u (A).

(2) For all s ∈ Ω0(M ;E), one has

dA(dAs) = dA
[
σ̃
(
dA(σ̃ ◦ s ◦ σ))σ]

= σ̃
[
dA

(
dA(σ̃ ◦ s ◦ σ))] σ.

As the 2-form FA is determined by the operator dA ◦dA, and FA by dA ◦dA,
the above relation between these operators translates to

FA = FA.

�
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As ∗i2π dr IdE ∈ Ω2(M ; u(E)) is a fixed point of R 
→ R, compatibility relation (1)
shows that the involution A 
→ A induces an involution of F−1

({∗i2π dr IdE}), and
we denote (

F−1
({∗i2πd

r
IdE}

))σ̃
the fixed-point set of this involution. It consists of minimal Yang-Mills connec-
tions which are fixed by the involution A 
→ A (and so are either real or quater-
nionic, depending on the type of σ̃). Compatibility relation (2) shows that the
group G σ̃E of gauge transformations which commute to the real or quaternionic
structure of E (called the real or quaternionic gauge group) acts on the set
(F−1

({∗i2π dr IdE}))σ̃, and the next result, perhaps our most important observa-
tion, shows that the intersection of the GE-orbit of a poly-stable real or quaternionic
connection with A σ̃

E , is a single G σ̃E -orbit.

Proposition 3.6. Let A,A′ be two connections which satisfy A = A and A′ = A′,
and assume that A and A′ define real (resp. quaternionic) structures which are
poly-stable. Then A and A′ lie in the same GE-orbit if, and only if, they lie in the
same G σ̃

E -orbit.

Proof. By Propositions 2.7 and 3.4 combined with Donaldson’s theorem, a connec-
tion A defines a poly-stable real (resp. quaternionic) structure, if and only if it is a
direct sum A = A1 ⊕ · · · ⊕Ak of unitary connections Ai such that each Ai is either
an irreducible minimal Yang-Mills connection satisfying Ai = Ai, or is of the form
Bi ⊕ σ∗Bi, with Bi an irreducible minimal Yang-Mills connection. So it suffices to
prove the proposition in each of these two cases. The ’if’ part of the proposition is
obvious. To prove the ’only if’ part, let us assume that A′ = u(A) for some u ∈ GE .
Then

u(A) = A′ = A′ = u(A) = u (A) = u (A).

Let us first treat the case where A and A′ are irreducible connections. Then u−1 u ∈
(GE ∩ C∗) = S1, so u−1 u = eiθ for some θ ∈ R. Put then v = ei

θ
2 u. Then

v(A) = u(A) = A′

and
v = e−i

θ
2 u = e−i

θ
2 eiθu = ei

θ
2 u = v,

so v ∈ G σ̃
E . Consider now the case where A = B ⊕ σ∗B and A′ = B′ ⊕ σ∗B′. Then

u ∈ GE such that u(A) = A′ is of the form w ⊕ σ∗w, where w is a unitary gauge
transformation. Moreover, the stabiliser of A = B ⊕ σ∗B in GE is isomorphic to
S1 × S1, so now u−1u = eiθ ⊕ e−iθ for some θ ∈ R. Then

v := (ei
θ
2w)⊕ (e−i

θ
2σ∗w)

satisfies
v(B ⊕ σ∗B) = u(B ⊕ σ∗B) = B′ ⊕ σ∗B′,

and

v = (e−i
θ
2 ⊕ ei

θ
2 )(w ⊕ σ∗w) = (e−i

θ
2 ⊕ ei

θ
2 )(eiθ ⊕ e−iθ)(w ⊕ σ∗w) = v,

so again v ∈ G σ̃
E . �

Proposition 3.6 implies that the map

Lσ̃ −→ F−1
({∗i2πd

r
IdE}

)
/GE ,

taking the G σ̃
E -orbit of a real (resp. quaternionic) minimal Yang-Mills connection

to its GE-orbit, is injective. Moreover, the involution A 
−→ A induces the Galois
action [E ] 
−→ [σ∗E ] on M r,d

M,σ(C), so the Lagrangian quotient Lσ̃ indeed embeds
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into M r,d
M,σ(R). The next result gives the gauge-theoretic construction of moduli

spaces of real and quaternionic vector bundles alluded to in the introduction and
at the end of Section 2.

Theorem 3.7. Let (E, σ̃) be a real (resp. quaternionic) smooth Hermitian bundle
of rank r and degree d. Then G σ̃E -orbits in (F−1

({∗i2π dr IdE}))σ̃ correspond bijec-
tively to real (resp. quaternionic) S-equivalence classes of semi-stable real (resp.
quaternionic) holomorphic vector bundles that are smoothly isomorphic to (E, σ̃).

In other words, the points of the Lagrangian quotient

Lσ̃ =
(
F−1

({∗i2πd
r
IdE}

))σ̃
/G σ̃E

are in bijection with real (resp. quaternionic) S-equivalence classes of semi-stable
real (resp. quaternionic) holomorphic vector bundles that are smoothly isomorphic
to (E, σ̃), making this Lagrangian quotient a moduli space for such bundles in a
reasonable sense.

Proof. The statement will follow from Propositions 3.4 and 3.6 combined with Don-
aldson’s theorem. Let (E , σ̃E) be a semi-stable real (resp. quaternionic) holomorphic
bundle which is smoothly isomorphic to (E, σ̃). Then, by Theorem 2.10, (E , σ̃) ad-
mits a real (resp. quaternionic) Jordan-Hölder filtration, for which gr(E) is a real
(resp. quaternionic) poly-stable bundle of the form

(E1, σ̃1)⊕ · · · ⊕ (El, σ̃l)
with each (Ei, σ̃i) stable in the real (resp. quaternionic) sense, and (E, σ̃) is
smoothly isomorphic to the direct sum

(E1, σ̃1)⊕ · · · ⊕ (El, σ̃l) ,

where Ei is the underlying smooth bundle of Ei. We want to show that there is
associated to such a poly-stable real (resp. quaternionic) bundle a uniquely defined
G σ̃
E -orbit in (F−1

({∗i2π dr IdE}))σ̃, where σ̃ has now been smoothly identified with
σ̃1 ⊕ · · · ⊕ σ̃l. By Proposition 2.7, a stable real (resp. quaternionic) bundle (E , σ̃E)
is either geometrically stable, or of the form E = F ⊕ σ∗F , with F stable as a
holomorphic bundle. In the latter case, the real (resp. quaternionic) structure on
F is given by

σ̃+ =

(
0 σ̃
σ̃−1 0

) (
resp. σ̃− =

(
0 −σ̃
σ̃−1 0

))
,

where σ̃ is the invertible C-antilinear map

σ∗F σ̃−−−−→ F� �
M

σ−−−−→ M.
In the geometrically stable case, the holomorphic structure on E is defined, by
Donaldson’s theorem, by an irreducible, minimal Yang-Mills connection A which,
by Proposition 3.4, satisfies A = A. When E = F ⊕ σ∗F , the stable holomorphic
structure on F is defined, by Donaldson’s theorem, by an irreducible, minimal Yang-
Mills connection B on F (the underlying smooth bundle of F), and the holomorphic
structure of E is defined by the unitary connection

A :=

(
B 0
0 σ̃−1Bσ̃

)
on E = F ⊕ σ∗F . This connection has curvature ∗i2π dr IdE , and it satisfies
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A =

(
0 ±σ̃
σ̃−1 0

)(
B 0
0 σ̃−1Bσ̃

)(
0 σ̃

±σ̃−1 0

)
=

(
B 0
0 σ̃−1Bσ̃

)
= A .

This shows the existence of a surjective map from (F−1
({∗i2π dr IdE}))σ̃ to the

space of real (resp. quaternionic) S-equivalence classes of semi-stable real (resp.
quaternionic) holomorphic structures on (E, σ̃). By Donaldson’s theorem, two con-
nections

A,A′ ∈ F−1
({∗i2πd

r
IdE}

)
define the same S-equivalence class if and only if they lie in the same GE-orbit ,
so, combining with Proposition 3.6, two connections A,A′ in (F−1

({∗i2π dr IdE}))σ̃
define the same S-equivalence class (as a holomorphic bundle) if and only if they
lie in the same G σ̃

E -orbit. �

The last part in the proof above means that the G C

E -orbit of a real (resp. quater-
nionic) minimal Yang-Mills connection contains a unique G σ̃

E -orbit. This fact is a
real analogue of the Kempf-Ness theorem, and it is not necessarily true for arbitrary
real (resp. quaternionic) connections.

3.3. Connected components of the set of real points of the moduli scheme.
Our results so far enable us to give the following description of the connected
components of N r,d

M,σ(R).

Theorem 3.8. Let E be a Hermitian vector bundle of rank r and degree d and
denote I the set of gauge conjugacy classes of Hermitian real or quaternionic struc-
tures on E. Then

N r,d
M,σ(R) =

⊔
[σ̃]∈I

Lsσ̃ ,

where Lσ̃ is the Lagrangian quotient(
F−1

({∗i2πd
r
IdE}

))σ̃ /G σ̃E
constructed in the previous subsection, and Lsσ̃ is the intersection of Lσ̃ ⊂ M r,d

M,σ(R)

with N r,d
M,σ(R). Moreover, the Lsσ̃ are non-empty and connected. In particular, the

set of connected components of N r,d
M,σ(R) is in bijection with the set of topological

types of real and quaternionic structures on E.

Proof. By Theorem 3.7, points of Lsσ̃ are real (resp. quaternionic) classes of geo-
metrically stable real (resp. quaternionic) holomorphic structures on (E, σ̃), and,
by Proposition 2.3,

N r,d
M,σ(R) =

⋃
[σ̃]∈I

Lsσ̃.

Assume first that [E ] ∈ Lsσ̃ ∩ Lsσ̃′ for distinct σ̃, σ̃′. By Proposition 2.3, σ̃ and σ̃′

are both real or both quaternionic structures. Moreover, by Proposition 2.8, (E , σ̃)
and (E , σ̃′) are isomorphic as real (resp. quaternionic) bundles. This implies that
(E, σ̃) and (E, σ̃′) are isomorphic as (smooth) Hermitian real (resp. quaternionic)
vector bundles. In particular, σ̃ and σ̃′ are gauge conjugate on E so Lsσ̃ = Lsσ̃′ ,
proving that the union of all Lsσ̃ for [σ̃] ∈ I is disjoint.
Conversely, assume that σ̃′ = ψσ̃ψ−1 for some ψ ∈ GE . Let us denote ασ̃ and
ασ̃′ the involutions A 
→ A induced by σ̃ and σ̃′, respectively. We also denote
ϕσ̃ : σ∗E → E and ϕσ̃′ : σ∗E → E the isomorphisms between σ∗E and E induced
by σ̃ and σ̃′, and τσ̃ and τσ̃′ the involutions u 
→ u of GE induced by σ̃ and σ̃′,
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respectively. Then ασ̃′ = vασ̃v
−1 and τσ̃′ = vτσ̃′v−1, where v = ψτσ̃(ψ

−1) ∈ GE .
Indeed,

ϕσ̃′ = ϕψσ̃ψ−1 = ψ ϕσ̃ σ∗ψ
−1

: σ∗E �−→ E,

so

ασ̃′(A) = ϕσ̃′ σ∗Aϕ′−1
σ̃

= (ψ ϕσ̃ σ∗ψ
−1

)σ∗A (σ∗ψ ϕ−1
σ̃ ψ−1)

= ψ (ϕσ̃ σ∗ψ
−1
ϕσ̃)ϕ

−1
σ̃ σ∗Aϕ−1

σ̃ (ϕσ̃ σ∗ψ ϕ−1
σ̃ )ψ−1

=
(
ψτσ̃(ψ

−1)
)
ασ̃(A)

(
ψτσ̃(ψ

−1)
)−1

.

Moreover, for any u ∈ GE ,

τσ̃′(u) = ϕσ̃′ σ∗uϕ−1
σ̃′

= (ψ ϕσ̃ σ∗ψ
−1

)σ∗u (σ∗ψ ϕ−1
σ̃ ψ−1)

= ψ (ϕσ̃ σ∗ψ
−1
ϕ−1
σ̃ )ϕσ̃ σ∗uϕ−1

σ̃ (ϕσ̃ σ∗ψ ϕ−1
σ̃ )ψ−1

=
(
ψτσ̃(ψ

−1)
)
τσ̃(u)

(
ψτσ̃(ψ

−1)
)−1

.

So ασ̃′ = vασ̃v
−1 and τσ̃′ = vτσ̃v

−1, where v ∈ GE is of the form ψτσ̃(ψ
−1)

(a symmetric element). This readily implies that the gauge transformation A 
→
vAv−1 establishes a bijection between Aασ̃

E and Aασ̃′
E , which in turn induces a

bijection between Lsσ̃ and Lsσ̃′ . But a gauge transformation on AE is in fact the
identity on M r,d

M,σ(C) = F−1
({∗i2π dr IdE})/GE , so Lsσ̃′ = Lsσ̃. Therefore, we have

proved that
N r,d
M,σ(R) =

⊔
[σ̃]∈I

Lsσ̃.

It is nice to observe that this is a direct, simple consequence of the general theory
of anti-symplectic involutions on Hamiltonian spaces. There remains to study the
non-emptiness and the connectedness of the Lsσ̃. Non-emptiness of Lsσ̃ is equivalent
to the existence of an irreducible, minimal Yang-Mills real (resp. quaternionic)
connection on (E, σ̃). But minimal Yang-Mills connections are absolute minima of
the Yang-Mills functional and Daskalopoulos has shown that the gradient flow of
this functional converges ([Das92]). Moreover, as∫

M

‖FA‖2 =
∫
M

‖FA‖2 =

∫
M

‖FA‖2,

the gradient flow of this functional takes a real or quaternionic connection to a real
or quaternionic connection, so the limiting connection is of the same type as the
original one when following gradient flows. This is used in [BHH10], where Biswas,
Hurtubise and Huisman also compute the Morse indices of non-minimal critical
sets of the Yang-Mills functional restricted to real and quaternionic connections,
to show that, what in our notation is Lsσ̃, is non-empty and connected (Theorem
6.7 in [BHH10]). Note, however, that their point of view is different from ours, as
they do not show that their moduli spaces of real and quaternionic vector bundles
embed onto connected subsets of real points inside N r,d

M,σ(C), nor do they obtain
a presentation of them as Lagrangian quotients. As the Lsσ̃ are connected and
closed, with dimension that of N r,d

M,σ(R), these are exactly the connected compo-
nents of N r,d

M,σ(R), and counting those connected components amounts to counting
the possible topological types of real and quaternionic vector bundles. �
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Corollary 3.9. Let r ∧ d = 1. Then

M r,d
M,σ(R) =

⊔
[σ̃]∈I

Lσ̃ .

Moreover, the Lσ̃ are non-empty and connected. In particular, the set of connected
components of M r,d

M,σ(R) when r ∧ d = 1 is in bijection with the set of topological
types of real and quaternionic structures on E.

Note that, by Corollary 2.12 and Theorem 3.7, the intersection, when r ∧ d �= 1,
of Lσ̃ and Lσ̃′ for non-conjugate σ̃, σ̃′ on the smooth bundle E, can only be non-
empty if one of them is real and the other one quaternionic (in Example 2.14, the
smooth extension of (L⊕L, σ̃+) introduced there splits, so the underlying Hermitian
bundle is indeed isomorphic to that of (L⊕L, σ̃⊕ σ̃); in particular, there is indeed
only one topological type of quaternionic structure). Moreover, the intersection of
an Lσ̃ with an Lσ̃′ , if non-empty, is contained in the strictly semi-stable locus of
M r,d

M,σ(C). We can now prove our main result.

Proof of Theorem 1.1. By Theorem 2.4, the topological type of a quaternionic vec-
tor bundle is determined by its rank and degree, so there is at most one connected
component corresponding to quaternionic bundles. When k(X) = 0 (that is, when
X has no real points), there may be at most one connected component of real
bundles, and it happens if and only if d is even. Combined with Theorem 2.4, this
gives part (2) of our main result (Theorem 1.1). To obtain part (1), the part when
k(X) > 0, it suffices to count the topological types of real bundles, that is, the
number of solutions to the equation

w1 + w2 + · · ·+ wk(X) = d mod 2

in Z/2Z, which is 2k(X)−1. Precisely, the connected components of N r,d
M,σ(R) can

be described as follows.
(1) Assume that k > 0.

(a) If r ≡ 1 (mod 2), then N r,d
M,σ(R) has 2k−1 real components and no

quaternionic component (recall that if k > 0, the rank of a quater-
nionic bundle must be even). We prove below that any two of these
components are homeomorphic.

(b) If r ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
M,σ(R) has 2k−1 real

components and no quaternionic component.
(c) If r ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

M,σ(R) has 2k−1 real
components and 1 quaternionic component.

(2) Assume that k = 0.
(a) If r(g − 1) ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

M,σ(R) has one
real and one quaternionic component. We prove below that these two
components are homeomorphic when g ≡ 1(mod 2).

(b) If r(g − 1) ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
M,σ(R) is empty.

(c) If r(g − 1) ≡ 1 (mod 2), then N r,d
M,σ(R) has one real component if d is

even, and one quaternionic component if d is odd.
To finish the proof, it only remains to show that certain identified connected com-
ponents of N r,d

M,σ(R) are homeomorphic.
(1) Assume that k > 0, and consider a real holomorphic line bundle (LR, σ̃LR

)
of degree 0 on X(C), with real invariants (w(1), · · · , w(k)) ∈ (Z/2Z)k such
that w(1) + · · ·+w(k) = 0. If (E , σ̃) is a real bundle on X(C), of rank r and
degree d, so is E ⊗ LR, and, over the j-th connected component of X(R),
one has w1(E σ̃j ⊗ (LR)

σ̃LR

j ) = w1(E σ̃j )+ (r mod 2)w(j). In particular, when r
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is odd, the functor E 
→ E⊗LR induces a homeomorphism between the con-
nected component of N r,d

M,σ(R) containing E and that containing E⊗LR : by
choosing an LR with the appropriate topological invariants (w(1), · · · , w(k)),
one may pass from a given connected component of N r,d

M,σ(R) to any given
other. When r is even, the map induced by the functor E 
→ E⊗LR preserves
any given connected component of M r,d

M,σ(R), so we do not know if they are
homeomorphic. We also note that, when k > 0, there are no quaternionic
line bundles, which prevents one from applying the same technique.

(2) Assume that k = 0, r(g − 1) even and d even. Then there exists a quater-
nionic line bundle (LH, σ̃LH

) of degree 0 on X(C) if, and only if, g is odd.
The functor E 
→ E ⊗LH then induces the desired homeomorphism between
the real and quaternionic components in that case (note that now E ⊗ LH

is quaternionic, as σ̃ ⊗ σLH
squares to σ̃2 ⊗ σ2

LH
= IdE ⊗ (−IdLH

)).
This completes the proof of Theorem 1.1, thus generalising to rank r > 1 the results
of Gross and Harris on the Picard scheme of a real algebraic curve ([GH81]). �
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