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Background

Dissipative operators

Definition

An operator A is called dissipative if and only if

Im⟨f ,Af ⟩ ≥ 0

for all f ∈ D(A).

Example

Any symmetric (in particular, selfadjoint) operator S is dissipative because

Im⟨f ,Sf ⟩ = ⟨f ,Sf ⟩ − ⟨f ,Sf ⟩
2i

= 0

for all f ∈ D(S).
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Background

Dissipative operators

Definition

An operator V is called nonnegative (V ≥ 0) if and only if

⟨f ,Vf ⟩ ≥ 0

for all f ∈ D(V ).

Remark

If V ≥ 0 is selfadjoint then there exists a unique square root V 1/2 and

J : Rg(V 1/2) → H, J(V 1/2f ) = f

for f ∈ Rg(V 1/2) is an injective nonnegative well-defined operator. We
will use the notation

V−1/2 := J.
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Background

Dissipative operators

Example

A matrix A ∈ Cn×n is dissipative if and only if Im(A) := 1
2i (A− A∗) is

nonnegative.

Example

If S is symmetric and V ≥ 0 then A = S + iV is dissipative.
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Background

Maximally dissipative operators

Definition

A dissipative operator A is called maximally dissipative if and only if
there is no nontrivial dissipative extension of A.

Example

Any selfadjoint operator is a maximally dissipative operator.
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Background

Dissipative extensions of dissipative operators

Question 1

Let S be a symmetric Laplacian defined on D(S) ⊂ H2(0, 1). How can we
describe all dissipative extensions of the dissipative operator

A := S + iV

where V is a bounded nonnegative operator?
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Background

Complete nonselfadjointness

Definition

Let A be a dissipative operator. A closed subspace M ⊂ H is called a
reducing subspace of A if

D(A) = (D(A) ∩M)⊕ (D(A) ∩M⊥),

A(D(A) ∩M) ⊂ M and A(D(A) ∩M⊥) ⊂ M⊥.

Remark

D(A) ∩M is dense in M, hence (A|M)∗ is well-defined in M and

(A|M)∗ = A∗|M .
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Background

Complete nonselfadjointness

Definition

Let A be a dissipative operator. A closed subspace M ⊂ H is called a
reducing subspace of A if

D(A) = (D(A) ∩M)⊕ (D(A) ∩M⊥),

A(D(A) ∩M) ⊂ M and A(D(A) ∩M⊥) ⊂ M⊥.

Definition

We say that M is a reducing selfadjoint subspace if A|M is selfadjoint
in M.

Definition

A dissipative operator A is called completely nonselfadjoint (c.n.s.a.) if
there is no nontrivial reducing selfadjoint subspace of A.
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Background

Complete nonselfadjointness

Definition

The selfadjoint space of a dissipative operator A is

Hsa(A) = span {M : M is a reducing selfadjoint subspace of A}

and the symmetric space of A is

Hsym(A) = ker(A− A∗).

Properties

Hsa(A) reducing selfadjoint subspace. Actually, Hsa(A) is the largest
set with this property.

Hsa(A) ∩ D(A) ⊂ Hsym(A).
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Background

Complete nonselfadjointness

Theorem (Behrndt, Hassi, de Snoo)

Let S be a symmetric operator and assume that there is a selfadjoint
operator Ŝ ⊃ S such that σ(Ŝ) = σp(Ŝ). Then

S is c.n.s.a ⇐⇒ σp(S) = ∅.

Theorem (Kurasov, Muller, Naboko)

Let A be a maximally dissipative operator such that σ(A) ∩ R is purely
discrete. Then

A is c.n.s.a ⇐⇒ σ(A) ∩ R = ∅.
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Background

Complete nonselfadjointness

Question 2

Let S be a symmetric Laplacian defined on D(S) ⊂ H2(0, 1) and let V be
a bounded nonnegative operator.

Let Â be a given maximally dissipative extension of the dissipative operator

A := S + iV .

Then

is Â completely nonselfadjoint?

If not, what is its selfadjoint space Hsa(Â)?
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Dissipative Extensions of S+iV

Example: Schrödinger-type operators on L2(0, 1).
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Dissipative Extensions of S+iV

Let us consider the following operators.

Laplacian on H2
0 (0, 1)

Smin : D(Smin) = H2
0 (0, 1), Sminf = −f ′′

where

H2
0 (0, 1) =

{
f ∈ H2(0, 1) : f (0) = f (1) = f ′(0) = f ′(1) = 0

}
.

Schrödinger-type operator on H2
0 (0, 1)

Amin := Smin + iV

where V is a multiplication operator for a nonnegative essentially bounded
function V (·) in L2(0, 1).
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Dissipative Extensions of S+iV

Theorem (Characterization of maximally dissipative extensions)

The maximally dissipative extensions of Amin = Smin + iV are fully
characterized in five cases. We focus on one of them.

(1) ÂB,K = ŜB,K + iV where

D(ŜB,K ) =

{
f ∈ H2(0, 1) :

(
f ′(0)
−f ′(1)

)
= B

(
f (0)
f (1)

)}
ŜB,K f = −f ′′ + f (0)k1 + f (1)k2,

K = (k1, k2), k1, k2 ∈ Rg(V 1/2), B ∈ C2×2 and

Im(B)− 1

4
MK ≥ 0

with

MK =

(
∥V−1/2k1∥2 ⟨V−1/2k1,V

−1/2k2⟩
⟨V−1/2k2,V

−1/2k1⟩ ∥V−1/2k2∥2

)
.
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Dissipative Extensions of S+iV

Case (1) of extensions

Recall: ÂB,K = ŜB,K + iV where

D(ŜB,K ) =

{
f ∈ H2(0, 1) :

(
f ′(0)
−f ′(1)

)
= B

(
f (0)
f (1)

)}
,

ŜB,K f = −f ′′ + f (0)k1 + f (1)k2

and
Im(B)− 1

4
MK ≥ 0.

Some useful operators for (1)

ŜB : D(ŜB) = D(ÂB,K ), ŜB f = −f ′′,

S̃B = ŜB

∣∣∣
Hsym(ŜB)

.
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Dissipative Extensions of S+iV

Some useful operators for (1)

ŜB : D(ŜB) = D(ÂB,K ), ŜB f = −f ′′,

S̃B = ŜB

∣∣∣
Hsym(ŜB)

.

Properties

ŜB is maximally dissipative.

S̃B is symmetric.

Smin ⊂ S̃B ⊂ ŜB .

Smin + iV ⊂ S̃B + iV ⊂ ŜB,K + iV
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Complete Nonselfadjointness of the Extensions

Theorem

Let Â be a dissipative extension of A = S + iV where S is symmetric and
V ≥ 0. If S is c.n.s.a. and if

Hsym(Â) = Hsym(A)

then Â is c.n.s.a.

Remark

Hsym(A) = Hsym(S + iV ) = D(S) ∩ ker(V ).
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Complete Nonselfadjointness of the Extensions

Theorem

Hsym(ŜB,K + iV ) =

f ∈ D(ŜB) :

(
f (0)
f (1)

)
∈ ker(Im(B)− 1

4MK ),

Vf = i
2(f (0)k1 + f (1)k2)

 .

Theorem
Hsym(ŜB,K + iV ) ∩ kerV = D(S̃B) ∩ kerV .

Example

If rank(Im(B)− 1
4MK ) = 2 then ŜB,K + iV is c.n.s.a.

If k1 = k2 = 0 then SB,K + iV is c.n.s.a.

If ŜB is selfadjoint then Im(B) = 0, k1 = k2 = 0 and ŜB,K + iV is
c.n.s.a.
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Complete Nonselfadjointness of the Extensions

Selfadjoint spaces of the extensions

Theorem

Hsym(ŜB,K + iV ) ∩ ker(V ) = D(S̃B) ∩ ker(V ).

Theorem

There exists a space U with dim(U) ≤ 2 and U ∩ ker(V ) = {0} such that

Hsym(ŜB,K + iV ) = (D(S̃B) ∩ ker(V ))+̇U .

Theorem

If S̃B is c.n.s.a. then

dim(Hsa(ŜB,K + iV )) ≤ dim(U) ≤ 2.
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Complete Nonselfadjointness of the Extensions

Theorem

Let r1, r2 ∈ R with r1 ̸= r2 and nonzero functions f , g ∈ H2(0, 1) such that

(Smin + iV )∗f = −f ′′ − iVf = r1f , f (1) = 0,

(Smin + iV )∗g = −g ′′ − iVg = r2g , g(0) = 0.

Then there exists a maximally dissipative extension of the form ŜB,K + iV

such that Hsa(ŜB,K + iV ) = span{f , g}

Proof.

From the eigenvalue equation, it follows that f (0) ̸= 0 and g(1) ̸= 0.
Therefore, the proof follows by choosing

B :=


f ′(0)

f (0)

g ′(0)

g(1)

f ′(1)

f (0)

g ′(1)

g(1)

 and K :=

(
2

f (0)
Vf ,

2

g(1)
Vg

)
.
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Complete Nonselfadjointness of the Extensions
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Complete Nonselfadjointness of the Extensions

¡Gracias!
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Complete Nonselfadjointness of the Extensions

(2) Âb12,b22,k = Ŝb12,b22,k + iV where

D(Ŝb12,b22,k) =

{
f ∈ H2(0, 1) :

(
f (0)
f ′(0)

)
=

(
−b22 0
b12

1
b22

)(
f ′(0)
−f ′(1)

)}
Ŝb12,b22,k f = −f ′′ + f (1)k

b12, b22 ∈ C, b22 ̸= 0, k ∈ Rg(V 1/2) and

Im(b12b12)−
1

4
∥V−1/2k∥2 ≥ 0.
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Complete Nonselfadjointness of the Extensions

(3) Âb11,k = Ŝb11,k + iV where

D(Ŝb11,k) =

{
f ∈ H2(0, 1) :

(
f (1)
f ′(0)

)
=

(
0 0
b11 0

)(
f (0)

−f ′(1)

)}
Ŝb11,k f = −f ′′ + f (0)k

b11 ∈ C, k ∈ Rg(V 1/2) and

Im(b11)−
1

4
∥V−1/2k∥2 ≥ 0.
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Complete Nonselfadjointness of the Extensions

(4) Âb12,k = Ŝb12,k + iV where

D(Ŝb12,k) =

{
f ∈ H2(0, 1) :

(
f (0)

−f ′(1)

)
=

(
0 0
0 b12

)(
f ′(0)
f (1)

)}
Ŝb12,k f = −f ′′ + f (1)k

b12 ∈ C, k ∈ Rg(V 1/2) and

Im(b12)−
1

4
∥V−1/2k∥2 ≥ 0.
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Complete Nonselfadjointness of the Extensions

(5) Â = Ŝ + iV where

D(Ŝ) =

{
f ∈ H2(0, 1) :

(
f (0)
f (1)

)
=

(
0 0
0 0

)(
f ′(0)
−f ′(1)

)}
Ŝ f = −f ′′.
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Complete Nonselfadjointness of the Extensions

Schrödinger operator on H2(0, 1) with V = ρ⟨ϕ, ·⟩ϕ
Assume V = ρ⟨ϕ, ·⟩ϕ with ρ > 0 and ∥ϕ∥ = 1. Let us also assume that

B =

(
b11 b12
b21 b22

)
with

Im(b11) > 0, Im(b22) > 0, b12 = b21.

Observe that, Rg(V 1/2) = span{ϕ}, so k1 = λ1ϕ, k2 = λ2ϕ and because
of

V−1/2ϕ = ρ−1/2ϕ

we can show that ŜB,K + iρ⟨ϕ, ·⟩ϕ is maximally dissipative if and only if

|λ1|2

4ρIm(b11)
+

|λ2|2

4ρIm(b22)
≤ 1
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Complete Nonselfadjointness of the Extensions

Rank-One Perturbation: Ellipse

|λ1|

|λ2|

2ρ1/2
√
Im(b22)

2ρ1/2
√

Im(b11)
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Complete Nonselfadjointness of the Extensions

Maximally dissipative operators

Definition

A dissipative operator A is called maximally dissipative if and only if
there is no nontrivial dissipative extension of A.

Theorem

Let A be a dissipative operator. Then the following statements are
equivalent

A is maximally dissipative

There is a λ ∈ C− such that λ ∈ ρ(A).

C− ⊂ ρ(A)

−A∗ is dissipative.

iA is the generator of a strongly continuous semigroup of contractions.
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Complete Nonselfadjointness of the Extensions

Nonnegative Matrix

A matrix M ∈ Cn×n is nonnegative (or M ≥ 0) if and only if

⟨x⃗ ,Mx⃗⟩ ≥ 0

for all x⃗ ∈ Cn

Remarks

M ≥ 0 if and only if M is semi-definite positive.

M ≥ 0 if and only if its eigenvalues are nonnegative.

If n = 2 and M =

(
m11 m12

m21 m22

)
then M ≥ 0 if and only if

m11 ≥ 0, m22 ≥ 0 and det(M) = m11m22 −m12m21 ≥ 0.
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