
A NOTE ON QUASI-HAMILTONIAN GEOMETRY AND
REPRESENTATION SPACES OF SURFACES GROUPS

FLORENT SCHAFFHAUSER

Abstract. In this note, we gather known applications of quasi-Hamiltonian geometry to the study
of representations spaces of surface groups. We consider three apects of the geometry of represen-
tation spaces of surface groups: the symplectic structure that they carry, the number of connected
components of representation spaces and the construction of Lagrangian submanifolds. The present
survey is based on the work of Alekseev, Malkin and Meinrenken in [3], of Ho and Liu in [12, 13, 11]
and of the author in [21, 20, 19]. This note grew out of a talk given at Keio University in September
2006.

1. Introduction

Given a compact Riemann surface Σg of genus g ≥ 0, we consider the surface
Σg,l := Σg\{s1, ... , sl}

obtained from Σg by removing l pairwise disctinct points s1, ... , sl ∈ Σg. The fundamental group of
the surface Σg,l thus obtained has the following finite presentation:

πg,l := π1(Σg\{s1, ... , sl}) =< α1, β1, ... , αg, βg, γ1, ... , γl |
g∏
i=1

[αi, βi]
l∏

j=1
γj = 1 >

The object of study in this note will be the space (of equivalence classes) of representations of this
group πg,l into a compact connected Lie group U . More precisely, given a compact connected Lie
group U and l conjugacy classes C1, ... , Clof U , we fix a set of generators of πg,l and consider the set

HomC(πg,l, U) := {(a1, b1, ... , ag, bg, c1, ... , cl) ∈ (U×U)g×C1×· · ·×Cl |
g∏
i=1

[ai, bi]
l∏

j=1
cj = 1} ⊂ U2g+l

which is identified, via the choice of generators of πg,l, to the set of group morphisms % from πg,l to U
satisfying %(γj) ∈ Cj for all j ∈ {1, ... , l}. This set is called the set of representations of πg,l into U .
A first remark here is that depending on the choice of conjugacy classes C1, ... , Cl in U , this set might
very well be empty. In fact, it is proved in [13] that when g ≥ 1 and the compact connected group U
is semi-simple, the representation space is always non-empty. Conditions for the representation space
to be non-empty when U is an arbitrary compact connected Lie group can be found in [13]. For the
g = 0 case, we refer to [1, 23], where the situation is seen to be much more complicated.
Observe then that the group U acting diagonally by conjugation on (U ×U)g ×C1× · · ·×Cl preserves
the relation

∏g
i=1[ai, bi]

∏l
j=1 cj = 1, hence the set HomC(πg,l, U) of representations of πg,l into U .

We may the consider the orbit space
Mg,l := HomC(πg,l, U)/U

of this action, usually called the representation space or representation variety, or yet, to avoid con-
fusion, the moduli space associated to πg,l.
The moduli spacesMg,l are an important object of study and are connected to various areas of math-
ematics (see for instance [17, 5, 6]). In this note, we will consider three aspects of the geometry of
these spaces:

1. the symplectic structure that they carry
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2. the number of conected components of these moduli spaces
3. the construction of Lagrangian submanifolds of these moduli spaces

The symplectic structure of the moduli spacesMg,l was first studied in [5] and [6], and extensively af-
ter that. In this note, we will present in section 2 the quasi-Hamiltonian description of this symplectic
structure. This description was obtained by Alekseev, Malkin and Meinrenken in [3]: the representa-
tion space HomC(πg,l, U)/U carries a symplectic structure because it is the quasi-Hamiltonian quotient
associated to the space (U × U)g × C1 × · · · × Cl:

Mg,l = µ−1({1})/U

where µ is the momentum map

µ : (U × U)g × C1 × · · · × Cl −→ U

(a1, b1, ... , ag, bg, c1, ... , cl) 7−→ [a1, b1]...[ag, bg]c1...cl

As a further remark on the sympectic structure of representation spaces, we would like to recall here
that it is necessary to prescribe the conjugacy classes of generators cj of πg,l correponding to loops
around removed points of Σg, otherwise one only obtains Poisson structures (see [2]). Let us now
come back to the three themes above. Although the second one is a question of a purely topological
nature, the method used to compute the number of connected components of Mg,l, which is due to
Ho and Liu that we will present in section 3, uses the description of Mg,l as a quasi-Hamiltonian
quotient. So will the construction of a Lagrangian submanifold ofMg,l presented in section 4.

2. Quasi-Hamiltonian geometry

In this section, we recall the notions of quasi-Hamiltonian geometry that we will need to study the
moduli spacesMg,l = HomC(πg,l, U)/U .

2.1. Quasi-Hamiltonian quotients. We have seen that we have the following set-theoretic descrip-
tion:

Mg,l = HomC(πg,l, U)/U = µ−1({1})/U
with

µ : (U × U)g × C1 × · · · × Cl −→ U

(a1, b1, ... , ag, bg, c1, ... , cl) 7−→ [a1, b1]...[ag, bg]c1...cl

The work of Alekseev, Malkin and Meinrenken in [3] shows that the map µ above is a momentum
map for the diagonal conjugacy action of U on (U × U)g × C1 × · · · × Cl in the following sense: there
exists a 2-form ω on (U × U)g × C1 × · · · × Cl such that ((U × U)g × C1 × · · · × Cl, ω, µ) satisfies the
axioms of definition 2.1 below.

Definition 2.1 (Quasi-Hamiltonian space, [3]). Let (M,ω) be a manifold endowed with a 2-form ω
and an action of the Lie group (U, (. | .)) leaving the 2-form ω invariant. We denote by (. | .) an Ad-
invariant non-degenerate symmetric bilinear form on u = Lie(U), by θL = g−1.dg and θR = dg.g−1

the Maurer-Cartan 1-forms of U , and by χ = 1
2 ([θL, θL] | θL) the Cartan 3-form of U . Finally, we

denote by X] the fundamental vector field on M associated to X ∈ u. Its value at x ∈ M is :
X]
x := d

dt |t=0(exp(tX).x). Let µ : M → U be a U -equivariant map (for the conjugacy action of U on
itself).
Then (M,ω, µ : M → U) is said to be a quasi-Hamiltonian space (with respect to the action of U) if
the map µ : M → U satisfies the following three conditions:

(i) dω = −µ∗χ
(ii) for all x ∈M , kerωx = {X]

x : X ∈ u | (Adµ(x) + Id).X = 0}
(iii) for all X ∈ u, ιX]ω = 1

2µ
∗(θL + θR |X)

where (θL + θR |X) is the real-valued 1-form defined on U for any X ∈ u by (θL + θR |X)u(ξ) :=
(θLu (ξ) + θRu (ξ) |X) (where u ∈ U and ξ ∈ TuU).
The map µ is called the momentum map.
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We then have the following theorem, due to Alekseev, Malkin and Meinrenken.

Theorem 2.2 (Reduction of quasi-Hamiltonian spaces,[3]). Let (M,ω, µ : M → U) be a quasi-
Hamiltonian U -space. If the compact connected Lie group U acts freely on the fiber µ−1({1}), then:

(i) 1 ∈ U is a regular value of the momentum map µ (consequently, the set µ−1({1}) is a sub-
manifold of M).

(ii) the set µ−1({1})/U is a manifold.
(iii) if we denote by i : µ−1({1}) ↪→ M the inclusion of the level submanifold µ−1({1}) in M and

by p the principal fibration p : µ−1({1}) → µ−1({1})/U , the 2-form i∗ω is basis with respect
to p: there exists a (unique) 2-form ωred on µ−1({1})/U such that i∗ω = p∗ωred.

(iv) the 2-form ωred is symplectic.
The symplectic manifold µ−1({1})/U is often denoted M//U and called the quasi-Hamiltonian quo-
tient associated to the quasi-Hamiltonian space (M,ω, µ : M → U).

Dropping the assumption on the freeness of the action of U on µ−1({1})/U , we also have the
following generalization of theorem 2.2, saying that the set M//U = µ−1({1})/U is a disjoint union
of symplectic manifolds, each of which is in fact obtained (see [20]) by the reduction procedure above
from a quasi-Hamiltonian space endowed with a free action of a compact Lie group.

Theorem 2.3 (Structure of a quasi-Hamiltonian quotient, [20]). Let (M,ω, µ : M → U) be a quasi-
Hamiltonian U -space. For any closed subgroup K ⊂ U , denote by MK the isotropy manifold of type
K in M :

MK = {x ∈M | Ux = K}.
Denote by N (K) the normalizer of K in U and by LK the quotient group LK := N (K)/K. Then the
orbit space

(µ−1({1U}) ∩MK)/LK
is a smooth symplectic manifold.
Denote by (Kj)j∈J a system of representatives of closed subgroups of U . Then the orbit space Mred :=
µ−1({1U})/U is the disjoint union of the following symplectic manifolds:

µ−1({1U})/U =
⊔
j∈J

(µ−1({1U}) ∩MKj )/LKj .

Theorems 2.2 and 2.3 show that the representation spaces HomC(πg,l, U)/U = µ−1({1})/U indeed
carry a symplectic structure. We refer to [3] for a proof that this symplectic structure is the same as
the one previously obtained in [5], [6], [8] and [16].

2.2. Convexity theorems. When the compact connected Lie group U is in addition simply con-
nected, there exists a subset W ⊂ u = Lie(U) called a Weyl alcove such that:

(i) W is convex.
(ii) the exponential map restricts to an homeomorphism exp |W :W → exp(W) ⊂ U .
(iii) the set exp(W) is a fundamental domain for the conjugacy action of U on itself: it contains

exactly one point of each conjugacy class.
As a consequence of the existence of such a set W ⊂ u, we see that it makes sense to ask whether a
given subset A ⊂ exp(W) ' W ⊂ u is convex. We then have the following theorem, due to Meinrenken
and Woodward in [15].

Theorem 2.4 (Convexity theorem for group-valued momentum maps, [15, 3]). Let U be a compact
connected simply connected Lie group and let (M,ω, µ : M → U) be a connected quasi-Hamiltonian
space with proper momentum map µ. Then, for any choice of a maximal torus T ⊂ U and any choice
of a closed Weyl alcove W ⊂ t = Lie(T ), the set µ(M)∩ exp(W) ⊂ exp(W) is a convex subpolytope of
exp(W) ' W, called the momentum polytope. Moreover, the fibres of µ are connected. In particular,
the set µ−1({1}) is a connected subset of M .

In the presence of an involution β on the quasi-Hamiltonian space M , we have the following result:
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Theorem 2.5 (A real convexity theorem for group-valued momentum maps, [22]). Let (U, τ) be
a compact connected simply connected Lie group endowed with an involutive automorphism τ such
that the involution τ− : u ∈ U 7→ τ(u−1) leaves a maximal torus T of U pointwise fixed, and let
W ⊂ t := Lie(T ) be a Weyl alcove. Let (M,ω, µ : M → U) be a connected quasi-Hamiltonian U -space
with proper momentum map µ : M → U and let β : M →M be an involution on M satisfying:

(i) β∗ω = −ω
(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U
(iii) µ ◦ β = τ− ◦ µ
(iv) Mβ := Fix(β) 6= ∅
(v) µ(Mβ) has a non-empty intersection with the fixed-point set Q0 of 1 in Fix(τ−) ⊂ U

Then:
µ(Mβ) ∩ exp(W) = µ(M) ∩ exp(W)

In particular, µ(Mβ)∩exp(W) is a convex subpolytope of exp(W) ' W ⊂ t, equal to the full momentum
polytope µ(M) ∩ exp(W).

Observe that an involutive automorphism τ of U such that τ− leaves a maximal torus of U pointwise
fixed always exists (it is a consequence of the existence of a split real form of the complexified Lie group
UC). Theorems 2.4 and 2.5 are quasi-Hamiltonian analogues of convexity theorems for momentum
maps in the usual Hamiltonian setting. We will see in sections 3 and 4 how they imply results
on the number of connected components of representation spaces and construction of Lagrangian
submanifolds of these spaces.

2.3. Coverings of quasi-Hamiltonian spaces. Before ending this section, we observe that theo-
rems 2.4 and 2.5 only apply to quasi-Hamiltonian U -spaces with U compact connected and simply
connected. To be able, in sections 3 and 4, to study connected components and construct Lagrangian
submanifolds ofMg,l = HomC(πg,l, U)/U when the compact connected Lie group is not simply con-
nected, we will need the following result, due to Alekseev, Meinrenken and Woodward:

Proposition 2.6 ([4]). Let U be a compact connected Lie group and let π : Ũ → U be a covering
map. Set

M̃ := M ×U Ũ = {(x, ũ) | µ(x) = π(ũ)}
and

p : M̃ −→M µ̃ : M̃ −→ Ũ

(x, ũ) 7−→ x (x, ũ) 7−→ ũ

so that we have the following commutative diagram:

M̃ = M ×U Ũ
µ̃−−−−→ Ũ

p

y yπ
M

µ−−−−→ U

Finally, let us set ω̃ := p∗ω and observe that Ũ acts on M̃ via
ũ0.(x, ũ) := (π(ũ0).x, ũ0ũũ

−1
0 )

and that µ̃ is equivariant for this action. Then we have: (M̃, ω̃, µ̃ : M̃ → Ũ) is a quasi-Hamiltonian
Ũ -space.

The proof shows that this works because π : Ũ → Ũ is a covering homomorphism. In particular,
Ũ and U have isomorphic Lie algebras. Further, we have:

Proposition 2.7 ([4]). The quasi-Hamiltonian quotients associated to M and M̃ are isomorphic: the
map p : M̃ →M sends µ̃−1({1

Ũ
}) to µ−1({1U}) and induces an isomorphism

µ̃−1({1
Ũ
})/Ũ ' µ−1({1U})/U
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In particular, if µ−1({1U}) 6= ∅ then µ̃−1({1
Ũ
}) 6= ∅.

3. Connected components of representation spaces

In this section, we will outline the proof, due to Ho and Liu in [12] of the following theorem, first
proved by Goldman in [7] for U = SU(2) and U = SO(3), and by Li in [14] for an arbitrary compact
connected semisimple Lie group.

Theorem 3.1 (Connected components of representation spaces, [7, 14]). Let Σg be a compact Rie-
mann surface of genus g ≥ 1 and let U be a compact connected semi-simple Lie group. Denote by
π0(Hom(π1(Σg), U)/U) the set of connected components of the representation space

Mg,0 = Hom(π1(Σg), U)/U
and by π1(U) the fundamental group of U , which, since the compact connected Lie group U is semi-
simple, is a finite abelian group.
Then, we have a bĳection:

π0(Hom(π1(Σg), U)/U) '−→ π1(U)

When g = 0, the group π1(Σg) is π1(S2) = {1}, so that Hom(π1(Σg), U) is a single point, hence
the moduli spaceMg,0 is always connected and the above theorem is no longer true.

Remark 3.2. Recall that, in this note, our purpose is to show how one can use quasi-Hamiltonian
geometry to study the geometry and the topology of representation spaces. To be able to illustrate this
with simple examples, we limit ourselves, in this section, to compact surfaces and semi-simple Lie
groups. We refer to [13] for the computation of the number connected components for surfaces with
removed points and arbitrary compact connected Lie groups.

It is remarkable in the above theorem that the number of connected components of the moduli
space Mg,0 = Hom(πg,0, U)/U depends only on the Lie group U and not on the genus g ≥ 1. Such
a phenomenon also occurs (as a matter of fact, the exact statement of theorem 3.1 still holds) for
complex semi-simple Lie groups, as shown in [7] for U = SL(2,C) and in [14] for arbitrary complex
semi-simple Lie groups. This is no longer true for non-compact real semi-simple Lie groups. For
instance, Goldman showed in [7] that if U = PSL(2,R) thenMg,0 has 4g− 3 connected components.
Likewise, if U = SL(2,R), the number of connected components ofMg,0 is shown in [7] to be equal to
22g+1+2g−3. Similar results for non-compact real Lie groups such as PU(n, 1) can be found in [25, 26]
(see also [9, 10, 24]). It would be interesting to know if one can write a quasi-Hamiltonian proof of these
results. As we shall soon see, this would require an analogue of theorem 2.4. Finally, Goldman also
showed that if U is an algebraic semi-simple group thenMg,0 has finitely many connected components,
but that this is no longer true for non-simply connected nilpotent Lie groups (such as the Heisenberg
group for instance).
We can now come back to giving a proof of theorem 3.1:

π0(Hom(π1(Σg), U)/U) '−→ π1(U)
This proof is due to Ho and Liu in [12]. Observe that theorem 3.1 says that if U is simply connected
then the moduli space Mg,0 is connected. This is a direct consequence of the convexity theorem
2.4: the moduli space Mg,0 is the quasi-Hamiltonian quotient Mg,0 = µ−1({1})/U and since U is
simply connected the fiber µ−1({1}) of the momentum map µ is connected. To be able to reduce the
general case to the case where U is simply connected, we will use proposition 2.6 when ρ : Ũ → U is
the universal cover of U . Since U is semi-simple, the simply connected Lie group Ũ is still compact.
Further, we have an identification π1(U) ' ker ρ ⊂ Z(Ũ) :=center of Ũ . To prove that we have a
bĳection between π0(Mg,0) and π1(U) ' ker ρ, the strategy of Ho and Liu consists, following Goldman
in [7], in constructing a continuous map

σ : Hom(π1(Σg), U) −→ ker ρ
(this map σ is called the obstruction map in [7]) and showing, by methods of quasi-Hamiltonian
geometry, that this continuous map σ is surjective with connected fibres, which will eventually imply
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theorem 3.1.
Recall that the moduli spaceMg,0 is the quasi-Hamiltonian quotient

Mg,0 = Hom(πg,0, U)/U = µ−1
U ({1})/U

where µU is the momentum map
µU : M = (U × U)× · · · × (U × U) −→ U

(a1, b1, ... , ag, bg) 7−→
g∏
i=1

[ai, bi]

Applying proposition 2.6 to the universal cover ρ : Ũ → U of U , the situation is as follows:

(Ũ × Ũ)× · · · × (Ũ × Ũ)
µ
Ũ−−−−→ Ũ

ρ2g
y yρ

(U × U)× · · · × (U × U) µU−−−−→ U

Following Goldman, Ho and Liu define the obstruction map
σ : (U × U)× · · · × (U × U) −→ Ũ

in the following way:

Definition 3.3. Let σ : (U × U)× · · · × (U × U)→ Ũ be the map defined by

σ(a1, b1, ... , ag, bg) :=
g∏
i=1

[ãi, b̃i]

where ρ(ãi) = ai and ρ(̃bi) = bi for all i ∈ {1, ... , g}.

Lemma 3.4. The map σ is well-defined and satisfies σ ◦ ρ2g = µ
Ũ
. In particular, since the covering

map ρ2g is an open surjective map, the obstruction map σ is continuous.

Proof. If ρ(ãi) = ρ(ã′i) and ρ(̃bi) = ρ(̃b′i), then ã′i = xiãi and b̃′i = yib̃i with xi, yi ∈ ker ρ ⊂ Z(Ũ). It
follows that [ã′i, b̃′i] = [ai, bi] for all i, hence that σ is well-defined and satisfies σ ◦ ρ2g = µ

Ũ
. �

To sum up, we have:

(Ũ × Ũ)g
µ
Ũ //

ρ2g

��

Ũ

ρ

��
(U × U)g

µU //

σ

;;wwwwwwwwww
U

Further:

Lemma 3.5. We have σ(µ−1
U ({1})) ⊂ ker ρ.

Proof. If
∏g
i=1[ai, bi] = 1, then:

ρ ◦ (a1, b1, ... , ag, bg) = ρ ◦ µ
Ũ

((ã1, b̃1, ... , ãg, b̃g))

= µU ◦ ρ2g((ã1, b̃1, ... , ãg, b̃g))
= µ(a1, b1, ... , ag, bg)

=
g∏
i=1

[ai, bi]

= 1
�

We now begin the study of the fibres of the obstruction map σ.
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Lemma 3.6. For any z ∈ ker ρ ⊂ Ũ , the fiber µ
Ũ

({z}) is non-empty and connected. The map
ρ2g : (Ũ × Ũ)g → (U × U)g restricts to a continuous surjective map

αz : µ−1
Ũ

({z}) −→ σ−1({z}) ⊂ (U × U)g

Proof. The fibres of µ
Ũ
are non-empty because Ũ is a compact connected semi-simple Lie group, hence

[Ũ , Ũ ] = Ũ and z = 1× · · · × 1× [ãg, b̃g] for some ãg, b̃g ∈ Ũ . Since Ũ is in addition simply connected,
theorem 2.4 shows that the fiber µ−1

Ũ
({z}) is connected.

Consider now (ã1, b̃1, ... , ãg, b̃g) ∈ µ−1
Ũ

({z}) (that is:
∏g
i=1[ãi, b̃i] = z) and set ai := ρ(ãi) and bi :=

ρ(̃bi) for all i. Then σ(a1, b1, ... , ag, bg) =
∏g
i=1[ãi, b̃i] = z so that ρ2g indeed restricts to a continuous

map αz : µ−1
Ũ

({z})→ σ−1({z}). Surjectivity of αz follows from the construction of σ. �

From this we deduce immediately:

Proposition 3.7. The fibres of the continuous map σ|µ−1
U

({1U}) : µ−1
U ({1U}) → ker ρ are non-empty

and connected. Since ker ρ is a finite set, the connected components of µ−1
U ({1U}) are precisely the

fibres of σ above ker ρ. Consequently the number of connected components of µ−1({1U}) and therefore
ofMg,0 = Hom(πg,0, U)/U is equal to the cardinal of ker ρ ' π1(U). More precisely, the map

σ|µ−1
U

({1U}) : µ−1
U ({1U}) −→ ker ρ

induces a map
σ :Mg,0 = µ−1

U ({1})/U −→ ker ρ ' π1(U)
whose fibres are the connected components ofMg,0, thereby proving theorem 3.1.

Proof. The fact that the map σ|µ−1({1U}) has non-empty connected fibres follows from lemma 3.6: the
continuous image αz(µ−1

Ũ
({z}) of a connected set is connected. The fact that σ : µ−1

U ({1U}) → ker ρ
induces a map σ : µ−1

U ({1U})→ ker ρ follows from the fact that ker ρ ⊂ Z(Ũ). �

As an application, we state the following result, first proved by Goldman in [7]: if U = SO(3) (so
that π1(U) = Z/2Z) the moduli space Hom(πg,0, U)/U has 2 connected components.

4. Lagrangian submanifolds of representation spaces

In this section, we outline a general strategy for constructing Lagrangian submanifolds of quasi-
Hamiltonian submanifolds of a quasi-Hamiltonian quotient M//U = µ−1({1})/U starting from a
quasi-Hamiltonian space (M,ω, µ : M → U) and provide an example by applying this strategy to
moduli spaces associated to surface groups.
Henceforth we shall assume that U acts freely on µ−1({1}), so that theorem 2.2 applies and µ−1({1})/U
is a symplectic manifold. Our strategy consists in obtaining a Lagrangian submanifold of the quasi-
Hamiltonian quotient M//U = µ−1({1})/U by constructing an anti-symplectic involution ν on the
symplectic spaceM//U . Then, if the fixed-point set of ν is non-empty, it is a Lagrangian submanifold
of M//U . More precisely, we give sufficient conditions on an involution β on the quasi-Hamiltonian
space (M,ω, µ : M → U) for it to induce an anti-symplectic involution ν := β̂ on the associated
quasi-Hamiltonian quotient M//U = µ−1({1})/U . To state such a result, we draw on the usual
Hamiltonian case considered in [18] and assume that the compact connected Lie group U is endowed
with an involutive automorphism τ . We then have:

Proposition 4.1 ([21]). Let (M,ω, µ : M → U) be a quasi-Hamiltonian space and let τ be an
involutive automorphism of U . Denote by τ− the involution on U defined by τ−(u) = τ(u−1) and let
β be an involution on M such that:

(i) ∀u ∈ U , ∀x ∈M , β(u.x) = τ(u).β(x)
(ii) ∀x ∈M , µ ◦ β(x) = τ− ◦ µ(x)
(iii) β∗ω = −ω
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then β induces an anti-symplectic involution β̂ on the quasi-Hamiltonian quotient
M//U := µ−1({1})/U

defined by β̂([x]) = [β(x)]. If β̂ has fixed points, then Fix(β̂) is a Lagrangian submanifold of M//U .

From now on, we assume additionally that the involution τ− leaves a maximal torus T ⊂ U
pointwise fixed, so that the assumptions (U, τ) appearing in theorem 2.5 are satisfied. Recall that
such an involutive automorphism τ of U always exists, as was recalled earlier. The rest of this section
will be devoted to proving that the assumption Fix(β̂) 6= ∅ is in fact always satisfied if U is a compact
connected semi-simple Lie group, provided that the involution β on M has fixed points whose image
lies in the connected component of Fix(τ−) ⊂ U containing 1 (so that we can apply the real convexity
theorem for group-valued momentum maps -theorem 2.5- stated in subsection 2.2). In fact, we will
prove the following stronger result:

Fix(β) ∩ µ−1({1}) 6= ∅(1)
which immediately implies:

Fix(β̂) 6= ∅
by definition of β̂.
In order to prove that Fix(β) ∩ µ−1({1}) 6= ∅, we will distinguish two cases. We begin with the case
where the compact connected Lie group U is in addition simply connected and then deal with the
case of a compact connected semi-simple Lie group. In this last case, we will reduce the situation to
the case of simply connected groups by using proposition 2.6, much like what was done in section 3
in order to compute the number of connected components of the representation spaces.

4.1. The case where U is simply connected. When U is a compact connected simply connected
Lie group, theorem 2.5 holds. We then have the following corollary, which is exacly the result we set
out to prove (see (1)).

Proposition 4.2 (Fix(β)∩µ−1({1}) 6= ∅). If β satisfies the assumptions of theorem 2.5 and β̂ desig-
nates the induced involution β̂([x]) := [β(x)] on the quasi-Hamiltonian quotient M//U = µ−1({1})/U ,
we have: Fix(β) ∩ µ−1({1}) 6= ∅ and therefore Fix(β̂) 6= ∅.

Proof. Since µ−1({1}) 6= ∅ and since we always have 1 ∈ exp(W), we obtain, using theorem 2.5:
1 ∈ µ(M) ∩ exp(W) = µ(Mβ) ∩ exp(W)

that is:
Fix(β) ∩ µ−1({1}) 6= ∅

If x ∈ Fix(β) ∩ µ−1({1}) 6= ∅, then by definition β̂([x]) = [β(x)] = [x]. �

Observe that, as in section 3, to prove the proposed statement (1) for simply connected compact
connected Lie groups, one applies directly a theorem from quasi-Hamiltonian geometry.

4.2. The case where U is semi-simple. To prove that the statement Fix(β)∩µ−1({1}) still holds
when U is assumed to be semi-simple but not necessarily simply connected, we use proposition 2.6 to
construct a quasi-Hamiltonian Ũ -space (M̃ = M ×U Ũ , ω̃, µ : M̃ → Ũ), where Ũ is the universal cover
of U . Since U is semi-simple, the simply connected group Ũ is still compact and we can therefore
apply proposition 4.2 to the quasi-Hamiltonian space (M̃, ω̃, µ : M̃ → Ũ). This will turn out to be
sufficient.
First, we need to observe that if β is a form-reversing involution on M , it induces a form-reversing
involution β̃ on M̃ . As a first step, observe that since the compact connected groups U and Ũ have
isomorphic Lie algebras, the involutive automorphism τ of U induces an involutive automorphism of
Ũ , that we denote by τ̃ . In particular, we have π ◦ τ̃ = τ ◦ π, where π is the covering map π : Ũ → U .
We will denote by τ̃− the involution τ̃−(ũ) := τ̃(ũ−1). If τ is of maximal rank, so is τ̃ . If we denote
by Q0 the connected component of 1U in Fix(τ−) ⊂ U and by Q̃0 the connected component of 1

Ũ
in

Fix(τ̃−) ⊂ Ũ , the covering map π : Ũ → U restricts to a covering map π|
Q̃0

: Q̃0 → Q0. Then:
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Proposition 4.3. Let β be a form-reversing involution on the quasi-Hamiltonian space (M,ω, µ :
M → U), compatible with the action of (U, τ) and the momentum map µ. Then the map

β̃ : M̃ −→ M̃

(x, ũ) 7−→ (β(x), τ̃−(ũ))

is a form-reversing involution on the quasi-Hamiltonian space (M̃, ω̃, µ̃ : M̃ → Ũ), satisfying β̃(ũ.x) =
τ̃(u).β̃(x) and µ̃ ◦ β̃ = τ̃− ◦ µ̃.

We then have:

Theorem 4.4. Let (U, τ) be a compact connected semi-simple Lie group endowed with an involutive
automorphism τ of maximal rank, and let (M,ω, µ : M → U) be a connected quasi-Hamiltonian
U -space such that µ−1({1U}) 6= ∅. Let β be a form-reversing compatible involution β on M , whose
fixed-point set Fix(β) is not empty and has an image under µ that intersects the connected component
of 1U in Fix(τ−) ⊂ U . Then:

Fix(β) ∩ µ−1({1U}) 6= ∅

Proof. We will show that there exists a connected component of M̃ = M ×U Ũ which contains points
of µ̃−1({1

Ũ
}) and fixed points of β̃, and apply the corollary of the convexity theorem (corollary 4.2)

to this connected component, which is a quasi-Hamiltonian space. From this we will deduce the
statement of the theorem.
Since µ−1({1}) 6= ∅ and µ(Fix(β))∩Q0 6= ∅, there exist x0 ∈M such that µ(x0) = 1U and x1 ∈M such
that β(x1) = x1 and µ(x1) ∈ Q0. Since M is connected, there is a path (xt)t∈[0,1] from x0 to x1. Set
ut := µ(xt) ∈ U for all t ∈ [0, 1]. Since π : Ũ → U is a covering map, we can lift the path (ut)t∈[0,1] to
a path (ũt)t∈[0,1] on Ũ such that π(ũt) = ut = µ(xt) and ũ0 = 1

Ũ
. Then (xt, ũt) ∈ M̃ = M×U Ũ and it

is a path going from (x0, ũ0) = (x0, 1Ũ ) to (x1, ũ1), which are therefore contained in a same connected
component M̃0 of M̃ . Then, we have µ̃(x0, 1Ũ ) = 1

Ũ
and, since π(ũ1) = u1 = µ(x1) ∈ Q0 ⊂ Fix(τ−),

we have ũ1 ∈ Q̃0 ⊂ Fix(τ̃−), hence

β̃(x1, ũ1) = (β(x1), τ̃−(ũ1)) = (x1, ũ1)

and µ̃(x1, ũ1) = ũ1 ∈ Q̃0. Therefore, the connected component M̃0 of M̃ , which is a quasi-Hamiltonian
Ũ -space, contains points of µ̃−1({1

Ũ
}) and points of Fix(β̃) whose image is contained in Q̃0. Since

Ũ is simply connected, we can apply corollary 4.2 and conclude that Fix(β̃) ∩ µ̃−1({1
Ũ
}) 6= ∅. Take

now (x, ũ) ∈ Fix(β̃) ∩ µ̃−1({1
Ũ
}). In particular, ũ = 1

Ũ
. Since β̃(x, ũ) = (x, ũ), we have β(x) = x

and µ(x) = µ ◦ p(x, ũ) = π ◦ µ̃(x, ũ) = π(ũ) = π(1
Ũ

) = 1U . That is: x ∈ Fix(β) ∩ µ−1({1U}), which
is therefore non-empty. �

This completes the program announced at the beginning of this section (see (1)). We refer to [19]
for a proof of the fact that whenM = (U×U)g×C1×· · ·×Cl and U is an arbitrary compact connected
Lie group, we still have Fix(β) ∩ µ−1({1}) 6= ∅ (see also subsection 4.3 below).

4.3. An example of form-reversing involution β. We end this note with an example of a form-
reversing involution β : M →M on the quasi-Hamiltonian space

M = (U × U)g × C1 × · · · × Cl
This involution satisfies the assumptions of theorem 2.5, as is shown in [19], which, as explained in
the above subsections, provides an example of Lagrangian submanifold of the representation space

Mg,l = HomC(πg,l, U)/U = M//U

for any compact connected semi-simple Lie group U . As a matter of fact, it is shown in [19] that the
condition Fix(β) ∩ µ−1({1}) 6= ∅ is also satisfied for an arbitrary compact semi-simple Lie group (in
the case where M is (U × U)g × C1 × · · · × Cl). Indeed, in this case, the situation is reduced to the
case of a simply connected Lie group by using proposition 2.6 for the covering ρ : S ×G → U where
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S ⊂ Z(U) is a torus and G is a compact connected simply connected Lie group. The same technique
also works for computing the number of connected components of the moduli spacesMg,l (see [13]).
In [19], the involution β is otained by introducing the following notion of decomposable representation
of the fundamental group πg,l = π1(Σg\{s1, ... , sl}) into U :

Definition 4.5 (Decomposable representations of π1(Σg\{s1, ... , sl}), [19]). Let (U, τ) be a compact
connected Lie group endowed with an involutive automorphism τ of maximal rank. A representation
(a1, b1, ... , ag, bg, c1, ... , cl) of πg,l = π1(Σg\{s1, ... , sl}) into U is called decomposable if there exist
(g + l) elements v1, ... , vg, w1, ... , wl ∈ U satisfying:

(i) τ(vi) = v−1
i for all i and τ(wj) = w−1

j for all j.
(ii) [a1, b1] = v1v

−1
2 , [a2, b2] = v2v

−1
3 , ... , [ag, bg] = vgw

−1
1 , c1 = w1w

−1
2 , c2 = w2w

−1
3 , ... ,

cl = wlv
−1
1 .

(iii) τ(ai) = v−1
i+1bivi+1 for all i ∈ {1, ... , g} (with vg+1 = w1).

We then show that these decomposable representations are characterized in terms of an involution
β onM = (U×U)g×C1×· · ·×Cl satisfying the assumptions of theorem 2.5, from which we can deduce
(see proposition 4.1 and theorem 4.4) that Fix(β̂) 6= ∅ and is therefore a Lagrangian submanifold of
the moduli spaceMg,l. Namely, we have:

Theorem 4.6 (A Lagrangian submanifold of the representation space [19]). There exists a form-
reversing involution β on the quasi-Hamiltonian space M = (U × U)g × C1 × · · · × Cl such that a
representation (a1, b1, ... , ag, bg, c1, ... , cl) of πg,l into U is decomposable in the sense of definition 4.5
if and only if there exists an element u ∈ U such that

β(a1, b1, ... , ag, bg, c1, ... , cl) = u.(a1, b1, ... , ag, bg, c1, ... , cl) and u ∈ Fix(τ−).

This involution β satisfies the assumptions of theorem 2.5, hence, if U is semi-simple, by theorem 4.4
we have

Fix(β) ∩ µ−1({1}) 6= ∅
which proves by proposition 4.1 that β induces an anti-symplectic involution β̂ on the quasi-Hamiltonian
quotient

Mg,l = HomC(πg,l, U)/U
whose fixed-point set Fix(β̂) is non-empty and consists of equivalence classes of decomposable repre-
sentations of πg,l into U : it is a Lagrangian submanifold of the moduli spaceMg,l.

In fact, we cannot immediately apply the results of subsections 4.1 and 4.2 because in general we
do not have U acting freely on µ−1({1}) in the above example where M = (U × U)g × C1 × · · · × Cl.
We refer to [19] to see how to circumvent this difficulty. We also refer to [19] for a general expression
of β. When g = 0 and l = 3, we have the following expression:

β(c1, c2, c3) = (τ−(c2c3)τ−(c1)τ(c2c3), τ−(c3)τ−(c2)τ(c3), τ−(c3))

When g = 1 and l = 0, we have:
β(a, b) =

(
τ(b), τ(a)

)
Finally, we refer to [11] for another example of an anti-symplectic involution σ on the representation
spaceMg,0 = Hom(πg,0, U)/U of the fundamental group of a compact surface.
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