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spectral inclusion

Let H be a Hilbert space and

A : H → H

be an operator. The spectral inclusion refers to a set W ⊂ C such that σ(A) ⊂ W .

Typical examples include:

⋆ σ(A) ⊂ B∥A∥(0) if A is bounded

⋆ σ(A) ⊂ R if A = A∗

⋆ σ(∆D) ⊂ [0,∞], H = L2(a, b).
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Spectrum

Definition (Spectrum)

ρ(A) = {λ ∈ C : A − λ has a bounded inverse} is the resolvent of an operator

A : H → H and the spectrum of A is defined as

σ(A) = C \ ρ(A)

⋆ λ ∈ σp(A) ⇐⇒ ∃x ̸= 0 such that Ax = λx

⋆ λ ∈ σc(A) ⇐⇒ A − λ is injective and has a dense range but not surjective

⋆ λ ∈ σr(A) ⇐⇒ A − λ is injective but its range is not dense range

⋆ λ ∈ σapp(A) ⇐⇒ ∃(xn), ∥xn∥ = 1 such that ∥(A − λ)xn∥ → 0

⋆ σess(A) = σ(A) \ σdisc(A)
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Spectral inclusion
Numerical range Let H be a Hilbert space and

A : H → H

be an operator.

Definition (Toeplitz 1918)

The numerical range is defined as

W(A) = {(Af , f) : f ∈ dom A, ∥f∥ = 1}

is called the numerical range

Theorem

The numerical range W(A) is connected in C.
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Spectral inclusion

Theorem

If A is self adjoint, then W(A) and σ(A) are real and the norm of the resolvent

satisfies the following bound.

∥(A − λ)−1∥ ≤ 1/dist(λ, σ(A)), λ ∈ ρ(A).

Theorem

For unbounded linear operators A, the inclusion σ(A) ⊂ W(A) of the spectrum

prevails if every component of C \ W(A) contains at least one point of ρ(A).
Moreover,

∥(A − λ)−1∥ ≤ 1/dist(λ,W(A)), λ /∈ W(A).
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Block matrix operator

⋆ Let H1 ⊕ H2 be a Hilbert space and

A =

(
A B

C D

)
: DA,C ⊕ DB,D −→ H1 ⊕ H2

be a linear operator where DX ,Y = dom X ∩ dom Y .

⋆ One can leverage the matrix structure to capture more localized spectral

inclusion than the numerical range.
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Quadratic numerical range

Definition (Quadratic numerical range)

Let A be a block operator matrix and (f , g) ∈ dom(A).

Af ,g :=

(
(Af , f) (Bg, f)
(Cf , g) (Dg, g)

)
∈ M2(C).

The quadratic numerical range of A is defined as

W 2(A) :=
⋃

∥f∥=∥g∥=1

σp(Af ,g).
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Quadratic numerical range
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Some known results

Theorem (Theorems 2.5.3, 2.5.4, and 2.5.9 [tretter2008spectral])

For the class of block operator matrices A± =

(
0 B

−B∗ ±D

)
,

σp(A±) ⊂ W 2(A±) ⊂ W(A±).

If, in addition, dimH1, dimH2 > 1, then

W(±D) ∪ {0} ⊂ W 2(A±).
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Bounded case

Suppose A± =

(
0 B

−B∗ ±D

)
is bounded. Then,

Theorem (H. Langer, A. Markus, V. Matsaev, C. Tretter (2001))

σ(A±) ⊂ W 2(A±) ⊂ W(A±).

Proposition (W. Qiu, Y. Qi, C. Trunk, M.W. (2023))

σ(A±) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤ 2b + c}.

b = sup
f∈H1, g∈H2, ∥f∥2+∥g∥2=1

| Im(f , Bg)|, c = sup
g∈H2, ∥g∥=1

| Im(Dg, g)|
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Unbounded case

Suppose

A± =

(
0 B

−B∗ ±D

)
: dom(−B∗)⊕ dom(B) → H1 ⊕ H2

is an off-diagonally dominant unbounded block operator matrix where B is a densely

defined closed operator, D is B-bounded and accretive in H2; i.e.

Re(Dg, g) ≥ 0, g ∈ dom(B).

Theorem (W. Qiu, Y. Qi, C. Trunk, M.W. (2023))

σap(A±) ⊂ W 2(A±).
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Unbounded case

Theorem (W. Qiu, Y. Qi, C. Trunk, M.W. (2023))

Let A± as before. If a component Ω of C \ W 2(A±) contains a point µ ∈ ρ(A±),
then Ω ⊂ ρ(A±); in particular if every component of C \ W 2(A±) contains a point

µ ∈ ρ(A±), then

σ(A±) ⊂ W 2(A±).

Moreover,

σ(A±) ⊂

λ ∈ C| 0 ≤ ±Reλ ≤ γ, | Imλ| ≤


k|Reλ|

1− 2
β
|Reλ| ±Reλ ∈ [0, β2 )

∞ ±Reλ ∈ [β2 ,
γ
2 ]

k|Reλ|
2
γ
|Reλ|−1

±Reλ ∈ (γ2 , γ]

 .
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Theorem (W. Qiu, Y. Qi, C. Trunk, M.W. (2023))

Suppose that D is a bounded and self-adjoint operator in A±. If there are

±λ1,±λ2 ∈ ρ(A±) with ±λ1 < 0 and ±λ2 > ∥D∥, then

σ(A±) ⊂ {λ ∈ C| 0 ≤ ±Reλ ≤ ∥D∥/2} ∪ [∥D∥/2, ∥D∥]. (1)
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Essential spectrum of an operator pencil

Definition
Let X be a Banach space and A : X → X be a closed operator and B : X → X be

a bounded operator and

P : C → C(X)

λ 7→ λA + B,

be an operator pencil associated to A and B.

The essential spectrum of the operator pencil P is defined by

σϵ(P) = {λ ∈ C | 0 ∈ σess(λA + B)}

where σess(A) = {λ ∈ C : λI − A /∈ Φ(X)}.
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Essential spectrum of an operator pencil

Assumption

Let S1 and S2 be two sectors,

S1 = {λ | φ1 ≤ arg λ ≤ φ2} and S2 = {λ | θ1 ≤ arg λ ≤ θ2}

with φ1, φ2, θ1, θ2 ∈ [0, 2π) such that

(a) φ1 ≤ φ2 < θ1 ≤ θ2, that is, S1 ∩ S2 = {0},

(b) σe(A) ⊂ S1 and σe(B) ⊂ S2

(c) + some technical assumptions
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Abbildung: An example of a pair of wedges for φ1 = 190◦, φ2 = 220◦, θ1 = 300◦,
θ2 = 325◦.
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Results

Theorem (C. Trunk, H. Khlif, M. W. (2024))
Let A and B be as above. Then,

σe(A + B) ⊆ σe(A) + σe(B).

Lemma (C. Trunk, H. Khlif, M. W. (2024))

Let α ∈ C. Then, ασϵ(A) ⊂ C \ (−S2) implies that

α /∈ σϵ(P).
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The main result

Theorem (C. Trunk, H. Khlif, M. W. (2024))

Suppose that the assumption holds for A and B. Then, the essential spectrum σϵ(P)
of the operator pencil

P(λ) = λA + B

is contained in the sector Σ defined by the angles between θ1 − φ2 − π and

θ2 − φ1 − π oriented counterclockwise, where these angles lie between −π and π.
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Linear relations

Definition (Linear relations)

Any subspace T ⊂ H × H is called a linear relation.

Example

Let A : dom A → H be an operator, then

Γ(A) = {(x, y) ∈ H × H : Ax = y} ⊂ H × H

is a subspace.
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Linear relations

⋆ dom(T) := {x ∈ H : ∃y ∈ H such that (x, y) ∈ T}
⋆ ran(T) := {y ∈ H : ∃x ∈ H such that (x, y) ∈ T}
⋆ ker(T) := {x ∈ H : (x, 0) ∈ T}
⋆ mul(T) := {y ∈ H : (0, y) ∈ T}

The multivalue part

Suppose y1 ̸= y2 and T is a multtivalued map T : x 7→ y1 and y2. Then,

y1 − y2 = Tx − Tx = 0 = T0.

In other words, "(0, y1) ∈ Γ(T)".
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Linear relations

Theorem

If mul(T) = {0}, then T is a graph associated to an operator.

In the above, this operator is also denoted by T .

Moreover, one can define the operator part Top of T as follows:

Top = {(x, y) ∈ T : x ̸= 0}
=⇒ Topx = y is a unique value

Intuitively, T/mul(T) is a graph of an operator.

Theorem
Let T be a linear relation in H. Then, there exist operators E and A such that

Ax = Ey for all (x, y) ∈ T .
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Spectrum of linear relations

Definition (Spectrum of linear relations)

The point spectrum σp(T) of a linear relation T in H is defined as

σp(T) := {λ ∈ C : (x, λx) ∈ T}
σap(T) := {λC : ∃ (xn, x̃n) ∈ L, such that ∥xn∥ = 1, lim

n→∞
∥x̃n − λxn∥ = 0}

and the numerical range is defined as

W(T) := {⟨y, x⟩ : (x, y) ∈ L, ∥x∥ = 1}
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Spectral inclusion for linear relatioins

Definition
Let T be a linear relation in H1 ⊕ · · · ⊕ Hn. The block linear relation is defined as

T =

{
(x, y) : yj ∈

n⊕
k=1

Ajk xk

}
.

Consequently,

W n(T) = {λ ∈ σp(Tx) : x ∈ X , ∥xj∥ = 1}.

where Tx =

(A11x1, x1) · · · (A1nx1, xn)
...

(An1xn, x1) · · · (Annxn, xn)

 ⊂ C2 is the induced linear relation
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Spectral inclusion for linear relatioins

Theorem (O. Kchaou, R. Aydi, H. Gernandt, M.W.)

⋆ For n ≥ 1,

W n+1(T) ⊆ W n(T)

⋆

σap(T) ⊂ W n(T).

⋆

We(T) :=
{
λ ∈ C | ∃{(xn, yn)}n∈N ⊂ T with ∥xn∥ = 1, xn

w→ 0,

⟨yn, xn⟩ → λ} ⊃ W n(T).
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An example and a followup question

Suppose M,C, K : L2(R) → L2(R), Mü + Cu̇ + Ku = 0

=⇒ d

dt

(
I 0

0 M

)
︸ ︷︷ ︸

A

(
u

u̇

)
=

(
0 I

−c −k

)
︸ ︷︷ ︸

−B

(
u

u̇

)

1. Computing a spectral inclusion of the pencil λA + B.

2. Leverage the matrix structure to achieve a tighter inclusion.

3. Estimates on the tightness of the inclusions.
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Thank you!
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