
GROUP ACTIONS ON QUIVER VARIETIES
AND APPLICATIONS

VICTORIA HOSKINS AND FLORENT SCHAFFHAUSER

Abstract. We study algebraic actions of finite groups of quiver automor-
phisms on moduli spaces of quiver representations. We decompose the fixed
loci using group cohomology and we give a modular interpretation of each com-
ponent. As an application, we construct branes in hyperkähler quiver varieties,
as fixed loci of such actions.
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1. Introduction

For a quiver Q and an algebraically closed field k, King [19] constructs moduli
spaces of semistable k-representations of Q of fixed dimension vector d ∈ NV as
a geometric invariant theory (GIT) quotient of a reductive group GQ,d acting on
an affine space RepQ,d with respect to a character χθ determined by a stability
parameter θ ∈ ZV . The stability parameter also determines a slope-type notion of
θ-(semi)stability for k-representations of Q, which involves testing an inequality for
all proper non-zero subrepresentations. This GIT construction gives moduli spaces
Mθ−(s)s

Q,d of θ-(semi)stable k-representations of Q of dimension d, which are both
coarse moduli spaces (if we consider semistable representations up to S-equivalence).

The study of quiver representations is extremely fruitful in numerous areas of
mathematics, from representation theory and algebraic geometry to mathemati-
cal physics, and many interesting varieties and moduli spaces arise as quiver vari-
eties: for example, minimal resolutions of Kleinian singularities, such as the Hilbert
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scheme of points in the plane, are Najakima quiver varieties via the McKay cor-
respondence, instanton moduli spaces admit quiver descriptions via ADHM data,
and certain parabolic (Higgs) bundle moduli spaces arise as quiver varieties via
(hyper)polygon spaces (for example, see [10] and the references therein).

In this paper, we define a finite group Aut(Q) of covariant and contravariant
automorphisms of Q in §3 and consider algebraic actions of subgroups Σ ⊂ Aut(Q)

onMθ−ss
Q,d , when the stability parameter θ and dimension vector d are compatible

with the Σ-action in the sense of §3. We restrict the Σ-action toMθ−s
Q,d ⊂ M

θ−ss
Q,d ,

in order to use the fact that the stabiliser of every GIT stable point in RepQ,d is
a diagonal copy of Gm, denoted ∆, in GQ,d (cf. Remark 2.4) to decompose the
Σ- fixed locus of Mθ−s

Q,d in terms of the group cohomology of Σ with values in ∆

or the (non-Abelian) group GQ,d. In [14], we use similar methods to decompose
the rational points of moduli spaces of quiver representations over a perfect field
by using actions of the absolute Galois group and many arguments simplify due to
Hilbert’s 90th Theorem, thus the decomposition in the Galois case is much cleaner.

As an application, we construct submanifolds of hyperkähler quiver varieties with
rich holomorphic and symplectic geometry (known as branes cf. [16]) as fixed loci
of finite groups of quiver automorphisms. Furthermore, the geometry of these fixed
loci can be studied using our decomposition result (Theorem 1.1 below) and given
a modular interpretation by Corollary 3.34.

1.1. The decomposition of the fixed locus. Let us outline the key steps ap-
pearing in the decomposition of the Σ-fixed locus inMθ−s

Q,d . First, as the Σ-action on
Mθ−ss

Q,d can be induced by compatible Σ-actions on RepQ,d and GQ,d, we construct
a morphism

fΣ : RepΣ
Q,d //χθG

Σ
Q,d −→ (Mθ−ss

Q,d )Σ

of k-varieties in Propositions 3.8 and 3.37, where for a k-variety X with a Σ-action,
XΣ denotes the fixed locus. In general, the morphism fΣ is neither surjective nor
injective, even if we restrict our attention to stable representations (cf. Examples
3.23 and 3.24, respectively). However, its failure to be bijective can be described
in terms of group cohomology: the non-empty closed fibres of the restriction frsΣ

of fΣ to the preimage ofMθ−s
Q,d are in bijection with the kernel of the pointed map

H1(Σ,∆(k)) −→ H1(Σ,GQ,d(k)), by Proposition 3.10.
The second step is to construct a so-called type map from the closed points of

the Σ-fixed locus to the second group cohomology of Σ with values in ∆(k)

T :Mθ−s
Q,d (k)Σ −→ H2(Σ,∆(k))

(cf. Proposition 3.12 and also §3.5) and show that the image of frsΣ (k) is contained in
the preimage of the trivial element under the type map; however, this containment
can be strict (cf. Example 3.23).

The third step is to introduce the notion of a modifying family u (cf. Definition
3.14) in order to modify the action of Σ on RepQ,d and GQ,d such that the in-
duced Σ-action onMθ−ss

Q,d coincides with the original action. We let u RepΣ
Q,d and

uG
Σ
Q,d denote the fixed loci of these modified Σ-actions determined by u. Then

we construct a morphism ufΣ : u RepΣ
Q,d //χθ uG

Σ
Q,d −→ (Mθ−ss

Q,d )Σ of k-varieties
(cf. Theorem 3.17 for the case of a covariant group of quiver automorphisms)
and show that the image of ufrsΣ (that is, the restriction of ufΣ to the preimage of
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Mθ−s
Q,d ) is contained in the preimage under the type map of the cohomology class

of a ∆(k)-valued 2-cocycle cu naturally defined by u (cf. Theorem 3.17).
Finally, we describe the modifying families u using group cohomology to obtain

the following decomposition of the Σ-fixed locus inMθ−s
Q,d .

Theorem 1.1. Let Σ ⊂ Aut+(Q) be a subgroup of covariant automorphisms of Q
for which θ and d are compatible. Then there is a decomposition of the Σ-fixed locus

(Mθ−s
Q,d )Σ =

⊔
[cu]∈Im T

[b]∈H1
u(Σ,GQ,d(k))/H1(Σ,∆(k))

Im ubf
rs
Σ

where ub is the modifying family determined by [b] and u via Lemma 3.19, and
ubf

rs
Σ is the morphism defined as in Theorem 3.17.
Moreover, the non-empty fibres of ubfrsΣ are in bijection with the pointed set

ker
(
H1(Σ,∆(k)) −→ H1

ub(Σ,GQ,d(k))
)
.

This decomposition for fixed loci of groups of quiver automorphisms is more
complicated than the Galois decomposition given in [14]; for example, the images of
the morphisms ufΣ may be strictly contained in T −1([cu]) and these morphisms may
not be injective (cf. Examples 3.23 and 3.24 respectively). If k is not algebraically
closed, then one has a decomposition of the geometric points of the moduli space
Mθ−gs

Q,d of θ-geometrically stable quiver representations (cf. Remark 3.22).
We provide a modular interpretation of this decomposition by observing that

the domains of the morphisms ubf
rs
Σ can also be described as moduli spaces of

so-called (Σ, ub)-equivariant representations of Q in Corollary 3.34. For the trivial
modifying family u = 1, the domain of fΣ can also be described as a moduli space
of representations of a quotient quiver Q/Σ (cf. Definition 3.4 and Corollary 3.6).

1.2. Constructing branes in hyperkähler quiver varieties. One can construct
an algebraic symplectic analogue ofMθ−ss

Q,d as a moduli space NQ of representations
of a doubled quiver Q, modulo relations defined by a moment map. Over the
complex numbers, if NQ is smooth, it is hyperkähler; for example, Nakajima quiver
varieties can be described in this way.

In §4, we construct submanifolds of algebraic symplectic (and hyperkähler, when
k = C) quiver varieties as fixed loci for actions of subgroups of Aut(Q) (and for
complex conjugation, when k = C) with rich symplectic (and holomorphic) geom-
etry. Such submanifolds can be described in the language of branes [16], which
will be recalled in Section 4. The study of branes in Nakajima quiver varieties was
initiated in [6], where involutions such as complex conjugation, multiplication by
−1 and transposition are used to construct branes in Nakajima quiver varieties.
We add to this picture branes arising from actions of quiver automorphisms that
are Q-(anti)-symplectic (this is a combinatorial notion, cf. Definition 4.4).

Theorem 1.2. Let k = C and assume that NQ is smooth, and thus hyperkähler.
Let σ be an involution of Q and τ : C→ C denote complex conjugation; then

(1) (NQ)σ is a BBB-brane (resp. BAA-brane) if σ is Q-symplectic (resp. Q-
anti-symplectic);

(2) (NQ)τ◦σ is an ABA-brane (resp. AAB-brane), if σ is Q-symplectic (resp.
Q-anti-symplectic).
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Interestingly, we can construct hyperholomorphic branes (BBB-branes) from
groups of Q-symplectic automorphisms, that need not be of order 2 (cf. Theorem
4.10).

1.3. Connections with previous work. Contravariant involutions of a quiver
were studied by Derksen and Weyman [5] and later by Young [27], where Young’s
motivation comes from physics and as an application he constructs orientifold
Donaldson-Thomas invariants. In [27], the action of a contravariant involution
is also modified using what is called a ‘duality structure’, which corresponds to
our notion of modifying families. Motivated by questions in representation theory,
Henderson and Licata study actions of so-called ‘admissible’ covariant automor-
phisms on Nakajima quiver varieties of type A and prove a decomposition of the
fixed locus [13]; however, they do not use group cohomology type techniques or see
phenomena such as the morphisms ufΣ failing to be injective in their setting (for
example, compare [13, Lemma 3.17] with Proposition 3.10).

For moduli spaces of principal G-Higgs bundles (G being a complex reductive
group) over a smooth complex projective curve X, actions induced by involutions
(or automorphisms) of X and involutions of G have been studied in [2, 1, 3, 7, 12,
8, 24, 25, 26]; the approach in these papers is usually based on the gauge-theoretic,
rather than algebraic, constructions of those moduli spaces. In this paper, we utilise
the algebraic construction of quiver moduli spaces; however, the results we obtain
are of a similar flavour.

1.4. Generalisations to other moduli problems and GIT quotients. Many
of our techniques can be applied to study fixed loci of group actions on more gen-
eral GIT quotients. However, for the results involving group cohomology, one would
need to assume that the stabiliser group of all GIT stable points is a fixed subgroup
(analogous to the fixed subgroup ∆ ⊂ GQ,d), and one would need this fixed sub-
group to be Abelian, in order to define the type map, as the second cohomology is
only defined for an Abelian coefficient group. Over the complex numbers, by the
Kempf-Ness Theorem, one can relate GIT quotients with symplectic reductions. In
the symplectic setting, by using moment maps, one could also perform an analogous
study of such fixed loci.

1.5. The structure of the paper. In §2, we recall King’s construction of moduli
spaces of quiver representations. In §3, we study actions of quiver automorphism
groups and prove our decomposition for the fixed loci. In §4, we apply our results to
construct branes in hyperkähler quiver varieties, and in §5, we study some examples.

Notation. A quiver Q = (V,A, h, t) is an oriented graph, consisting of a finite
vertex set V , a finite arrow set A, and head and tail maps h, t : A −→ V .

2. Moduli spaces of quiver representations

Let us recall King’s construction [19] of moduli spaces of representations of a
quiver Q = (V,A, h, t) over an algebraically closed field k.

Definition 2.1. A k-representation of Q is a tuple W := ((Wv)v∈V , (ϕa)a∈A)
where:

• Wv is a finite-dimensional k-vector space for all v ∈ V ;
• ϕa : Wt(a) −→Wh(a) is a k-linear map for all a ∈ A.
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The dimension vector of W is the tuple d = (dimkWv)v∈V ; we then say W is d-
dimensional. There are also natural notions of morphisms of quiver representations
and subrepresentations.

2.1. The GIT construction. Every k-representation of Q of fixed dimension vec-
tor d = (dv)v∈V ∈ NV is isomorphic to a closed point of the following affine k-space

RepQ,d :=
∏
a∈A

Matdh(a)×dt(a)
.

The reductive k-group GQ,d :=
∏
v∈V GLdv acts algebraically on RepQ,d by con-

jugation: for g = (gv)v∈V ∈ GQ,d and M = (Ma)a∈A ∈ RepQ,d, we have

(2.1) g ·M := (gh(a)Mag
−1
t(a))a∈A,

and the orbits for this action are in bijection with the set of isomorphism classes of
d-dimensional k-representations of Q. One would like to construct a moduli space
for quiver representations as a quotient of this action; however, by a results of Le
Bruyn and Procesi, k[RepQ,d]

GQ,d is generated by traces of oriented cycles in Q
and so the affine GIT quotient is a point if Q has no oriented cycles [21].

Instead King constructs a GIT quotient of the GQ,d-action on an open subset
of RepQ,d by linearising the action using a stability parameter θ = (θv)v∈V ∈ ZV .
Let θ′ := (θ′v)v∈V where θ′v := θv

∑
α∈V dα −

∑
α∈V θαdα for all v ∈ V ; then∑

v∈V θ
′
vdv = 0 and θ determines a character χθ : GQ,d −→ Gm

(2.2) χθ((gv)v∈V ) :=
∏
v∈V

(det gv)
−θ′v .

We let Lθ denote the GQ,d-linearisation on the trivial line bundle RepQ,d×A1,
where GQ,d acts on A1 via multiplication by χθ. As explained in [19], the invariant
sections of positive powers Lnθ of this linearisation are functions f : RepQ,d −→ k
satisfying f(g ·M) = χθ(g)n f(M), for all g ∈ GQ,d and all M ∈ RepQ,d. We note
that, as the subgroup of GQ,d

(2.3) ∆ := {(tIdv )v∈V : t ∈ Gm} ∼= Gm,

acts trivially on RepQ,d, invariant sections of Lnθ only exist if χθ(∆) = 1; by con-
struction of θ′, this holds, as

∑
v∈V θ

′
vdv = 0.

The GQ,d-invariant sections of positive powers of Lθ are used to determine GIT
notions of (semi)stability with respect to χθ (see, [19, Definition 2.1], where we
note that the notion of stability is modified to account for the presence of the
global stabiliser ∆). This determines open subsets Rep

χθ−(s)s
Q,d of χθ-(semi)stable

points and there is a GIT quotient

π : Repχθ−ssQ,d −→ RepQ,d //χθGQ,d := Proj
⊕
n≥0

H0(RepQ,d,Lnθ )GQ,d ,

which is a good quotient of theGQ,d-action on Repχθ−ssQ,d and restricts to a geometric
quotient π|

Rep
χθ−s
Q,d

: Repχθ−sQ,d −→ Repχθ−sQ,d /GQ,d of the GIT stable set.
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2.2. Slope semistability and moduli spaces. For a stability parameter θ, King
proves that GIT χθ-(semi)stability in RepQ,d can be reinterpreted as a slope type
notion of θ-(semi)stability for quiver representations in order to construct moduli
spaces of θ-semistable representations of Q.

Definition 2.2 ((Semi)stability). The θ-slope of a k-representation W of Q is

µθ(W ) :=

∑
v∈V θv dimkWv∑
v∈V dimkWv

∈ Q.

We say W is:
(1) θ-semistable if µθ(W ′) ≤ µθ(W ) for all k-subrepresentation 0 6= W ′ ⊂W .
(2) θ-stable if µθ(W ′) < µθ(W ) for all k-subrepresentation 0 6= W ′ (W .
(3) θ-polystable if it is isomorphic to a direct sum of θ-stable representations

of equal slope.
There are natural notions of Jordan-Hölder and Harder–Narasimhan filtrations, and
we say two θ-semistable k-representations of Q are S-equivalent if their associated
graded objects for their Jordan–Hölder filtrations are isomorphic.

Using the Hilbert–Mumford criterion, King shows the GIT and slope notions
of semistability on RepQ,d coincide, and they can both be described using 1-
parameter subgroups (1-PS) of GQ,d. Consequently, he constructs moduli spaces
of θ-(semi)stable quiver representations using the GIT quotient described above.

Theorem 2.3. [19] A closed point of RepQ,d is GIT χθ-(semi)stable if and only if
it is θ-(semi)stable as a k-representation of Q. Moreover,

Mθ−ss
Q,d := RepQ,d //χθGQ,d (resp. Mθ−s

Q,d := Repχθ−sQ,d /GQ,d)

is a coarse moduli space for S-equivalence (resp. isomorphism) classes of θ-semi-
stable (resp. θ-stable) d-dimensional k-representations of Q.

Over a non-algebraically closed field k, one can use Seshadri’s extension of GIT to
construct moduli spaces of k-representations of Q as explained in [14, §2]; however,
these are only moduli spaces in the sense that they co-represent the correspond-
ing moduli functor and one has to replace θ-stability with a stronger notion of
θ-geometric stability, which is stable under base change.

Let us end with an important observation that will be repeatedly used in §3.

Remark 2.4. For a closed point M ∈ Repθ−sQ,d , we have

StabGQ,d
(M) = ∆(k) ⊂ GQ,d(k),

as the automorphism group of any stable representation is isomorphic to Gm.

3. Automorphisms of quivers

Definition 3.1. A covariant (resp. contravariant) automorphism of Q = (V,A, h, t)
is a pair of bijections (σV : V −→ V, σA : A −→ A) such that

(3.1) t ◦ σA = σV ◦ t and h ◦ σA = σV ◦ h if σ is covariant,
t ◦ σA = σV ◦ h and h ◦ σA = σV ◦ t if σ is contrariant.

Henceforth, to simplify notation, we denote σV and σA both by σ. We let Aut+(Q)
(resp. Aut−(Q)) denote the set of covariant (resp. contravariant) automorphisms
of Q and write Aut(Q) := Aut+(Q) tAut−(Q).
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Note that, for any field k, a covariant (resp. contravariant) automorphism σ
of Q determines a graded algebra automorphism (resp. anti-automorphism) of the
path algebra kQ. We refer to the covariant automorphism of Q given by σV =
IdV and σA = IdA as the trivial automorphism of Q. As the composition of
covariant automorphisms is covariant, Aut+(Q) is a subgroup of Aut(Q). There is
a group homomorphism sign : Aut(Q) −→ {±1} sending σ to −1 if and only if σ is
contravariant. Evidently, ker(sign) = Aut+(Q).

For a subgroup Σ ⊂ Aut(Q) of quiver automorphisms, we want to study in-
duced actions of Σ on the moduli space Mθ−ss

Q,d of θ-semistable d-dimensional k-
representations of Q (provided d and θ are Σ-compatible in the sense of Definitions
3.2 and 3.35). For a subgroup Σ ⊂ Aut(Q), either Σ ⊂ Aut+(Q) or Σ is an
extension

1 −→ Σ+ −→ Σ −→ {±1} −→ 1,

where Σ+ ⊂ Aut+(Q) is a subgroup of covariant automorphisms. Therefore, one
should start by studying the actions by subgroups of covariant automorphisms and
actions by contravariant involutions. Since the latter is studied in [27], we restrict
our attention to subgroups Σ ⊂ Aut+(Q) of covariant automorphisms until §3.5

3.1. The induced action on the moduli space. Let Σ ⊂ Aut+(Q) be a sub-
group of covariant automorphisms and let k be a field. In this section, we will con-
struct algebraic Σ-actions on moduli spaces Mθ−ss

Q,d of θ-semistable d-dimensional
k-representations of Q, when d and θ are Σ-compatible in the following sense.

Definition 3.2. Let us denote σ(d) := (dσ(v))v∈V and σ(θ) := (θσ(v))v∈V .
(1) A dimension vector d = (dv)v∈V is Σ-compatible if σ(d) = d for all σ ∈ Σ.
(2) A stability parameter θ = (θv)v∈V is Σ-compatible if σ(θ) = θ for all σ ∈ Σ.

Throughout the rest of Section 3, we assume that d and θ are Σ-compatible. To
construct the Σ-action onMθ−ss

Q,d , we use the GIT construction of this moduli space
(Theorem 2.3). As d is Σ-compatible, we have algebraic actions

Φ : Σ× RepQ,d −→ RepQ,d and Ψ : Σ×GQ,d −→ GQ,d

given by, for σ ∈ Σ and for M := (Ma)a∈A ∈ RepQ,d and g := (gv)v∈V ∈ GQ,d,

Φσ(M) := σ(M) := (Mσ(a))a∈A and Ψσ(g) := σ(g) := (gσ(v))v∈V .

These actions are compatible with each other in the sense that

(3.2) Φσ(g ·M) = Ψσ(g) · Φσ(M).

Proposition 3.3. For Σ-compatible d and θ, the following statements hold.

(1) The Σ-action on RepQ,d preserves the GIT (semi)stable sets Rep
χθ−(s)s
Q,d ;

(2) There is an induced algebraic Σ-action on the moduli spacesMθ−(gs)s
Q,d .

Proof. For (1), it suffices to check that, for all σ ∈ Σ, the image of each closed
point in Rep

χθ−(s)s
Q,d under Φσ lies in Rep

χθ−(s)s
Q,d . The Σ-compatibility of θ implies

that χθ is Σ-invariant and so the Σ-action preserves the invariant sections of powers
of Lθ as in [14, Proposition 3.1], which proves (1). Equivalently, by the Hilbert–
Mumford criterion, it suffices to check that for every θ-(semi)stable k-representation
W = ((Wv)v∈V , (ϕa)a∈A), the k-representation σ(W ) := ((Wσ(v))v∈V , (ϕσ(a))a∈A)
is also θ-(semi)stable, which we show in Lemma 3.26.
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For (2), recall that π : Rep
χθ−(s)s
Q,d −→ Mθ−(s)s

Q,d is a categorical quotient of the

GQ,d-action. To define the induced action Φ′ : Σ × Mθ−(s)s
Q,d −→ Mθ−(s)s

Q,d , we
observe that, for each σ ∈ Σ, the morphism π ◦ Φσ is GQ,d-invariant by (3.2), and
so there is a unique morphism Φ′σ making the following diagram commute

(3.3) Rep
χθ−(s)s
Q,d

Φσ //

π

��

Rep
χθ−(s)s
Q,d

π

��
Mθ−(s)s

Q,d

Φ′σ //Mθ−(s)s
Q,d ,

given by the universal property of the categorical quotient π. �

3.2. Morphisms to the fixed-point set of the action. For Σ ⊂ Aut+(Q),
we let (Mθ−ss

Q,d )Σ denote the fixed locus of the above action, which is a closed k-
subvariety ofMθ−ss

Q,d . In order to describe this fixed locus, we construct morphisms
from related moduli spaces to this fixed locus in this section.

Definition 3.4 (Quotient quiver). Given Σ ⊂ Aut+(Q), we define the quotient
quiver Q/Σ := (V/Σ, A/Σ, h̃, t̃), where V/Σ and A/Σ denote the set of Σ-orbits in
V and A respectively, and the head and tail maps h̃, t̃ : A/Σ −→ V/Σ are given by
h̃(Σ · a) = Σ · h(a) and t̃(Σ · a) = Σ · t(a), which are well-defined by (3.1).

A Σ-compatible dimension vector d and stability parameter θ for Q determine
a dimension vector d̃ and stability parameter θ̃ for Q/Σ, where d̃Σ·v := dv and
θ̃Σ·v := |Σ · v|θv. Let GΣ

Q,d and RepΣ
Q,d denote the fixed loci for the actions of Σ

on GQ,d and RepQ,d given by Ψ and Φ respectively; then the action of GΣ
Q,d on

RepQ,d preserves RepΣ
Q,d by (3.2). By the following lemma, GΣ

Q,d is reductive and
so we can consider GIT quotients of the GΣ

Q,d-action on RepΣ
Q,d.

Proposition 3.5. There are isomorphisms

α : GQ/Σ,d̃

'−→ GΣ
Q,d and β : RepQ/Σ,d̃

'−→ RepΣ
Q,d

such that, if the two groups are identified through α, then β is equivariant with
respect to the GQ/Σ,d̃-action on RepQ/Σ,d̃ and the GΣ

Q,d-action on RepΣ
Q,d.

Proof. The isomorphisms are defined by

α((gΣ·v)Σ·v∈V/Σ) = (gΣ·v)v∈V and β((MΣ·a)Σ·a∈A/Σ) = (MΣ·a)a∈A,

which are compatible with the actions by construction. �

Corollary 3.6. There are isomorphisms

RepΣ
Q,d //χθG

Σ
Q,d
∼= RepQ/Σ,d̃ //χθ̃GQ/Σ,d̃

and (RepΣ
Q,d)

χθ−s/GΣ
Q,d
∼= Rep

χθ̃−s
Q/Σ,d̃

/GQ/Σ,d̃ where, on the left hand side of these

isomorphisms, χθ denotes the restriction to GΣ
Q,d of the character χθ of GQ,d.

Consequently, the GIT quotient RepΣ
Q,d //χθG

Σ
Q,d (resp. (RepΣ

Q,d)
χθ−s/GΣ

Q,d) can be

interpreted as the moduli space Mθ̃−(s)s

Q/Σ,d̃
of θ̃-semistable (resp. θ̃-stable) d̃-dimen-

sional representations of Q/Σ.
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Proof. The isomorphisms are a consequence of Proposition 3.5, the universal prop-
erty of the categorical quotient and the observation that χθ̃ = χθ ◦ α (since, by
definition, θ̃Σ·v = |Σ · v|θv). The last assertion then follows from Theorem 2.3. �

In Corollary 3.34, we will provide another modular interpretation of the GIT quo-
tient RepΣ

Q,d //χθG
Σ
Q,d.

For Σ ⊂ Aut+(Q), we note that Σ-compatibility of θ is equivalent to χθ being
Σ-invariant.

Lemma 3.7. Let Σ ⊂ Aut+(Q) be a finite group acting algebraically on RepQ,d
and GQ,d in a compatible manner and fix a stability parameter θ such that χθ
is Σ-invariant. Then, for a Σ-fixed closed point M ∈ RepQ,d(k), the following
statements are equivalent.

(1) M is GIT semistable for the GQ,d-action on RepQ,d with respect to the
character χθ : GQ,d −→ Gm.

(2) M is GIT semistable for the GΣ
Q,d-action on RepΣ

Q,d with respect to the
restricted character χθ : GΣ

Q,d −→ Gm.

Proof. Evidently, (1) implies (2). For the converse, we proceed by contrapositive
and argue along the lines of [17, Theorem 4.2], which is about Galois actions but
carries over naturally to our setting. So let us assume that M ∈ RepΣ

Q,d(k) is
not (GQ,d, χθ)-semistable. Let ΛM denote the set of 1-PSs λ of GQ,d for which
the morphism Gm −→ RepQ,d given by the λ-action on M extends to A1. By
[17, Theorem 3.4], there is a canonical parabolic subgroup PM ⊂ GQ,d such that
PM = P (λ) for any 1-PS λ ∈ ΛM which minimises a normalised Hilbert–Mumford
functional aM : ΛM −→ R given by aM (λ) = 〈χθ, λ〉/||λ||, where || − || is a length
function on the 1-PSs of GQ,d in the sense of [17, p. 305]. SinceM is fixed by Σ, the
set of 1-PSs ΛM is Σ-invariant by the compatibility of the actions of Σ and GQ,d.
By summing over Σ (or applying Kempf’s construction of length functions to the
reductive group GQ,d o Σ), we can assume that || − || is Σ-invariant. Then, as χθ
is Σ-invariant, it follows that aM is Σ-invariant analogously to Lemma 4.1 in loc.
cit. Therefore, PM = σ(PM ) for all σ ∈ Σ, by the uniqueness of PM analogously to
the proof of Part (b) of Theorem 4.2 in loc. cit. Hence, PM is a Σ-invariant subset;
that is, Σ · PM = PM .

We can write PM = Πv∈V PM,v, where PM,v ⊂ GLdv is a parabolic subgroup for
all v ∈ V ; then Σ · PM = PM implies that PM,v = PM,v′ for any two vertices v, v′
in the same Σ-orbit. Then

PM ∩GΣ
Q,d =

∏
Σ·v∈V/Σ

PM,v ⊂ GΣ
Q,d =

∏
Σ·v∈V/Σ

GLdv

is a proper parabolic subgroup, as PM ⊂ GQ,d is a proper parabolic subgroup by
assumption. In particular,M is not (GΣ

Q,d, χθ)-semistable, as any 1-PS λ ∈ PM∩GΣ

is in both GΣ
Q,d and PM and thus destabilises M . �

Proposition 3.8. In RepΣ
Q,d, there is an equality of k-subvarieties

(RepΣ
Q,d)

(GΣ
Q,d,χθ)−ss = RepΣ

Q,d×RepQ,d Rep
(GQ,d,χθ)−ss
Q,d .

The closed immersion (RepΣ
Q,d)

(GΣ
Q,d,χθ)−ss ↪→ Rep

(GQ,d,χθ)−ss
Q,d induces a morphism

fΣ : RepΣ
Q,d //χθ (G

Σ
Q,d) −→ RepQ,d //χθGQ,d
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whose image is contained in the Σ-fixed locus.

Proof. The k-subvarieties (RepΣ
Q,d)

(GΣ
Q,d,χθ)−ss and RepΣ

Q,d×RepQ,d Rep
(GQ,d,χθ)−ss
Q,d

are open in RepΣ
Q,d; therefore, to show that they agree, it suffices to check the equal-

ity on closed points, for which we can use Lemma 3.7. Then the closed immersion

(RepΣ
Q,d)

(GΣ
Q,d,χθ)−ss ↪→ Rep

(GQ,d,χθ)−ss
Q,d ,

induces the morphism fΣ via the universal property of the categorical quotient. It is
straightforward to check that the image of fΣ is contained in the Σ-fixed locus. �

We can interpret fΣ as a morphism Mθ̃−ss
Q/Σ,d̃

−→ Mθ−ss
Q,d by Corollary 3.6. Let us

now study properties of fΣ (or strictly speaking a restriction frsΣ of fΣ as introduced
below) in terms of the group cohomology of Σ.

Definition 3.9 (Regularly stable point). Let Σ be a finite group acting alge-
braically on RepQ,d, compatibly with the action of GQ,d. A point M ∈ RepQ,d
which is both Σ-fixed and (GQ,d, χθ)-stable is called a (Σ, χθ)-regularly stable point
of RepQ,d.

Let
(RepΣ

Q,d)
χθ−rs := RepΣ

Q,d×RepQ,d Rep
(GQ,d,χθ)−s
Q,d

be the GΣ
Q,d-invariant open subset of RepΣ

Q,d whose points are both Σ-fixed and
(GQ,d, χθ)-stable. As (GQ,d, χθ)-stability implies (GΣ

Q,d, χθ)-stability, we have

(3.4) (RepΣ
Q,d)

χθ−rs ⊂ (RepΣ
Q,d)

(GΣ
Q,d,χθ)−s.

However, the converse inclusion is not true in general (as Lemma 3.7 does not hold
for stable points). By (3.4), we have a geometric quotient

M(Σ,θ)−rs
Q,d := (RepΣ

Q,d)
χθ−rs/GΣ

Q,d = f−1
Σ (Mθ−s

Q,d ),

which is open in (RepΣ
Q,d)

χθ−s/GΣ
Q,d ' M

θ̃−s
Q/Σ,d̃

(using Corollary 3.6) and that we
call the moduli space of (Σ, θ)-regularly stable representations of Q. Let

frsΣ := fΣ|M(Σ,θ)−rs
Q,d

:M(Σ,θ)−rs
Q,d −→ (Mθ−s

Q,d )Σ

denote the restriction of fΣ to the open subschemeM(Σ,θ)−rs
Q,d ⊂Mθ̃−ss

Q/Σ,d̃
.

Proposition 3.10. Let m = GQ,d · M ∈ Mθ−s
Q,d (k). If non-empty, the fibre

(frsΣ )−1(m) is in bijection with the pointed set

ker
(
H1(Σ,∆(k)) −→ H1(Σ,GQ,d(k))

)
.

Proof. As the proof is similar to [14, Proposition 3.3], we just give an outline of the
main steps. By the Hilbert–Mumford criterion, M is a θ-stable k-representation
and we recall from Remark 2.4 that the stabiliser of M for the GQ,d-action is ∆.
We give the fibre f−1

Σ (m) the base point given by the element GΣ
Q,d ·M and we will

construct a map

β : f−1
Σ (m) −→ ker

(
H1(Σ,∆(k)) −→ H1(Σ,GQ,d(k))

)
by associating to each m′ = GΣ

Q,d · M ′ ∈ f−1
Σ (m), a normalised ∆(k)-valued 1-

cocycle βm′ on Σ which splits over GQ,d(k). As m′ ∈ f−1
Σ (m), we know that
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M and M ′ lie in the same GQ,d-orbit; thus there exists g ∈ GQ,d(k) such that
g ·M ′ = M . For σ ∈ Σ, one verifies that βm′(σ) := gσ(g−1) stabilises M and thus
lies in ∆(k). Moreover,

(i) βm′(1Σ) = 1∆, and
(ii) βm′(σ1σ2) = βm′(σ1)σ1(βm′(σ2)) for all σ1, σ2 ∈ Σ;

hence, β is a normalised 1-cocycle, which is, by definition, split over GQ,d(k). It is a
straightforward computation to check that β is well-defined; that is, the cohomology
class of the 1-cocycle βm′ is independent of the choice of the representatives M and
M ′ of the orbits, and of the choice of element g ∈ GQ,d(k) such that g ·M ′ = M .

Let us show that β is surjective. If γ is a normalised ∆(k)-valued 1-cocycle
on Σ which splits over GQ,d(k), then there exists g ∈ GQ,d(k) such that γ(σ) =
gσ(g−1) ∈ ∆(k) for all σ ∈ Σ. Since ∆(k) acts trivially onM , we have σ(g−1 ·M) =
g−1 ·M for all σ ∈ Σ, and so m′ := GΣ

Q,d · g−1 ·M ∈ f−1
Σ (m) and βm′ = γ.

To prove that β is injective, suppose that the ∆(k)-valued 1-cocycle βm′ splits
over ∆(k); that is, there exists a ∈ ∆(k) such that βm′(σ) := gσ(g−1) = aσ(a−1)
for all σ ∈ Σ. Then

(i) σ(a−1g) = a−1g for all σ ∈ Σ (i.e. a−1g ∈ GΣ
Q,d(k)),

(ii) (a−1g) ·M ′ = M ;
hence, GΣ(k) ·M ′ = GΣ(k) ·M , which completes the proof. �

Since Σ acts trivially on ∆ ⊂ GQ,d, we have H1(Σ,∆(k)) ' H1(Σ, k×), where the
latter is computed with respect to the trivial action of Σ on k×. The next result
gives a sufficient geometric condition for frsΣ to be injective.

Corollary 3.11. Suppose that for each σ ∈ Σ, there is a vertex vσ ∈ V such that
σ(vσ) = vσ, then the morphism frsΣ is injective.

Proof. As k is algebraically closed, it suffices to check that frsΣ is injective on closed
points and for this we can use the description of the fibres given by Proposition
3.10. Thus, it suffices to show that H1(Σ,∆(k)) −→ H1(Σ,GQ,d(k)) is injective.
By definition, an element in the kernel of that map is the cohomology class of a
1-cocycle α : Σ −→ ∆(k) of the form α(σ) = gσ(g−1) for some g = (gv)v∈V ∈
GQ,d(k). As α is ∆(k)-valued, for each σ ∈ Σ, there exists tσ ∈ Gm(k) such
that (α(σ)v)v∈V := (gvg

−1
σ(v))v∈V = (tσIdv )v∈V . In particular, for v = vσ, we have

tσIdv = gvg
−1
σ(v) = gvg

−1
v = Idv ; that is, tσ = 1 for all σ. Therefore, every such

element α is trivial by our assumptions on the Σ-action on V . �

In this situation, we can use a so-called type map (analogously to the type map
for Galois actions in [14, Proposition 3.6]) to determine whether frsΣ is surjective.

Proposition 3.12. There is a map

T : (Mθ−s
Q,d )Σ(k) −→ H2(Σ,∆(k)),

which we call the type map, such that (Im frsΣ )(k) ⊂ T −1([1]).

Proof. We only outline the construction of T , as it is analogous to the construction
of the type map for Galois actions in [14, Proposition 3.6]. Let m = GQ,d ·M ∈
(Mθ−s

Q,d )Σ(k); then as this orbit is preserved by Σ, we have that, for all σ ∈ Σ, there
exists uσ ∈ GQ,d(k) such that uσ · σ(M) = M . For σ1, σ2 ∈ Σ, one observes that
the element cm(σ1, σ2) := uσ1

σ1(uσ2
)u−1
σ1σ2

stabilises M and so must lie in ∆(k) by
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Remark 2.4, as M is θ-stable. To verify that cm is a ∆(k)-valued 2-cocycle of Σ, it
remains to check that for σi ∈ Σ for i = 1, 2, 3, we have

c(σ1, σ2)c(σ1σ2, σ3) = σ1(c(σ2, σ3))c(σ1, σ2σ3),

which is a consequence of the fact that ∆(k) is a Σ-invariant central subgroup of
GQ,d(k). We define T (m) := [cm] and leave it to the reader to check that T is well-
defined (that is, the cohomology class of this 2-cocycle is independent of the choice
of representative M of the orbit and the elements uσ such that uσ · σ(M) = M).

To verify the final claim, we note that if m = GQ,d ·M ∈ Im frsΣ (k), then we
can pick a representative M ∈ RepΣ

Q,d(k) and so if uσ := 1GQ,d
for all σ ∈ Σ, then

uσ · σ(M) = M and so cm = 1 ∈ H2(Σ,∆(k)). �

Example 3.13. If Σ is a cyclic group of order n, then

H2(Σ,∆(k)) ' H2(Z/nZ, k∗) ' k∗/(k∗)(n) ' {1}.

In Example 3.23, we will see that one can have (Im frsΣ )(k) 6= T −1([1]). The map
frsΣ is not surjective in general and, to account for that failure, we will alter the
algebraic Σ-actions on RepQ,d and GQ,d by using a modifying family of elements
in GQ,d(k) in the following sense. We recall that Φ and Ψ denote the original
Σ-actions on RepQ,d and GQ,d respectively.

Definition 3.14 (Modifying family). A modifying family of elements in GQ,d(k)
indexed by Σ is a tuple u := (uσ)σ∈Σ of elements uσ ∈ GQ,d(k) indexed by σ ∈ Σ
such that

(1) u1Σ
= 1GQ,d(k),

(2) For σ1, σ2 ∈ Σ, the elements cu(σ1, σ2) := uσ1Ψσ1(uσ2)u−1
σ1σ2

∈ GQ,d(k)
define a ∆(k)-valued 2-cocycle cu of Σ.

Lemma 3.15. Let u := (uσ)σ∈Σ be a modifying family of elements in GQ,d(k)
indexed by Σ. Then we can define modified Σ-actions

Φu : Σ× RepQ,d −→ RepQ,d; (σ, φ) 7−→ Φuσ(φ) := uσ · Φσ(φ)

and
Ψu : Σ×GQ,d −→ GQ,d; (σ, g) 7−→ Ψu

σ(g) := Aduσ Ψσ(g)

which are compatible in the sense of (3.2) and such that the induced Σ-action on
Mθ−ss

Q,d coincides with that of Proposition 3.3.

Proof. It is straightforward to check that Φu and Ψu are compatible Σ-actions.
By using the universal property of the categorical quotient, one proves there is an
induced Σ-action on the quotient Mθ−ss

Q,d = RepQ,d //χθGQ,d; this coincides with
the Σ-action defined in Proposition 3.3, as the following diagram commutes

Repχθ−ssQ,d

Φσ //

π

��

Repχθ−ssQ,d

π

��

uσ· // Repχθ−ssQ,d

π
ww

RepQ,d //χθGQ,d

Φ′σ // RepQ,d //χθGQ,d

following the commutativity of Diagram (3.3). �
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For a modifying family u, let u RepΣ
Q,d and uG

Σ
Q,d denote the fixed loci for the

Σ-actions Φu and Ψu. Then u RepΣ
Q,d is a closed subscheme of RepQ,d and uG

Σ
Q,d

is a closed subgroup of GQ,d, and moreover, the uGΣ
Q,d-action preserves u RepΣ

Q,d.

Lemma 3.16. For a modifying family u = (uσ)σ∈Σ of elements in GQ,d(k), the
fixed locus for the u-modified Σ-action uG

Σ
Q,d is a smooth connected reductive group.

Proof. The fixed locus uGΣ
Q,d is the subgroup of elements g = (gv)v∈V such that

gv = uσ,vgσ(v)u
−1
σ,v for all σ ∈ Σ. If we pick representatives v1, . . . , vr of the Σ-orbits

in V , then

uG
Σ
Q,d
∼=

r∏
i=1

CGLdvi
({uσ,vi : σ ∈ Σ, σ(vi) = vi})

is isomorphic to a product of centraliser subgroups in general linear groups.
For any subset S ⊂ Matn×n, the centraliser CMatn×n(S) is a vector subspace

of Matn×n, and thus is connected. For S ⊂ GLn, it follows that CGLn(S) is also
connected, as this is the non-vanishing locus of a single polynomial (the determi-
nant) in CMatn×n(S). Therefore, uGΣ

Q,d is connected. By [4, Proposition A.8.11],
the fixed locus of any finite group scheme over k acting on any smooth k-scheme
is smooth; hence, uGΣ

Q,d is smooth. Furthermore, by [4, Proposition A.8.12], for
any linearly reductive group scheme H acting on a reductive group scheme G over
k, the connected component of the identity of the fixed locus GH with its reduced
scheme structure is reductive; hence, it follows that uGΣ

Q,d is reductive. �

In fact, the above argument shows that, for any finite group Σ acting on a product
of general linear groups G over a base field k, the fixed locus is smooth, connected
and reductive (even if k is not algebraically closed). However, this statement is not
true for an arbitrary reductive group scheme over k in positive characteristic, as it
is not necessarily true that the fixed locus is connected.

We can now give an analogue of Propositions 3.8, 3.10 and 3.12 for the Σ-action
given by a modifying family u.

Theorem 3.17. Let u := (uσ)σ∈Σ be a modifying family of elements in GQ,d(k)
indexed by Σ. Then

(3.5) (u RepΣ
Q,d)

(uG
Σ
Q,d,χθ)−ss = u RepΣ

Q,d×RepQ,d Rep
(GQ,d,χθ)−ss
Q,d

and there is a morphism

ufΣ : u RepΣ
Q,d //χθ uG

Σ
Q,d −→ (Mθ−ss

Q,d )Σ.

Furthermore, there is a moduli space of (Σ, u, θ)-regularly stable representations of
Q given by

(u RepΣ
Q,d)

χθ−rs/uG
Σ
Q,d = uf

−1
Σ (Mθ−s

Q,d ),

where (u RepΣ
Q,d)

χθ−rs := u RepΣ
Q,d×RepQ,d Rep

(GQ,d,χθ)−s
Q,d , and if we denote the

restriction of ufΣ to this open subscheme by

uf
rs
Σ : (u RepΣ

Q,d)
χθ−rs/uG

Σ
Q,d −→ (Mθ−s

Q,d )Σ,

then the image of ufrsΣ is a closed subscheme of (Mθ−s
Q,d )Σ. The non-empty closed

fibres of ufrsΣ are in bijection with the pointed set

ker
(
H1(Σ,∆(k)) −→ H1

u(Σ,GQ,d(k))
)
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where Σ acts on GQ,d via the action Ψu defined in Lemma 3.15. Moreover, we have
Im uf

rs
Σ (k) ⊂ T −1([cu]), where [cu] is the cohomology class of by the ∆(k)-valued

2-cocycle cu(σ1, σ2) := uσ1
Ψσ1

(uσ2
)u−1
σ1σ2

on Σ defined by u.

Proof. The result follows from simple modifications of the arguments given in the
proofs of Propositions 3.8, 3.10 and 3.12. �

3.3. A decomposition of the fixed locus. In this section, our goal is to give a
description of the fixed locus (Mθ−s

Q,d )Σ for the action of Σ ⊂ Aut+(Q) in terms of
the images of morphisms ufrsΣ defined by modifying families u (cf. Theorem 3.17).
We will do this in two stages: first by describing a given fibre of the type map T as
a disjoint union of images of such morphisms, and then by taking the union over
all fibres of T in order to produce a decomposition of the fixed locus (Mθ−s

Q,d )Σ.
Finally, we will illustrate this decomposition with some simple examples. Before
giving the decomposition result for a fibre of the type map, we need a few lemmas.

Lemma 3.18. Let u′ be a modifying family of elements of GQ,d(k) such that cu′
is cohomologous to a ∆(k)-valued 2-cocycle c, then there is a family (a′σ)σ∈Σ of
elements of ∆(k) such that u′′σ := a′σu

′
σ is a modifying family of elements in GQ,d(k)

with
(1) Φu

′′

σ = Φu
′

σ and Ψu′′

σ = Ψu′

σ for all σ ∈ Σ;
(2) cu′′ = c as ∆-valued 2-cocycles.

Proof. Since cu′ and c are cohomologous, there exists a family (a′σ)σ∈Σ of elements
of ∆(k) such that

(3.6) c(σ1, σ2)cu′(σ1, σ2)−1 = a′σ1
σ1(a′σ2

)(a′σ1σ2
)−1 for σ ∈ Σ, i = 1, 2.

Let u′′σ := a′σu
′
σ, then Φu

′′

σ = Φu
′

σ and Ψu′′

σ = Ψu′

σ , because a′σ ∈ ∆(k). Since ∆ is
central and fixed by the Σ-action, it follows from (3.6) that cu′′ = c. �

For a modifying family u, let Z1
u(Σ,GQ,d(k)) denote the set of GQ,d(k)-valued

normalised 1-cocycles on Σ, calculated with respect to the Σ-action given by Ψu.
The following lemma describes which modifying families give the same ∆(k)-valued
2-cocycle.

Lemma 3.19. Let u = (uσ)σ∈Σ be a modifying family of elements in GQ,d(k)
indexed by Σ. Then there is a bijection
{modifying families u′ | cu′ = cu} ←→ Z1

u(Σ,GQ,d(k))
u′ = (u′σ)σ∈Σ 7−→ (bu′ : Σ −→ GQ,d(k), σ 7−→ u′σu

−1
σ )

ub = (ubσ := b(σ)uσ)σ∈Σ ←−p (b : Σ −→ GQ,d(k), σ 7−→ b(σ)).

Proof. For a modifying family u′ with cu = cu′ , we check that bu′ is a 1-cocycle:

bu′(σ1σ2) = u′σ1σ2
u−1
σ1σ2

=
(
cu′(σ1, σ2)−1u′σ1

σ1(u′σ2
)
)(
σ1(u−1

σ2
)u−1
σ1
cu(σ1, σ2)

)
= (u′σ1

u−1
σ1

)(uσ1
σ1(u′σ2

u−1
σ2

)u−1
σ1

) = bu′(σ1)Ψu
σ1

(bu′(σ2)),

as cu = cu′ is valued in the central subgroup ∆(k) ⊂ GQ,d(k).
For b ∈ Z1

u(Σ,GQ,d(k)), we check that ub is a modifying family with cub = cu:

cub(σ1, σ2) := ubσ1
σ1(ubσ2

)(ubσ1σ2
)−1 = b(σ1)uσ1

σ1(b(σ2)uσ2
)(b(σ1σ2)uσ1σ2

)−1

= b(σ1)(uσ1
σ1(b(σ2))u−1

σ1︸ ︷︷ ︸
=Ψuσ1

(b(σ2))

)uσ1σ1(uσ2)u−1
σ1σ2︸ ︷︷ ︸

=cu(σ1,σ2)∈∆

b(σ1σ2)−1

= cu(σ1, σ2).
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This completes the proof, as clearly these two maps are inverse to each other. �

Remark 3.20. Note that two 1-cocycles bu′ and bu′′ are cohomologous (that is,
there exists g ∈ GQ,d(k) such that, for all σ ∈ Σ, bu′′(σ) = gbu′(σ)Ψu

σ(g−1)) if and
only if there exists g ∈ GQ,d(k) such that, for all σ ∈ Σ, u′′σ = gu′σσ(g−1). Suppose
that b1, b2 ∈ Z1

u(Σ,GQ,d(k)) are cohomologous; then we have morphisms ubi frsΣ (cf.
Theorem 3.17) and the images of these morphisms coincide: Im ub1 f

rs
Σ = Im ub2 f

rs
Σ ,

as the action of g gives an isomorphism ub1 RepΣ
Q,d

'−→ ub2 RepΣ
Q,d.

For a modifying family u, we can now give a decomposition of the fibre of the
type map T : (Mθ−s

Q,d )Σ(k) −→ H2(Σ,∆(k)) over [cu], where the indexing set is
the orbit space H1

u(Σ,GQ,d(k))/H1(Σ,∆(k)): as ∆(k) is central and Σ-invariant in
GQ,d(k), the map ((δ, u) 7−→ (δu)σ := (δσuσ)σ∈Σ indeed induces an action of the
group H1

u(Σ,∆(k)) on the set H1
u(Σ,GQ,d(k)); moreover, H1

u(Σ,∆(k)) is actually
independent of the modifying family u. For [b] ∈ H1

u(Σ,GQ,d(k)), we shall denote
its H1(Σ,∆(k))-orbit by [b].

Theorem 3.21. Let u be a modifying family of elements in GQ,d(k) indexed by Σ;
then there is a decomposition

T −1([cu]) =
⊔

[b]∈H1
u(Σ,GQ,d(k))/H1(Σ,∆(k))

(Im ubf
rs
Σ )(k),

where ub is the modifying family determined by u and a choice of 1-cocycle b ∈ [b].
Furthermore, the non-empty fibres of ubfrsΣ are described by Theorem 3.17.

Proof. For each [b] ∈ H1
u(Σ,GQ,d(k)), we take a representative b of [b] and consider

the morphism ubf
rs
Σ as in Theorem 3.17; the image of this morphism does not

depend on our choice of representative by Remark 3.20.
To show that these images cover T −1([cu]), take GQ,d ·M ∈ T −1([cu]), so by

definition of the type map, there exists a modifying family u′ = (u′σ)σ∈Σ of elements
in GQ,d(k) such that M ∈ u′ RepΣ

Q,d and [cu′ ] = [cu]. By Lemma 3.18, we can
assume that cu′ = cu and so, by Lemma 3.19, there exists b ∈ Z1

u(Σ,GQ,d(k)) such
that u′ = ub. Hence, GQ,d ·M ∈ Im ubf

rs
Σ .

To prove that this union is disjoint, suppose that GQ,d · M ∈ Im ubi f
rs
Σ for

i = 1, 2. Then there exist modifying families ui, for i = 1, 2, such that
(1) [bui ] = [bi] ∈ H1

u(Σ,GQ,d(k)),
(2) M ∈ ui RepΣ

Q,d for i = 1, 2,
(3) cu1

= cu2
= cu.

The only one of these assertions which is not clear is the final one, which follows
from the fact that cubi = cu, for i = 1, 2, and the observation that if [b] = [b′], then
cub = cub′ . From (2), we deduce that aσ := u2,σu

−1
1,σ ∈ StabGQ,d

(M) = ∆(k), from
which we conclude that bu2,σ = aσbu1,σ for all σ, therefore that [bu1

] and [bu2
] lie

in the same H1(Σ,∆(k))-orbit in H1
u(Σ,GQ,d(k)). This completes the proof. �

By definition of the type map T : (Mθ−s
Q,d )Σ(k) −→ H2(Σ,∆(k)), if [c] ∈ Im T ,

there exists a modifying family u with [c] = [cu]. We can now prove Theorem 1.1.

Proof of Theorem 1.1. We have a decomposition

(Mθ−s
Q,d )Σ(k) =

⊔
[c]∈Im T

T −1([c])
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and, for each [c] ∈ Im T , there exists a modifying family u such that [c] = [cu].
Hence, by Theorem 3.21 we obtain the above decomposition on the level of k-points.
Since Im ubf

rs
Σ and (Mθ−s

Q,d )Σ are varieties over the algebraically closed field k, this
set-theoretic decomposition on the level of closed points gives a decomposition as
varieties. The fibres of the morphisms ubfrsΣ are described as in Theorem 3.21. �

Remark 3.22. We make the following observations on Theorem 1.1.
(1) Mθ−s

Q,d is smooth by Luna’s étale slice Theorem, as it is a geometric quotient
of the smooth k-variety Repχθ−sQ,d by the free action of the reductive group
GQ,d := GQ,d/∆. Hence, (Mθ−s

Q,d )Σ is smooth by [4, Proposition A.8.11].
(2) Over the complex numbers Mθ−s

Q,d is a smooth Kähler manifold, as it is
homeomorphic, by the Kempf-Ness Theorem [18], to the Kähler reduction
of the complex vector space RepQ,d (by the action of the maximal compact
subgroup of GQ,d). The group Σ acts algebraically on Mθ−s

Q,d , therefore
preserves the complex structure. In particular, (Mθ−s

Q,d )Σ is a holomorphic,
and thus Kähler, submanifold ofMθ−s

Q,d .
(3) If k is not algebraically closed, then we instead consider the moduli space
Mθ−gs

Q,d of θ-geometrically stable representations (cf. [14, §2]). We obtain
a set-theoretic decomposition of (Mθ−gs

Q,d )Σ(Ω) for any algebraically closed
field Ω/k via the same techniques. More precisely, one can construct the
morphism fΣ using the universal property of the GIT quotient and noting
that it suffices to check the first equality in Proposition 3.8 on k-points,
which we have already done. Then one can prove an analogous description
to Proposition 3.10 for all geometric fibres of frsΣ and, for any algebraically
closed field Ω/k, one can construct a type map

TΩ : (Mθ−gs
Q,d )Σ(Ω) −→ H2(Σ,∆(Ω))

as in Proposition 3.12, by using Remark 2.4 over the algebraically closed
field Ω.

We end this section with two examples that illustrate the decomposition theorem.

Example 3.23. Let Q be the quiver 1•
a
((

b

66•2 with covariant involution σ which

fixes the vertex set V = {1, 2} and sends arrow a to b. As all dimension vectors d
and stability parameters θ are σ-compatible, we choose d = (1, 1) and θ = (1,−1).
Then (s1, s2) ∈ GQ,d = G2

m acts on M = (Ma,Mb) ∈ RepQ,d = A2 by

(s1, s2) · (Ma,Mb) = (s2Mas
−1
1 , s2Mbs

−1
1 ).

Let us write A2 = Spec k[Xa, Xb]; then bothXa andXb are semi-invariant functions
for the character χθ defined at (2.2). Hence, we have the GIT quotient

π : Repθ−ssQ,d = A2 − {0} −→Mθ−ss
Q,d := RepQ,d //χθGQ,d = Proj k[Xa, Xb] = P1.

In fact, the θ-semistable locus and θ-stable locus agree, so that this is a geometric
quotient, and, moreover, every GIT semistable orbit has stabiliser group ∆(k).
The involution σ on Q induces an involution Φσ on RepQ,d given by

Φσ((Ma,Mb)) = (Mb,Ma)
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and induces a trivial action on GQ,d, as σ fixes the vertex set. The induced invo-
lution Φ′σ on Mθ−ss

Q,d = P1 is given by Φ′σ([Ma : Mb]) = [Mb : Ma] and the fixed
locus is (P1)σ = {[1 : 1], [1 : −1]}. The GIT quotient of Gσ

Q,d = GQ,d acting on
RepσQ,d = {(Ma,Mb) : Ma = Mb} ∼= A1 with respect to χθ is

(RepσQ,d)
θ−ss ∼= A1 − {0} −→ RepσQ,d //χθGQ,d = Proj k[Xa] = Spec k,

which we can interpret this quotient as a moduli space for θ-semistable represen-
tations of dimension d̃ = (1, 1) of the quotient quiver Q/σ = • −→ • by Corollary
3.6. The morphism

fσ : RepσQ,d //χθGQ,d
∼= Spec k −→ (Mθ−ss

Q,d )σ = {[1 : 1], [1 : −1]}

is injective but, when char(k) 6= 2, it is not surjective, as its image equal to the
point [1 : 1]. Let u be the modifying family given by uσ = (1,−1) ∈ GQ,d(k); then
we can modify the Z/2Z-action on RepQ,d by

Φuσ((Ma,Mb)) := uσ · Φσ((Ma,Mb)) = (−Mb,−Ma)

and the modified action onGQ,d remains trivial. Then the GIT quotient of uGσ
Q,d =

GQ,d acting on u RepσQ,d = {(Ma,Mb) : Ma = −Mb} ∼= A1 with respect to χθ is
a point and the image of ufσ : u RepσQ,d //χθ uG

σ
Q,d −→ (Mθ−ss

Q,d )σ is the point
[1 : −1] ∈ (P1)σ. Hence, the fixed locus decomposes into two pieces

(3.7) (Mθ−ss
Q,d )σ = {[1 : 1], [1 : −1]} ∼= RepσQ,d //χθG

σ
Q,d

⊔
u RepσQ,d //χθ uG

σ
Q,d.

Let us now explain this decomposition in terms of the group cohomology of Σ.
First, the injectivity of fσ follows from Proposition 3.10 and the fact that Z/2Z
acts trivially on GQ,d, so that H1(Σ,∆(k)) ' {a ∈ k | a2 = 1k} = {±1k} and

H1(Σ,GQ,d(k)) ' {(s1, s2) ∈ Gm(k)×Gm(k) | s2
1 = s2

2 = 1k} ' {±1k} × {±1k}

and the map H1(Σ,∆(k)) −→ H1(Σ,GQ,d(k)) is conjugate to the group homomor-
phism a 7−→ (a, a), which is injective. There is only one fibre for the type map,
because H2(Σ,∆(k)) = 1 by Example 3.13. This fibre has two components, as

H1(Σ,GQ,d(k))/H1(Σ,∆(k)) =
(
{±1k} × {±1k}

)
/{±1}

= {(1, 1), (1,−1)},

which has two distinct elements if char(k) 6= 2; this gives the decomposition (3.7).

Example 3.24. Let Q be the quiver 1•
a
((•2

b

hh with covariant involution σ which

sends vertex 1 to 2, and sends arrow a to b. Then a dimension vector d = (d1, d2)
is σ-compatible if and only if d1 = d2 and similarly for θ. For

∑
i θidi = 0, we need

θ = (0, 0), if θ and d are both σ-compatible. Let d = (1, 1) and θ = (0, 0); then
(s1, s2) ∈ GQ,d = G2

m acts on (Ma,Mb) ∈ RepQ,d = A2 by

(s1, s2) · (Ma,Mb) = (s2Mas
−1
1 , s1Mbs

−1
2 )

and the affine GIT quotient of this action is

π : RepQ,d −→Mθ−ss
Q,d := RepQ,d //GQ,d = Spec k[XaXb] ∼= A1;

this restricts to a geometric quotient on the stable locus, which is the complement
to the union of the coordinate axes. The action of σ on GQ,d is given by (s1, s2) 7−→
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(s2, s1) and so Gσ
Q,d = ∆, and the σ-action on RepQ,d is given by (Ma,Mb) 7−→

(Mb,Ma). Hence, the induced action of σ onMθ−ss
Q,d

∼= A1 is trivial.
The action of Gσ

Q,d = ∆ on RepσQ,d
∼= A1 is also trivial and so the affine GIT

quotient of this action is the identity map on A1. We can interpret this as a moduli
space for the quotient quiver Q/σ, which is the Jordan quiver with one vertex and
a single loop.

Therefore, the morphism

fσ : RepσQ,d //G
σ
Q,d
∼= A1//Gm = A1 −→ (Mθ−ss

Q,d )σ = (A1)σ = A1

is given by z 7−→ z2, which is not injective when char(k) 6= 2. More concretely,
we can see this on the level of representations. The two representations M± =
(±1,±1) ∈ RepσQ,d correspond to the same stable GQ,d-orbit (for example, if g =

(−1, 1) ∈ GQ,d, then g ·M+ = M−). However, the Gσ
Q,d-orbits of these points are

distinct, as the Gσ
Q,d-action is trivial.

To see the failure of injectivity on the level of group cohomology, we use Propo-
sition 3.10 and the fact that Z/2Z acts on GQ,d = G2

m by swapping the two factors,
so that H1(Σ,∆(k)) ' {±1k} and

H1(Σ,GQ,d(k)) ' {(s1, s2) ∈ Gm(k)×Gm(k) | (s1s2, s2s1) = (1, 1)}
{( s1s2 ,

s2
s1

) : (s1, s2) ∈ Gm(k)×Gm(k)}
' {(1, 1)},

which shows that frsΣ is 2 : 1 when char(k) 6= 2.
Finally H2(Σ,∆(k)) = 1 by Example 3.13, and H1(Σ,GQ,d(k)) = {(1, 1)} so,

by Theorem 3.21, one has (Mθ−s
Q,d )σ = T −1([1]) = Im frsΣ , as we saw above.

3.4. Representation-theoretic interpretration. Let Repk(Q) denote the cat-
egory of k-representations of Q.

Definition 3.25. A covariant (resp. contravariant) automorphism σ of Q deter-
mines a covariant (resp. contravariant) functor σ : Repk(Q) −→ Repk(Q), which
on a k-representation W = ((Wv)v∈V , (ϕa)a∈A) is given by

σ(W ) =

{
((Wσ(v))v∈V , (ϕσ(a))a∈A) if σ is covariant,
((W ∗σ(v))v∈V , (ϕ

∗
σ(a))a∈A) if σ is contravariant.

Note that if W has dimension d = (dv)v∈V then σ(W ) has dimension σ(d) =
(dσ(v))v∈V . In order for subrepresentations of σ(W ) to correspond canonically and
bijectively to subrepresentations of W , we restrict ourselves to the covariant case
Σ ⊂ Aut+(Q) in this subsection.

Lemma 3.26. Let θ = (θv)v∈V be a Σ-compatible stability parameter. Then, for
all σ ∈ Σ, a k-representation W of Q is θ-(semi)stable if and only if σ(W ) is
θ-(semi)stable.

Proof. We note that for all k-representations W , we have, by Σ-compatibility of θ,

µθ(σ(W )) =

∑
v∈V θv dimWσ(v)∑
v∈V dimWσ(v)

=

∑
v∈V θσ−1(v) dimWv∑

v∈V dimWv
= µθ(W ).

As W ′ ⊂ W is a subrepresentation if and only if σ(W ′) ⊂ σ(W ) is a subrepresen-
tation, this equality proves the statement. �

Definition 3.27 (Equivariant representations). For Σ ⊂ Aut+(Q), let Repk(Q,Σ)
denote the category whose objects are pairs (W,γ) consisting of an object W of
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Repk(Q) and a family of isomorphisms (γσ : σ(W )
'−→ W )σ∈Σ such that, for all

(σ1, σ2) ∈ Σ×Σ, we have γσ1σ2
= γσ1

σ1(γσ2
), and whose morphisms are morphisms

of representations that commute to the (γσ)σ∈Σ.

There is a faithful forgetful functor Repk(Q,Σ) −→ Repk(Q), and a representation
of Q can only lie in the essential image of this functor, if its dimension vector is
Σ-compatible. More generally, given a 2-cocycle c ∈ Z2(Σ, k×), we define (Σ, c)-
equivariant representations of Q to be pairs (W,γ) as above, except that we now ask
for γσ1

σ1(γσ2
) = c(σ1, σ2)γσ1σ2

. This defines a category Repk(Q,Σ, c) analogously
to the case of c ≡ 1. The following result is then easily checked.

Lemma 3.28. If u = (uσ)σ∈Σ is a modifying family in the sense of Definition 3.14
and cu is the associated 2-cocycle, there is a bijection between isomorphism classes
of d-dimensional objects of Repk(Q,Σ, cu) and the set u RepΣ

Q,d(k)/ uG
Σ
Q,d(k).

The point of the above result is that there is a natural notion of θ-semistability in
Repk(Q,Σ, cu), that will eventually coincide with GIT semistability for the uGΣ

Q,d-
action on u RepΣ

Q,d (with respect to the character χθ|uGΣ
Q,d

) for Σ-compatible θ; see
Theorem 3.33.

Definition 3.29 ((Σ, θ)-(semi)stability). Let c ∈ Z2(Σ, k×). A (Σ, c)-equivariant
representation (W,γ) of Q is called (Σ, θ)-(semi)stable if, for all non-zero proper
subrepresentations (W ′, γ′) in Rep(Q,Σ, c), one has µθ(W ′)(≤)µθ(W ).

We henceforth fix a Σ-compatible stability parameter θ.

Proposition 3.30. Let (W,γ) be a (Σ, c)-equivariant representation of Q. Then
the following are equivalent:

(1) W is θ-semistable as a representation of Q.
(2) (W,γ) is (Σ, θ)-semistable as a (Σ, c)-equivariant representation of Q.

Proof. Evidently, (1) implies (2). For the converse, we proceed by contrapositive
using the uniqueness of the strictly contradicting semistability subrepresentation
(scss) U ⊂ W (cf. [14, Definition 2.3]). Let us assume that W is not θ-semistable.
Since subrepresentations of σ(W ) correspond bijectively to subrepresentations ofW
and θ is Σ-compatible, we have that σ(U) is the scss of σ(W ) for each σ ∈ Σ. As
γσ : σ(W ) −→W is an isomorphism, γσ(σ(U)) is the scss of W , thus γσ(σ(U)) =
U . In particular, (U, γ|U ) is a (Σ, c)-equivariant subrepresentation of (W,γ), which
can therefore not be (Σ, θ)-semistable. �

For (W,γ) ∈ Repk(Q,Σ, c), one can construct a unique Harder–Narasimhan filtra-
tion of (W,γ) with respect to (Σ, θ)-semistability. Proposition 3.30 then has the
following corollary.

Corollary 3.31. Let (W,γ) be a (Σ, c)-equivariant representation of Q. Then the
Harder–Narasimhan filtration of (W,γ) with respect to (Σ, θ)-semistability agrees
with the Harder–Narasimhan filtration of W with respect to θ-semistability.

Similarly to what we saw in [14, Remark 2.5], the statement of Proposition 3.30 is
no longer true if we replace semistability by stability.

Definition 3.32 ((Σ, θ)-regularly stable). A (Σ, c)-equivariant k-representation
(W,γ) is called (Σ, θ)-regularly stable if W is θ-stable as a k-representation.
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Theorem 3.33. Let u be a modifying family and let cu be the associated 2-cocycle.
Let M ∈ u RepΣ

Q,d and let (W,γ) be the corresponding (Σ, cu)-equivariant represen-
tation of Q. Then:

(1) M is (uG
Σ
Q,d, χθ)-semistable in the GIT sense if and only if (W,γ) is (Σ, θ)-

semistable as a (Σ, cu)-equivariant representation.
(2) M is (Σ, u, χθ)-regularly stable in the sense of Definition 3.9 if and only if

(W,γ) is (Σ, θ)-regularly stable in the sense of Definition 3.32.

Proof. We will prove (1) using the Hilbert–Mumford criterion; then (2) follows
along the same lines, in view of Definitions 3.9 and 3.32.

Given splittings Wv := kdv = W ′v ⊕W ′′v for all v ∈ V and integers r′ > r′′, we
can define a 1-parameter subgroup (1-PS) λ of GQ,d by

(3.8) λ(t) =

{(
tr
′
IdW ′v 0

0 tr
′′
IdW ′′v

)}
v∈V

and we assume that limt→0 λ(t) ·M exists, which is equivalent to the statement that
the subspacesW ′v determine a subrepresentationM ′ ofM by [19, §3]. Moreover, the
inequality µθ(M ′) ≤ µθ(M) is equivalent to the inequality 〈χθ, λ〉 ≥ 0, where 〈−,−〉
denotes the natural pairing between characters and co-characters of GQ,d. If we
view uσ,v ∈ GLdv (k) as an isomorphism uσ,v : Wσ(v) −→Wv, then we see that the
above 1-PS λ factors through uG

Σ
Q,d if and only if uσ,v(W ′σ(v)) = W ′v for all σ ∈ Σ

and v ∈ V ; that is, if and only if M ′ is a (Σ, cu)-equivariant subrepresentation,
where the equivariant structure is given by the isomorphisms uσ. By the Hilbert–
Mumford criterion, M is (uG

Σ
Q,d, χθ)-semistable if and only if for all 1-PSs λ of

uG
Σ
Q,d for which limt→0 λ(t) ·M exists, we have 〈χθ, λ〉 ≥ 0, and by induction on

the length of the filtration it suffices to assume our 1-PSs are of the form in (3.8).
By the above equivalences, the (uG

Σ
Q,d, χθ)-semistability of M is equivalent to M

being (Σ, θ)-semistable as a (Σ, cu)-equivariant representation. �

We thus obtain a modular interpretation of the GIT quotients forming the domains
of the morphisms ufΣ and uf

rs
Σ introduced in Theorem 3.17. The proof is similar

to the proof of Theorem 2.3.

Corollary 3.34. The GIT quotient

M(Σ,u,θ)−ss
Q,d := u RepΣ

Q,d //χθ uG
Σ
Q,d

(resp.M(Σ,u,θ)−rs
Q,d := (u RepΣ

Q,d)
χθ−rs/ uG

Σ
Q,d)

is a coarse moduli space for (Σ, θ)-semistable (resp. (Σ, θ)-regularly stable) (Σ, cu)-
equivariant d-dimensional k-representations of Q.

The closed points ofM(Σ,u,θ)−rs
Q,d are isomorphism classes of (Σ, θ)-regularly stable

(Σ, cu)-equivariant d-dimensional k-representations of Q and, as in the proof of The-
orem 2.3, we can interpret the closed points ofM(Σ,u,θ)−ss

Q,d as S-equivalence classes
of (Σ, θ)-semistable (Σ, cu)-equivariant d-dimensional representations of Q by not-
ing that every (Σ, θ)-semistable (Σ, c)-equivariant representation has a Jordan-
Hölder filtration by (Σ, c)-equivariant subrepresentations whose successive quo-
tients are (Σ, θ)-stable; this Jordan–Hölder filtration is not necessarily unique but
the associated graded object is and we say that two (Σ, θ)-semistable (Σ, cu)-
equivariant representations are S-equivalent if the associated graded objects for
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their respective Jordan–Hölder filtrations are isomorphic as (Σ, cu)-equivariant rep-
resentations; the desired modular interpretation of closed points of the GIT quotient
u RepΣ

Q,d //χθ uG
Σ
Q,d then follows by the same arguments as in Theorem 2.3, using

again the results of [19] to relate S-equivalence in the representation-theoretic sense
to equivalence of semistable orbits in the GIT setting.

As a consequence, we can revisit Theorem 1.1 as follows. For the Σ-action on
Mθ−s

Q,d , there is a decomposition

(Mθ−s
Q,d )Σ =

⊔
[cu]∈Im T

[b]∈H1
u(Σ,GQ,d(k))/H1(Σ,∆(k))

uf
rs
Σ

(
M(Σ,ub,θ)−rs

Q,d

)

where ub is a modifying family determined by [b] and u. If H1(Σ,∆(k)) = 1, then

(Mθ−s
Q,d )Σ ∼=

⊔
[cu]∈Im T

[b]∈H1
u(Σ,GQ,d(k))/H1(Σ,∆(k))

M(Σ,ub,θ)−rs
Q,d ,

as one can deduce that the morphisms ubf
rs
Σ are all closed immersions, by using

the fact that H1(Σ,∆(k)) = 1 and Theorem 3.17.

3.5. Actions by arbitrary groups of quiver automorphisms. We now con-
sider a subgroup Σ ⊂ Aut(Q) that contains at least one contravariant automor-
phism, as otherwise Σ ⊂ Aut+(Q) and this is studied above. By restricting the
homomorphism sign : Aut(Q) −→ {±1} to Σ, we obtain a short exact sequence

1 −→ Σ+ −→ Σ −→ {±1} −→ 1,

where Σ+ ⊂ Aut+(Q).

Definition 3.35. For Σ ⊂ Aut(Q), we make the following definitions.
(1) A dimension vector d = (dv)v∈V is Σ-compatible if σ(d) = d for all σ ∈ Σ.
(2) A stability parameter θ = (θv)v∈V is Σ-compatible if σ(θ) = sign(σ)θ for

all σ ∈ Σ.

For a Σ-compatible dimension vector d, we can construct induced actions of Σ
on RepQ,d and GQ,d as follows: for σ ∈ Σ, we define automorphisms

Φσ : RepQ,d −→ RepQ,d, (Ma)a∈A 7−→
{

(Mσ(a))a∈A if sign(σ) = 1,
(tMσ(a))a∈A if sign(σ) = −1,

and

Ψσ : GQ,d −→ GQ,d, (gv)v∈V 7−→
{

(gσ(v))v∈V if sign(σ) = 1,
(tg−1

σ(v))v∈V if sign(σ) = −1.

These Σ-actions are compatible with the GQ,d-action on RepQ,d in the sense that

(3.9) Φσ(g ·M) = Ψσ(g) · Φσ(M).

Let Q/Σ+ = (V/Σ+, A/Σ+, h̃, t̃) denote the quotient quiver for the action of
Σ+ (cf. Definition 3.4). By assumption, there is a contravariant automorphism
σ ∈ Σ. It follows that this contravariant automorphism σ induces a contravariant
involution σ̃ of Q/Σ+ such that Σ/Σ+ ∼=< σ̃ >, where

σ̃(Σ+ · v) := Σ+ · σ(v) and σ̃(Σ+ · a) := Σ+ · σ(a).
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Moreover, the induced dimension vector d̃ on Q/Σ+ is σ̃-compatible. Hence, we
obtain the following description of the Σ-fixed loci:

RepΣ
Q,d = (RepΣ+

Q,d)
Σ/Σ+

= Repσ̃
Q/Σ+,d̃

and GΣ
Q,d = (GΣ+

Q,d)
Σ/Σ+

= Gσ̃
Q/Σ+,d̃

.

Lemma 3.36. Let d and θ be Σ-compatible. Then the following statements hold.

(1) The Σ-action on RepQ,d preserves the GIT (semi)stable sets Rep
χθ−(s)s
Q,d .

(2) There is an induced algebraic Σ-action on the moduli spacesMθ−(gs)s
Q,d .

Proof. The proof of first statement follows from Proposition 3.3 for covariant au-
tomorphism groups and [27, Lemma 2.1]. The proof of the second statement then
follows from the universal property of the GIT quotient. �

Henceforth, we assume that d and θ are both Σ-compatible, so there is an induced
Σ-action onMθ−ss

Q,d . If we restrict to the Σ+-action, then there is a morphism

fΣ+ : RepΣ+

Q,d //χθG
Σ+

Q,d −→ (Mθ−ss
Q,d )Σ+

by Proposition 3.8, and the domain of this morphism is isomorphic to the moduli
space Mθ̃−ss

Q/Σ+,d̃
by Corollary 3.6. Moreover, there is an induced action of the

contravariant involution σ̃ of Q/Σ+ on the domain of fΣ+ , as both d̃ and θ̃ are
σ̃-compatible. Hence, by Proposition 3.38 below, there is a morphism

fσ̃ : Repσ̃
Q/Σ+,d̃

//χθ̃G
σ̃
Q/Σ+,d̃

−→ (M θ̃−ss
Q/Σ+,d̃

)σ

and so we can define fΣ := fΣ+ ◦ fσ̃ and obtain the following result.

Proposition 3.37. For Σ ⊂ Aut(Q), there is a morphism

fΣ : RepΣ
Q,d //χθG

Σ
Q,d −→ (Mθ−ss

Q,d )Σ.

Finally, let us prove the following result for contravariant involutions.

Proposition 3.38. Let σ be a contravariant involution of a quiver Q and suppose
d and θ are σ-compatible. Then Gσ

Q,d is a reductive group and the following are
equivalent for M ∈ RepσQ,d.

(1) M is GIT semistable for the GQ,d-action on RepQ,d with respect to the
character χθ : GQ,d −→ Gm.

(2) M is GIT semistable for the Gσ
Q,d-action on RepσQ,d with respect to the

restricted character χθ : Gσ
Q,d −→ Gm.

Furthermore, there is an induced morphism fσ : RepσQ,d //χθG
σ
Q,d −→ (Mθ−ss

Q,d )σ.

Proof. For the statement that Gσ
Q,d is reductive, see [27, §2.2], where it is proved

that Gσ
Q,d is isomorphic to a product of orthogonal and general linear groups. The

proof of these equivalences follows by [27, Proposition 2.2] (or by appropriately
adapting the argument in Lemma 3.7), and the construction of fσ follows as in
Proposition 3.8. �

Analogously to Proposition 3.12, one can also prove that for Σ ⊂ Aut(Q), there
is a type map

T :Mθ−s
Q,d (k)Σ −→ H2(Σ,∆(k))
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and define modifying families in an analogous way to Definition 3.14 in order to
produce a decomposition of the Σ-fixed locus.

For a contravariant involution σ of Q, we can study the morphism fσ, or more
precisely, its restriction to the regularly stable locus frsσ :M(σ,θ)−rs

Q,d −→ (Mθ−s
Q,d )σ,

by using the group cohomology of Z/2Z ∼=<σ>. One can prove a straightforward
generalisation of Proposition 3.10 for the fibres of frsσ ; thus, fσ is injective, as
H1(Z/2Z, k×) = 1 (we recall that σ now acts on k× by inversion). One can also
define modifying families, which are now given by a single element uσ ∈ GQ,d(k)
such that uσΨσ(uσ) ∈ ∆(k), and use these families to modify the actions Φ and
Ψ, without changing the action on Mθ−s

Q,d ; as Z/2Z acts on k× by inversion, we
have H2(Z/2Z, k×) = {±1}, so there are only two possible cohomology classes for
the 2-cocycle associated to a modifying family. This appears in [27] in different
language, coming from physics: the duality structures in loc. cit. correspond to
our modifying families. One can also provide a decomposition of (Mθ−s

Q,d )σ by
varying these modifying families using the cohomology of Z/2Z. One can give
a representation-theoretic description of this decomposition as in §3.4, by defining
notions of (σ, θ)-(semi)stability for (σ, cu)-equivariant representations. Young refers
to such equivariant representations as self-dual representation (cf. [27, Theorem 2.7]
for an analogue of Theorem 3.33 in the contravariant setting).

One can thus provide a decomposition of (Mθ−s
Q,d )Σ for an arbitrary subgroup

Σ ⊂ Aut(Q) using the group cohomology of Σ; however, we do not go through the
details, as it is analogous to the case where Σ ⊂ Aut+(Q).

4. Branes

Starting from a quiver Q, moduli spaces of representations of the doubled quiver
Q (satisfying some relations) have a natural algebraic symplectic structure and
we show that automorphisms of Q provide natural examples of Lagrangian and
symplectic subvarieties. Over the complex numbers, these moduli spaces are hy-
perkähler when they are smooth and we can describe the fixed locus in the language
of branes [16] as follows.

Definition 4.1. A brane in a hyperkähler manifold (M, g, I, J,K, ωI , ωJ , ωK) is a
submanifold which is either holomorphic or Lagrangian with respect to each of the
three Kähler structures on M . A brane is called of type A (respectively B) with
respect to a given Kähler structure if it is Lagrangian (respectively holomorphic)
for this Kähler structure. The type of the brane is encoded in a triple TITJTK ,
where TI = A or B is the type for the Kähler structure (g, I) and so on.

As K = IJ , there are 4 possible types of branes: BBB, BAA, ABA and AAB.
We will show that we can construct each type of brane as a fixed locus of an
involution. The study of branes in Nakajima quiver varieties has already been
initiated in [6], where the authors use involutions such as complex conjugation,
multiplication by −1 and transposition, to construct different branes. In the present
section, we construct new examples coming from automorphisms of the quiver.

4.1. The algebraic case. We assume throughout that k is a field of characteristic
different from 2.

Definition 4.2 (Doubled quiver). For a quiver Q = (V,A, h, t), the doubled quiver
is Q = (V,A, h, t) where A = A ∪A∗ for A∗ := {a∗ : h(a) −→ t(a)}a∈A.
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The central motivation for considering the doubled quiver is that

RepQ,d = RepQ,d×Rep∗Q,d
∼= T ∗RepQ,d

is an algebraic symplectic variety, with the Liouville symplectic form ω. Explicitly,
if M = (Ma,Ma∗)a∈A and N = (Na, Na∗)a∈A are points in RepQ,d, then

(4.1) ω(M,N) =
∑
a∈A

Tr(MaNa∗ −Ma∗Na).

The action of GQ,d = GQ,d on RepQ,d is symplectic and there is an algebraic
moment map µ : RepQ,d −→ g∗Q,d, where gQ,d is the Lie algebra of GQ,d; explicitly,
for M ∈ RepQ,d and B ∈ gQ,d we have

(4.2) µ(M) ·B =
∑
a∈A

Tr(Ma∗(B
#
M )a) =

∑
a∈A

Tr(Ma∗(Bh(a)Ma −MaBt(a)))

where B#
M = (Bh(a)Ma−MaBt(a))a∈A is the infinitesimal action of B on (Ma)a∈A.

The moment map is a GQ,d-equivariant morphism that satisfies the infinitesimal
lifting property dMµ(η) · B = ω(B#

M , η). By using the standard non-degenerate
quadratic form (B,C) 7−→ Tr(tBC) on the Lie algebra of each general linear group,
we can naturally identify gQ,d ∼= g∗Q,d and view the moment map as a morphism
µ : RepQ,d −→ gQ,d given by µ(M) =

∑
a∈A[Ma,Ma∗ ].

Definition 4.3. Let χ be a character of GQ,d and let η ∈ gQ,d be a coadjoint fixed
point; then GQ,d acts on µ−1(η) by the equivariance of the moment map. The
algebraic symplectic reduction at (χ, η) is the GIT quotient µ−1(η)//χGQ,d.

If the GIT semistable and stable locus on µ−1(η) with respect to χ agree, then
µ−1(η)//χGQ,d is an algebraic symplectic orbifold, whose form is induced by the
Liouville form on T ∗Repd(Q); this is an algebraic version of the Marsden–Weinstein
Theorem [22] (for example, see [10]). If, moreover, G acts freely on the χ-semistable
locus, then the algebraic symplectic reduction is smooth. For χ = χθ, we have a
closed immersion

µ−1(η)//χθGQ,d ↪→Mθ−ss
Q,d

.

Moreover, for a tuple of complex numbers (ηv)v∈V , which determines an adjoint
fixed point η = (ηvIddv )v∈V ∈ g, we have that µ−1(η)//χθGQ,d is the moduli space
of θ-semistable d-dimensional representations of Q satisfying the relations

Rη =
{ ∑
a | t(a)=v

MaMa∗ −
∑

a |h(a)=v

Ma∗Ma = ηvIdv ∀v ∈ V
}
.

We now describe the fixed loci of quiver automorphism groups acting on this
algebraic symplectic reduction in terms of its symplectic geometry.

Definition 4.4. We let Aut∗(Q) denote the subgroup of Aut(Q) consisting of
automorphisms σ satisfying the conditions:

(1) For all a ∈ A, σ(a∗) = σ(a)∗.
(2) Either σ(A) ⊂ A or σ(A) ⊂ A∗.

An automorphism σ ∈ Aut∗(Q) is said to be Q-symplectic if σ(A) ⊂ A, and Q-
anti-symplectic if σ(A) ⊂ A∗.
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Every σ ∈ Aut(Q) can be extended to a Q-symplectic automorphism σ ∈ Aut∗(Q)
by σ(a∗) := σ(a)∗. There is a canonical contravariant involution σ ∈ Aut∗(Q)
which fixes all vertices and is given by σ(a) := a∗ on a ∈ A; it is Q-anti-symplectic.
Note that Condition (1) in Definition 4.4 does not imply Condition (2): consider
for instance

Q = • a //•
b
%%•cee

and the contravariant involution σ ∈ Aut∗(Q) which fixes all vertices and sends
σ(a) = a∗, σ(b) = c and σ(b∗) = c∗.

There is a group morphism s : Aut∗(Q) −→ {±1} sending σ ∈ Aut∗(Q) to −1 if
and only if σ is Q-anti-symplectic.

Proposition 4.5. Let σ ∈ Aut∗(Q) and let d be a σ-compatible dimension vector.
Then σ∗ω = s(σ)ω; that is, if σ satisfies Property (1) of Definition 4.4, then
Property (2) implies that σ is either symplectic or anti-symplectic in the usual sense.
Moreover, forM ∈ RepQ,d and B ∈ gQ,d, we have µ(σ(M))·σ(B) = s(σ)(µ(M)·B).

Proof. As d is σ-compatible, there is an induced action of σ on RepQ,d. For M ∈
RepQ,d and let Y,Z ∈ TM RepQ,d

∼= RepQ,d, we have dMσ(Y ) = (Yσ(a))a∈A if σ
is covariant, and dMσ(Y ) = (tYσ(a))a∈A if σ is contravariant. As the calculations
are similar in the covariant and contravariant case, we only give the details for a
covariant automorphism σ, which is by assumption either Q-symplectic or Q-anti-
symplectic. As (σ∗ω)M (Y, Z) = ωσ(M)(dMσ(Y ), dMσ(Z)), we have

(σ∗ω)M (Y,Z) =
∑
a∈A

Tr(Yσ(a)Zσ(a∗) − Yσ(a∗)Zσ(a))

=
∑
a∈A |

b:=σ(a)∈A

Tr(YbZb∗ − Yb∗Zb)−
∑
a∈A |

c:=σ(a)∗∈A

Tr(YcZc∗ − Yc∗Zc)

= s(σ)ωM (Y,Z)

where in the second equality we use the fact that σ(a∗) = σ(a)∗.
The derivative of the automorphism σ on GQ,d induces an automorphism

σ : gQ,d −→ gQ,d, (Bv)v∈V 7−→
{

(Bσ(v))v∈V if σ is covariant,
(−tBσ(v))v∈V if σ is contravariant.

Thus, for covariant σ and for M ∈ RepQ,d and B ∈ gQ,d, we have

µ(σ(M)) · σ(B) =
∑
a∈A

Tr(Mσ(a)Mσ(a∗)Bσ(h(a)) −Bσ(t(a))Mσ(a∗)Mσ(a))

=
∑
a∈A |

b=σ(a)∈A

Tr(MbMb∗Bh(b) −Bt(b)Mb∗Mb)

−
∑
a∈A |

c=σ(a)∗∈A

Tr(McMc∗Bh(b) −Bt(b)Mc∗Mc)

= s(σ)(µ(M) ·B)

where in the second equality we use the fact that σ(a∗) = σ(a)∗. �
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Corollary 4.6. Let σ ∈ Aut∗(Q) be an involution and suppose that the dimension
vector d and stability parameter θ are σ-compatible and that η ∈ g∗Q,d is coadjoint
fixed and satisfies σ(η) = s(σ)η. Then σ preserves µ−1(η) and there is an induced
automorphism σ : µ−1(η)//χθGQ,d −→ µ−1(η)//χθGQ,d.

We can now describe the geometry of the fixed locus of an involution.

Proposition 4.7. Let σ ∈ Aut∗(Q) be an involution. If σ is Q-anti-symplectic,
then Repσ

Q,d
∼= RepQ,d 6= ∅ and this fixed locus is a Lagrangian subvariety of RepQ,d.

If σ is Q-symplectic, then Repσ
Q,d

is a symplectic subvariety of RepQ,d. When
the symplectic reduction µ−1(η)//χθGQ,d is a smooth algebraic variety, the fixed
locus of the induced involution is therefore Lagrangian if σ is Q-anti-symplectic
and symplectic if σ is Q-symplectic.

Proof. If σ is a Q-anti-symplectic involution, no arrows are fixed by σ and A =
A t A∗ = A t σ(A). Hence Repσ

Q,d
∼= RepQ,d (in particular, this has half the

dimension of RepQ,d). The remaining statements follow from general properties
of anti-symplectic and symplectic involutions of a non-singular symplectic variety
(X,ω) over a field of characteristic 6= 2: if σ : X −→ X is of order 2, the tangent
space at x is TxX = ker(Txσ − Id) ⊕ ker(Txσ + Id); these two subspaces are La-
grangian if σ∗ω = −ω and each other’s symplectic complement if σ∗ω = ω. Note
that one of these relations indeed holds here, in view of Proposition 4.5 �

4.2. The hyperkähler case. Over the complex numbers, the algebraic symplectic
reduction has a hyperkähler structure, as it can be interpreted as a hyperkähler re-
duction via the Kempf–Ness theorem. In fact, we can generalise the above situation
as follows. Let X = AnC be a complex affine space with a linear action of a complex
reductive group G. We can assume without loss of generality that the maximal
compact subgroup U of G acts unitarily (by rechoosing coordinates on X if neces-
sary). The standard Hermitian form H : X × X −→ C given by (z, w) 7−→ ztw,
where we consider w and z as row vectors, is then U -invariant. In particular, X is
a Kähler manifold with complex structure given by multiplication by i ∈ C, metric
g = ReH and symplectic form ωX = −ImH. The action of U on X is symplec-
tic for ωX with moment map µX : V −→ u∗ given by µR(z) · B = i

2H(Bz, z)
where z ∈ X and B ∈ u∗. The cotangent bundle is hyperkähler, as we can iden-
tify T ∗X ∼= X × X∗ ∼= Hn by (z, α) 7−→ (z − αj) and inherit the hyperkähler
structure from the quaternionic vector space Hn. Let I,J and K denote the com-
plex structures on T ∗X obtained from the complex structures on Hn given by left
multiplication by i, j, k. We consider the associated symplectic forms

ωI(−,−) = g(I−,−), ωJ(−,−) = g(J−,−) and ωK(−,−) = g(K−,−).

We often write ωR = ωI and ωC = ωJ + iωK , which is the Liouville algebraic
symplectic form. This linear G-action on X lifts to a linear action of G (and
U) on T ∗X; moreover, as U acts unitarily on X, the U -action is symplectic with
respect to ωR and the G-action is symplectic with respect to ωC. The associated
moment maps µR : T ∗X −→ u∗ and µC : T ∗X −→ g∗ are given by µR(z, α) · B =
(µX(z)− µX(α)) ·B and µC(z, α) ·A = α(A#

z ), where A ∈ g and (z, α) ∈ T ∗X and
A#
z denotes the infinitesimal action of A on z. We often write µHK := (µR, µC),

which is a hyperkähler moment map for the U -action on T ∗X. Let χ ∈ u and η ∈ g
be coadjoint fixed, then U acts on the level set µ−1

HK(χ, η) := µ−1
R (χ) ∩ µ−1

C (η) and
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the hyperkähler reduction is the topological quotient µ−1
HK(χ, η)/U , which inherits

an orbifold hyperkähler structure if U acts with finite stabilisers on µ−1
HK(χ, η). By

the Kempf-Ness theorem [18], there is a homeomorphism between the hyperkähler
reduction and algebraic symplectic reduction: µ−1

HK(χ, η)/U ∼= µ−1
C (η)//χG, where

we consider χ as a character of G by complexifying and exponentiating.
For a quiver Q, we can apply the above picture to G = GQ,d acting on X =

RepQ,d. Then U = UQ,d := Πv∈VU(dv) and we take the Hermitian form on RepQ,d
given by H(M,N) =

∑
a∈A Tr(Ma

tNa). The hyperkähler metric g on RepQ,d is
given by

(4.3) g(X,Y ) = Re
(∑
a∈A

Tr(Xa
tY a)

)
;

therefore, ωR = ωI is given by ωR(X,Y ) = Im
(∑

a∈A Tr(tXaYa)
)
and ωC = ωJ +

iωK is the Liouville algebraic symplectic form ω described in (4.1). Moreover,
µC = µ : RepQ,d −→ g∗Q,d is the algebraic moment map given by (4.2) and µR :
RepQ,d −→ u∗Q,d can be explicitly described as

µR(M) ·B =
i

2

∑
a∈A

Tr(Bh(a)Ma
tMa −Bt(a)

tMaMa).

If we use the standard identification uQ,d ∼= u∗Q,d, then we can consider the real
moment map as a map µR : RepQ,d −→ uQ,d given by µR(M) = i

2

∑
a∈A[Ma,

tMa].
If χθ-semistability coincides with χθ-stability on µ−1(η), then we obtain an orbifold
hyperkähler structure on the algebraic variety µ−1(η)//χθGQ,d.

We note that Nakajima quiver varieties can also be constructed in this manner.
The effect of complex conjugation on Nakajima quiver varieties is studied in [6],
where they show the fixed locus in the Nakajima quiver variety is an ABA-brane;
see Corollary 3.10 in loc. cit. We will study the geometry of the fixed locus of an
automorphism σ ∈ Aut∗(Q) that is either Q-symplectic or Q-anti-symplectic.

Lemma 4.8. Let σ ∈ Aut∗(Q) and let d be a σ-compatible dimension vector. Then
the automorphism σ of RepQ,d has the following properties.

(1) σ is holomorphic with respect to I and symplectic with respect to ωI .
(2) If σ is Q-symplectic, then σ is holomorphic with respect to J and K and

symplectic with respect to ωJ and ωK .
(3) If σ is Q-anti-symplectic, then σ is anti-holomorphic with respect to J and

K and anti-symplectic with respect to ωJ and ωK .

Proof. As complex conjugation and transposition commute, σ is I-holomorphic.
Since the hyperkähler metric g is preserved by σ (cf. the explicit form of the metric
given in (4.3)), it follows that σ∗ωI = ωI . If M = (Ma,Ma∗)a∈A ∈ RepQ,d, then
J · (Ma,Ma∗)a∈A = (tMa∗ ,−tMa)a∈A. Suppose that σ is contravariant; then

σ(J · (Ma,Ma∗)) = σ(tMa∗ ,−tMa) = s(σ)(Mσ(a∗),−Mσ(a))

(where s(σ) = ±1 depending on whether σ is Q-symplectic or Q-anti-symplectic)
and J · σ(Ma,Ma∗) = J · (tMσ(a),

tMσ(a∗)) = (−Mσ(a∗),Mσ(a)), which gives the
compatibility of J and σ. Since K = IJ , we can determine the compatibility of
K with σ from that of I and J . The final statements about the compatibility of
σ with ωJ and ωK follow from Proposition 4.5. A very similar computation shows
the result also holds when σ is covariant. �
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Assumption 4.9. Given a subgroup Σ ⊂ Aut∗(Q), we shall assume that the
dimension vector d and the stability parameter θ are Σ-compatible. Let η ∈ gQ,d
be a coadjoint fixed element such that σ(η) = s(σ)η for all σ ∈ Σ. Then there
is an induced Σ-action on µ−1(η)//χθGQ,d by Corollary 4.6. We assume that the
θ-semistable locus in µ−1(η) is non-empty and that GQ,d acts freely on this θ-
semistable locus, so that the quotient µ−1(η)//χθGQ,d is smooth and has a natural
hyperkähler structure.

Theorem 4.10. Under Assumption 4.9 for a subgroup Σ ⊂ Aut∗(Q) consisting
of Q-symplectic transformations, the Σ-fixed locus in µ−1(η)//χθGQ,d is hyperholo-
morphic (or, in the language of branes, this fixed locus is a BBB-brane).

Proof. If σ is Q-symplectic, then the automorphism σ on RepQ,d is holomorphic
with respect to all three complex structures by Lemma 4.8, so the same is true for
the induced automorphism on the hyperkähler reduction with respect to its induced
complex structures. Therefore, the fixed locus is a holomorphic submanifold with
respect to all three complex structures. �

Theorem 4.11. Under Assumption 4.9 for a Q-anti-symplectic involution σ, the
fixed locus of σ acting on µ−1(η)//χθGQ,d is a BAA-brane.

Proof. This is a direct consequence of Lemma 4.8 and the construction of the three
symplectic structures on the hyperkähler quotient µ−1

HK(χθ, η)/UQ,d. �

If we apply Theorem 4.11 to the anti-symplectic contravariant involution σ that
fixes all vertices and on arrows a is given by σ(a) = a∗, then the σ-fixed locus
(µ−1(0)//χθGQ,d)

σ has as a connected component the subvariety

Repσ
Q,d

//χθG
σ
Q,d = RepQ,d //χθGQ,d =Mθ−ss

Q,d ,

which is known to be Lagrangian in µ−1(0)//χθGQ,d (cf. [23, Proposition 2.4]).
Let τ ∈ GalR denote complex conjugation; then we can consider compositions

γ := τ ◦σ, where σ ∈ Aut∗(Q) is a Q-(anti)-symplectic automorphism and describe
the geometry of the associated fixed loci in the language of branes. We focus on
the case where σ is also involutive, as this is our main source of applications.

Corollary 4.12. If Assumption 4.9 holds for an involution σ which commutes
with τ , then, when non-empty, the fixed locus of the involution σ ◦ τ acting on the
hyperkähler manifold µ−1(η)//χθGQ,d is

(1) an ABA-brane, if σ is Q-symplectic (here we allow σ = Id);
(2) an AAB-brane, if σ is Q-anti-symplectic.

In particular, we see that all four types of branes (BBB, BAA, ABA and AAB)
can be constructed as the fixed locus of an involution. We also note that since τ
and all Q-(anti)-symplectic transformations of Q induce isometries of RepQ,d by
Lemma 4.8, the fixed loci of the various involutions we have considered are also
totally geodesic submanifolds of the hyperkähler quotient µ−1(η)//χθGQ,d.

5. Further applications and examples

In this section, we calculate some fixed loci for quiver group actions on the
Hilbert scheme Hilbn(A2) and polygon spaces, which can both be realised as quiver
moduli spaces.
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5.1. Hilbert scheme of points in the plane. The Hilbert scheme Hilbn(A2) of
n points in the affine plane over an algebraically closed field k can be realised as a
Nakajima quiver variety associated to the Jordan quiver. More precisely, let Q be
the double of the framed Jordan quiver Q, i.e. Q is the following quiver:

0•

y

ZZ

x

��

j

44 •∞
iuu

where the vertex at infinity is the framing vertex. For d = (n, 1), we have

RepQ,d = Matn×n ×Matn×n ×Matn×1 ×Mat1×n

and for the action of GLn ⊂ GQ,d (that is, one ignores the group Gm corresponding
to the framing vertex), we have a moment map µ : RepQ,d −→ gln given by

µ(Mx,My,Mi,Mj) = [Mx,My] +Mi ⊗Mj ,

where Mi is a column vector and Mj a row vector (viewed as a linear form). The
Hilbert scheme is a GLn-quotient of the level set of the moment map at zero (other
level sets give rise to Calogero-Moser spaces). By [10, Section 5.6], the affine GIT
quotient of the GLn-action on µ−1(0) with respect to the trivial stability parameter
is isomorphic to the n-th symmetric power of A2, i.e. µ−1(0)//GLn ∼= Symn(A2),
and the GIT quotient with respect to the character det : GLn −→ Gm (that
corresponds to the stability parameter θ0 = −1) is the Hilbert scheme of n-points
on the affine plane, i.e. µ−1(0)//detGLn ∼= Hilbn(A2), which is a geometric quotient
of µ−1(0)det−ss = µ−1(0)det−s, and moreover, the natural morphism from the
former to the latter is the Hilbert-Chow morphism, which is an algebraic symplectic
resolution of singularities. More precisely,M := (Mx,My,Mi,Mj) ∈ µ−1(0) is GIT
stable for the character det if [Mx,My] = 0, and Mj = 0, and Mi is a cyclic vector
for Mx and My. In this case, the corresponding point in the Hilbert scheme is
given by the ideal JM := {f(x, y) ∈ k[x, y] : f(Mx,My)Mi = 0} ⊂ k[x, y], which
has codimension n, as Mi is cyclic. We note that the ideal JM is constant on the
GLn-orbit of M .

Note that the present setting is slightly different from the one in Section 4, insofar
as one does not consider the action of the full GQ,d = GLn × Gm on RepQ,d, but
only that of the subgroup GLn ⊂ GQ,d (the automorphism group of the unframed
quiver) and consequently, there is no global stabiliser group ∆. In particular, GLn
acts freely on µ−1(0)det−s. For our results, this simply means that one should
replace ∆ with the trivial group and GQ,d with GLn.

Let us study the automorphism group of Q. For reasons of valency, every au-
tomorphism of Q must fix each vertex. We have that Aut(Q) = Z/2Z × Z/2Z,
where the non-trivial automorphisms are σ : x 7−→ y leaving i and j fixed, then
σ′ : i 7−→ j leaving x and y fixed and finally σ ◦ σ′, where σ is covariant, and σ′,
σ ◦ σ′ are contravariant. The dimension vector d = (n, 1) is Aut(Q)-compatible
and every stability parameter is compatible with the covariant automorphisms, but
only the trivial notion of stability is compatible with the contravariant involutions
(so there is an induced action of the contravariant involutions on Symn(A2), but
not on Hilbn(A2)). So let us focus on the covariant involution σ; then Repσ

Q,d
=

{M = (Mx,My,Mi,Mj) : Mx = My}. Suppose that M ∈ µ−1(0)det−s is σ-fixed;
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thenM = (Mx,Mx,Mi, 0) whereMi is a cyclic vector forMx. In this case, the cor-
responding ideal JM ⊂ k[x, y] contains the ideal I = (x− y), and so we have closed
embeddings Spec k[x, y]/JM ↪→ Spec k[x, y]/I ↪→ Spec k[x, y] = A2, where the final
morphism can be viewed as the diagonal embedding D : A1 −→ A2. Hence, the n
points corresponding to the ideal JM all lie on the diagonal line D(A1) ⊂ A2. This
determines a map (µ−1(0)det−s)σ −→ Hilbn(D(A1)) ∼= Symn(A1) ∼= An. As σ acts
trivially on all vertices, we have that GLσn = GLn.

Lemma 5.1. There is an isomorphism (µ−1(0)det−s)σ/GLn ∼= Hilbn(D(A1)).

Proof. Since the map (µ−1(0)det−s)σ −→ Hilbn(D(A1)) described above is GLn-
invariant, it descends to a morphism (µ−1(0)det−s)σ/GLn −→ Hilbn(D(A1)) by
the universal property of the GIT quotient. To show this is an isomorphism, we
need to describe the inverse map. A codimension n ideal J ⊂ k[x, y]/I ∼= k[x]
determines a n-dimensional k-vector space V = k[x]/J , and multiplication by x
induces an endomorphism Mx : V −→ V and the inclusion of the multiplicative
unit induces a map Mi : k −→ V . Furthermore, the image of Mi under repeated
applications of Mx cyclically generates V . Hence, J = JM for the σ-fixed stable
point M = (ϕ ◦Mx ◦ ϕ−1, ϕ ◦Mx ◦ ϕ−1, ϕ ◦Mi, 0), where ϕ : V −→ kn is a chosen
isomorphism (we note that different choices of ϕ correspond to different points in
the GLn-orbit of M). �

By Proposition 3.8 and Lemma 5.1, there is a map fσ : Hilbn(D(A1)) −→
Hilbn(A2)σ, which is injective by Proposition 3.11, as σ fixes all vertices of Q. Let
us decompose Hilbn(A2)σ by using the type map. First, we note that there is only
one fibre of the type map, as H2(Z/2Z, {1}) = 1. By Theorem 3.21, the trivial
fibre of the type map has a decomposition indexed by H1(Z/2Z,GLn(k))/{1},
where the Z/2Z-action on GLn(k) is trivial. We note that H1(Z/2Z,GLn(k)) is in
bijection with the set of conjugacy classes of n×n-matrices of order 2. The minimum
polynomial of such a matrix divides x2−1, and so this matrix is diagonalisable with
eigenvalues equal to ±1. Therefore, H1(Z/2Z,GLn(k)) ∼= {u0, . . . , un}, where ur
is the diagonal n×n-matrix with −1 appearing r times on the diagonal followed by
1 appearing n− r times. The element u0 = In corresponds to the trivial modifying
family, which does not alter the action. For r > 0, we have

ur Repσ
Q,d

= {M = (Mx,My,Mi,Mj) : Mx = My, urMi = Mi and Mjur = Mj},

thus, (Mi)l = 0 = (Mj)l for 1 ≤ l ≤ r. In particular, for un = −In, the intersection
of this fixed locus with µ−1(0)det−s is trivial, as for M to lie in this fixed locus,
we must have Mi = 0, which cannot be a cyclic vector. Moreover, urGLσn is the
centraliser of ur in GLn, and so urGLσn ' GLr × GLn−r. Hence, we have a
decomposition into varieties(

Hilbn(A2)
)σ ' n⊔

r=0

(ur Repσ
Q,d
∩µ−1(0)det−s)/(GLr ×GLn−r).

This fixed locus is not a brane (note that σ is neither Q-symplectic or Q-anti-
symplectic because A = {x, i} and A∗ = {y, j} so σ(A) * A and σ(A) * A∗).

Remark 5.2. One could also consider the Γ-equivariant Hilbert schemes of n-points
in the plane, for a finite group Γ ⊂ SL2. The McKay correspondence associates
to such a finite group Γ (up to conjugacy) an affine Dynkin graph of ADE type
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and the Γ-equivariant Hilbert scheme is a Nakajima quiver variety associated to
this affine Dynkin graph. An interesting question, which we do not pursue here, is
whether the fixed loci for subgroups of the automorphism group of these quivers
have a special representation-theoretic interpretation. For affine Dynkin diagrams
of type A, the work of Henderson and Licata [13] shows this to be the case.

5.2. Moduli of points on P1 and polygon spaces. For n > 1, fix a tuple of
positive integer weights r = (r1, . . . , rn) and an algebraically closed field k. Let
Mr−ss

P1 be the moduli space of r-semistable n ordered points on P1 (over k) modulo
the automorphisms of the projective line, where n ordered points (p1, . . . , pn) on P1

are r-semistable if, for all p0 ∈ P1,
∑
i | pi=p0

ri ≤
∑
i | pi 6=p0

ri. This moduli space
can be constructed via GIT as a quotient of the SL2-action on (P1)n with respect
to an ample linearisation Lr associated to the weights. Over the complex numbers,
via the Kempf-Ness Theorem, the moduli space Mr−ss

P1 (n) is homeomorphic to
the polygon spaceMpoly(n, r) consisting of n-gons in the Euclidean space E3 with
lengths given by r modulo orientation-preserving isometries [9, 11, 15].

The moduli spaceMr−ss
P1 (n) is isomorphic to a moduli space of representations

for the star-shaped quiver Qn with one central vertex v0 and n outer vertices
v0, . . . , vn and arrows ai : vi −→ v0

•v1

a1

��

vn•
an $$

•v2
a2

zz
vn−1• an−1

// •v0 •v3
a3oo

. . . •v4

a4
bb

•v5

a5

OO

with dimension vector d = (2, 1, · · · , 1) ∈ Nn+1, which we will often suppress from
the notation, and stability parameter θr := (−

∑n
i=1 ri, 2r1, 2r2, · · · , 2rn). Hence,

RepQn,d
∼= (A2)n and a closed point M ∈ RepQn,d is a tuple M = (M1, · · · ,Mn)

of k-linear maps Mi : k −→ k2; we note that the injectivity of all of these maps
Mi is a necessary condition for semistability for any tuple of positive weights r. In
particular, a semistable point M determines n ordered points in P1 ' A2//detri

Gm
by taking the lines in k2 given by the images of the injective linear maps Mi. Since
GQn,d = GL2 ×Gnm, it follows that

Mθr−ss
Qn,d

:= (A2)n//χθr (GL2 ×Gnm) ∼= (P1)n//LrGL2 =:Mr−ss
P1 (n).

Every automorphism of Qn must fix v0, so Aut(Qn) = Aut+(Qn) ∼= Sn. The
dimension vector d is Aut(Qn)-compatible, but the stability parameter θr is only
Aut(Qn)-compatible in the equilateral case, where all weights ri coincide. By re-
stricting our attention to subgroups Σ ⊂ Aut(Qn), there are more weight vectors
which are Σ-compatible. For instance, given any subset I ⊂ {1, · · · , n} of size
1 ≤ m = |I| ≤ n, one can consider two remarkable subgroups of Aut(Qn): a
cyclic group ΣI ∼= Z/mZ and a symmetric group Σ′I

∼= Sm, permuting the ver-
tices indexed by I. For θr to be ΣI -compatible (or, equivalently, Σ′I -compatible),
we need the weight vector r to satisfy ri = rj for all i, j in I. The quotient



32 VICTORIA HOSKINS AND FLORENT SCHAFFHAUSER

quivers for both ΣI and Σ′I agree: Qn/ΣI = Qn/Σ
′
I ' Qn−m+1. If, for nota-

tional simplicity, we suppose I = {1, · · · ,m}, then the induced stability parameter
θ̃r = (−

∑n
i=1 ri, 2mr1, 2rm+1, · · · , 2rn) on Qn−m+1 is the stability parameter as-

sociated to the weight vector rI = (mr1, rm+1, · · · , rn). By Proposition 3.8, there

are morphisms f
Σ

(′)
I

:MθrI−ss
Qn−m+1

= Rep
Σ

(′)
I

Qn,d
//χθrG

Σ
(′)
I

Qn
−→ (Mθr−ss

Qn
)Σ

(′)
I , whose re-

striction to the regularly stable locus is injective by Proposition 3.11, as the vertex
v0 is fixed by every automorphism of Qn. Over the complex numbers, frs

Σ
(′)
I

can be

identified with the inclusionMpoly(n−m+ 1, rI) ↪→Mpoly(n, r). The fibres of the
type map can be decomposed using Theorem 3.21.

For example, consider σ = (12) and fix a weight vector r with r1 = r2. The
type map has only one fibre, as H2(<σ>,∆(k)) = 1. Moreover, by Theorem 3.21,
the components of (Mθr−s

Qn
)σ are indexed by H1(Σ,GQn,d(k))/H1(Σ,∆(k)), where

Σ :=<σ>. Note first that H1(Σ,∆(k)) ' {±1}. Let β : Σ −→ GQn,d(k) be a
normalised 1-cocycle; then β is given by β(σ) = (u0, u1, · · · , un) ∈ GQn,d(k) such
that u2

0 = I2, u1u2 = 1 and u2
i = 1 for i = 3, · · ·n. Two such cocycles β and β′ are

cohomologous if there exists g ∈ GQn,d(k) such that gβ(σ)Ψσ(g−1) = β′(σ); that is,
if and only if g0u0g

−1
0 = u′0 and g1u1g

−1
2 = u′1 and ui = u′i for i = 3, · · · , n. Thus,

to describe the cohomology class, we can assume that u0 is in Jordan normal form
and u1 = u2 = 1. Since u2

0 = I2, we can assume that u0 ∈ {±I2, A := diag(−1, 1)}.
Hence, there is a bijection between H1(Σ,GQn,d(k))/H1(Σ,∆(k)) and the set

B := {(u0, . . . , un) : u0 ∈ {I2, A}, u1 = u2 = 1, ui = ±1 for i = 3, · · · , n},

which gives 2n−1 possible components of the fixed locus, although it turns out that
some may be empty, as we shall now see.

Case 1. Suppose u0 = I2. If there exists 3 ≤ i ≤ n with ui = −1 , then for
M = (M1, . . . ,Mn) ∈ RepQn,d to lie in the fixed locus for the modified action given
by Φu, we need Mi = 0; in particular, the intersection of this fixed locus with the
semistable set is always empty and so such a modifying family u gives an empty
contribution. The only non-empty contribution with u0 = I2 is the trivial element
u = 1 in GQn,d, whose modified action is the original action Φ.

Case 2. Suppose u0 = A. Then (M1, · · · ,Mn) ∈ RepQn,d is fixed for the
modified action defined by u, if M2 = AM1 and, for 3 ≤ i ≤ n, the image of Mi

is contained in the span of (0, 1) ∈ k2 (resp. (1, 0) ∈ k2) if ui = 1 (resp. ui = −1).
Let M ∈ u RepΣ

Qn,d be θr-semistable; then each Mi corresponds to a point pi ∈ P1,
and, for 3 ≤ i ≤ n, we have pi = [0 : 1] if ui = 1 and pi = [1 : 0] if ui = −1. As
M2 = AM1, we have either p1 = p2 = [0 : 1] or p1 = [1 : a] and p2 = [1 : −a] for
a ∈ k. Moreover, uGΣ

Q,d
∼= Gn+2

m and the image of ufΣ in Mr−ss
P1 is contained in

the locus where for i ≥ 3, we have pi = [0 : 1] (resp. [1 : 0]) if ui = 1 (resp. −1). In
terms of polygons, if we identify [1 : 0] and [0 : 1] with (0, 0,±1) ∈ R3, then these
configurations are such that all but two arrows point in the z-direction (either up
or down depending on the sign of ui).

Remark 5.3. By considering the doubled quiver Qn, one can construct hyper-
kähler analogues of the polygon spaceMpoly(n, r), known as hyperpolygon spaces
Hpoly(n, r) [20]. In this case, we have Aut(Qn) ∼= Sn×Z/2Z, where Aut+(Qn) = Sn
and we can consider the contravariant involution σ which fixed all vertices and sends
ai to a∗i as a generator of Z/2Z. All covariant (resp. contravariant) automorphisms
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are Qn-symplectic (resp. Qn-anti-symplectic). In particular, our results on branes
in §4 imply that for any permutation γ ∈ Sn of order 2, we have that

(1) Hpoly(n, r)γ is a BBB-brane,
(2) Hpoly(n, r)σ◦γ is a BAA-brane,
(3) Hpoly(n, r)γ◦τ is a ABA-brane,
(4) Hpoly(n, r)σ◦γ◦τ is a AAB-brane,

where τ denotes complex conjugation.
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