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Motivation

Differential equations are fundamental tools in modeling physical
systems — from quantum mechanics to fluid dynamics.

Analytical solutions are often intractable; numerical methods provide
approximations but introduce discretization and stability challenges.

Advances in deep learning offer new, flexible tools to solve differential
equations through data-driven or physics-informed models.

Spectral theory connects linear operators, eigenvalue problems, and
function spaces — crucial in understanding wave behavior, stability, and
modal dynamics.

Recent research suggests that spectral insights can help design better
neural architectures and explain training behavior (e.g., spectral bias).

This project aims to explore the intersection of deep learning, differential
equations, and spectral theory through computational experiments.
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A Single Dense Neuron for Regression Tasks

Artificial Intelligence (AI): Simulates
intelligent behavior (e.g., reasoning,
planning).

Machine Learning (ML): Learns
patterns from data for prediction and
decision-making.

Deep Learning (DL): Uses multi-layer
neural networks to model complex
functions.

DL ⊂ ML ⊂ AI

Examples:
AI: Robotics, game agents
ML: Spam filters, recommendations
DL: Image classification,
text-to-speech

House Price Prediction (Single Neuron) Input
features:

x1 Size (m2)

x2 Number of rooms

x3 Location score

x4 Year built

x5 Distance to center (km)

Single house prediction:

ŷ = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + b

Matrix form for n houses:

ŷ = Xw + b

X =


x11 x12 . . . x15
x21 x22 . . . x25

.

.

.
.
.
.

. . .
.
.
.

xn1 xn2 . . . xn5

 , w =


w1
w2

.

.

.
w5



Output ŷ ∈ Rn gives predicted prices.
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From a Single Neuron to a Small Neural Network
Single Neuron (Fully Connected)

x1

x2

x3

x4

x5

∑
wixi + b ŷ

Neural Network (1 Hidden Layer, 2
Outputs)

x1

x2

x3

x4

x5

h1

h2

h3

h4

ŷ1

ŷ2

Single Neuron Equation:

ŷ =
5∑

i=1

wixi + b or ŷ = x⊤w + b

Neural Network (Layered Form):

h = W1x+ b1

ŷ = W2h+ b2

Shapes:
x ∈ R5

W1 ∈ R4×5, b1 ∈ R4

W2 ∈ R2×4, b2 ∈ R2

ŷ ∈ R2
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Why Layers Alone Are Not Enough

Without activation functions:

h = W1x+ b1, ŷ = W2h+ b2

Substituting:

ŷ = W2(W1x+ b1) + b2 = W2W1︸ ︷︷ ︸
Weq

x+W2b1 + b2︸ ︷︷ ︸
beq

⇒ ŷ = Weqx+ beq

Conclusion: multiple layers without nonlinearities
collapse to a single linear map.

To model non-linear relationships:

h = σ(W1x+ b1), ŷ = W2h+ b2

Now the network can learn non-linear functions.

Common Nonlinearities:

Sigmoid: σ(x) = 1
1+e−x

Tanh: tanh(x) = ex−e−x

ex+e−x

ReLU: ReLU(x) = max(0, x)

−4 −2 2 4

2

4

x

σ(x)

Sigmoid
Tanh
ReLU

Nonlinearities add expressive power
beyond linear systems.
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Neural Networks as Universal Approximators

Figure 1: Biological and mathematical
abstraction of a neural network

Source: Fu, T., Zhang, J., Sun, R. et al. Optical
neural networks: progress and challenges. Light Sci
Appl 13, 263 (2024).
https://doi.org/10.1038/s41377-024-01590-3

Universal Approximation
Theorem
Consider a fixed activation function σ : R → R
that is not a polynomial. For any integers d, D,
any continuous function f : Rd → RD , any
compact set K ⊂ Rd, and any ϵ > 0, there exists a
neural network function fϵ : Rd → RD such that:

fϵ = W2 ◦ σ ◦ W1

where W1, W2 are affine maps and:

sup
x∈K

∥f(x) − fϵ(x)∥ < ϵ

Implication: Neural networks can approximate
any continuous function on compact domains
arbitrarily well.
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Learning as Optimization in Neural Networks

Training data:

{(x(i), y(i))}ni=1, x(i) ∈ Rd, y(i) ∈ RD

Prediction:

ŷ(i) = fθ(x
(i)), θ = {Wk, bk}

Loss (MSE):

L(θ) =
1

n

n∑
i=1

∥ŷ(i) − y(i)∥2

Training (Gradient Descent):

θt+1 = θt − η∇θL(θt)

Why not solve analytically?
Non-convex loss landscape
Millions of parameters
No closed-form for ∇θL = 0

Gradient Computation:
Backpropagation applies the chain rule
layer-by-layer:

∂L
∂Wk

=
∂L
∂ak

·
∂ak

∂Wk

where ak is the activation at layer k

Implementation:
Gradients are computed via automatic
differentiation
No manual derivatives needed

Hardware Acceleration:
Matrix operations run on GPUs/TPUs
Enables fast training over large datasets

Goal: Learn parameters θ that minimize loss
and generalize to unseen data
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PINNs: Solving PDEs through Optimization

Physics-Informed Neural Networks (PINNs) solve PDEs by embedding physical laws
into the loss function. The network approximates u(x, t) by minimizing residuals of the
governing equations, boundary, and initial conditions.

Governing PDE: Describes the physical system (e.g., heat, wave, Burgers’ equation).

D[u(x, t);λ] = f(x, t), x ∈ Ω, t ∈ [0,+∞)

Boundary Conditions: Applied on the spatial domain boundary ∂Ω.

Bk[u(x, t)] = gk(x, t), x ∈ Γk ⊆ ∂Ω

Initial Conditions: Needed for time-dependent problems to set initial state.

u(x, 0) = u0(x),
∂u(x, t)

∂t

∣∣∣∣
t=0

= u′
0(x)

Total Loss Function: Combines all physics constraints into one objective.

L(ω) = Lp(ω) + Lb(ω) + Li(ω)
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PINNs: Solving PDEs through Optimization
The loss terms guide the network to approximate a solution that respects:

the PDE dynamics at interior points,
the boundary values at domain edges,
and the initial state at t = 0.

PDE Residual Loss: Enforces the differential equation at collocation points.

Lp(ω) =
1

Np

Np∑
i=1

∥D[NN(xi, ti;ω)]− f(xi, ti)∥2

Boundary Loss: Penalizes mismatch between predicted and exact boundary values.

Lb(ω) =
∑
k

1

Nb

Nb∑
j=1

∥Bk[NN(xj , tj ;ω)]− gk(xj , tj)∥2

Initial Loss: Ensures the network respects initial conditions of u and ∂u/∂t.

Li(ω) = ∥NN(x, 0)− u0(x)∥2 +

∥∥∥∥∂NN(x, 0;ω)

∂t
− u′

0(x)

∥∥∥∥2
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PINNs: Solving PDEs through Optimization

Figure 2: The network minimizes the residuals of the governing equation,
boundary conditions, and initial conditions through loss functions Lp(ω),
Lb(ω), and Li(ω), respectively.
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Why PINNs Are Different from Traditional Neural
Networks

Traditional Neural Networks:

Require labeled data: (x(i), y(i))

Learn to interpolate from training data

Generalize only within the domain of seen data

Physics-Informed Neural Networks (PINNs):

Do not require a labeled dataset

Instead, use physical laws (PDEs) to generate training signals

Can extrapolate to unseen domains by obeying the governing equations

Directly minimize residuals of the PDE + boundary/initial conditions
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Problem Setup: Solving an ODE with PINNs

We consider the first-order ODE:

du

dt
= sin(t)− u, u(0) = 1

Analytical solution:

u(t) =
1

2
(sin(t)− cos(t)) +

3

2
e−t

Domain: t ∈ [0, 5]

Used for benchmarking PINNs against Euler, RK2, RK4

PINN Setup:

Neural network: 2 layers, 128 neurons each, Tanh activation

Physics loss = PDE residual + initial condition

Trained for 10k and 20k epochs on collocation points in [0, 5]
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Learning Dynamics of the PINN
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PINN solution shown every 20 epochs, from epoch 0 to 180

Initial residual is large; network gradually learns the dynamics

Visible convergence around epoch 100–150
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Accuracy Comparison

Method MSE Max Error
Euler 1.9888× 10−5 8.4372× 10−3

RK2 1.7121× 10−9 7.8139× 10−5

RK4 1.0440× 10−18 1.8441× 10−9

PINN @10k 1.8149× 10−7 1.6839× 10−3

PINN @20k 1.1398× 10−8 4.0000× 10−4

Table 1: Comparison of mean squared and maximum error for all methods.

Observations:

RK4 yields highest accuracy (used as benchmark)

PINN improves significantly with longer training

PINNs learn a continuous function over time

Can be evaluated at any t — even outside training domain

Traditional methods compute only on fixed grids
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Lane-Emden Equation: A Showcase for PINNs

The Lane-Emden equation is a dimensionless form of the Poisson equation
used in astrophysics to model polytropic stellar structures.
It describes the structure of a self-gravitating, spherically symmetric star in
hydrostatic equilibrium, where pressure and density obey the relation:
P ∝ ρ1+1/n.

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
+ θn = 0

Here, ξ is the dimensionless radius, θ(ξ) is the normalized density, and n is the
polytropic index.
Boundary conditions at the stellar center:

θ(0) = 1, θ′(0) = 0

Only a few analytical solutions exist:

θn=0 = 1− ξ2

6
, θn=1 =

sin ξ

ξ
, θn=5 =

1√
1 + ξ2

3

Historical references: Lane (1870), Emden (1907), Chandrasekhar (1957)
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PINN Formulation for the Lane-Emden Equation (1/2)

The classical Lane-Emden equation models stellar structure under a polytropic
assumption:

d2θ

dt2
+

2

t

dθ

dt
+ θn = 0

We reformulate it as a 2D PINN problem:

θ(t, n), with t = radius, n = polytropic index

This enables the neural network to generalize across families of stellar models,
not just one.

Derivatives ∂θ/∂t and ∂2θ/∂t2 are computed via automatic differentiation.

The residual function enforced at each collocation point (ti, nj) is:

R(ti, nj) =
∂2θ

∂t2
+

2

ti

∂θ

∂t
+ θnj
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PINN Loss Formulation for the Lane-Emden Equation

The total loss combines:

the residual of the PDE
boundary conditions at t = 0

L = Lresidual + λ1Lθ(0,n) + λ2L ∂θ
∂t

(0,n)

Lresidual =
1

Nb

m∑
i=1

p∑
j=1

R(ti, nj)
2

Lθ(0,n) =

p∑
j=1

(θ(0, nj)− 1)2

L ∂θ
∂t

(0,n)
=

p∑
j=1

(
∂θ

∂t
(0, nj)

)2

Here, λ1 and λ2 are weighting coefficients controlling the emphasis on boundary conditions relative to the
residual. These may be tuned manually or learned adaptively during training. The conditions reflect
physical requirements:

θ(0, n) = 1,
dθ

dt
(0, n) = 0
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PINN Solutions to the Lane-Emden Equation
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Figure 3: Residual-based PINN predictions (solid lines) versus classical Runge-Kutta
(RK) solutions (dashed lines) for the Lane-Emden equation. Left: PINN interpolates
accurately over collocation points for integer indices n = 0 to 5. Right: The PINN
generalizes to non-integer indices n = 1.5 to 4.5 beyond the trained region. PINNs exhibit
strong interpolation and extrapolation capabilities for singular ODEs.
Source: A.-I. Mohut, C.-A. Popa, Residual-Based PINNs for Accurate Solutions of the Lane-Emden
Equation, in preparation (2025).
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Spectral PINN: 1D Laplace Eigenproblem

We consider the eigenvalue problem:

−d2u

dx2
= λu, x ∈ (0, 1), u(0) = u(1) = 0

The true eigenvalues and eigenfunctions are:

λn = n2π2, un(x) = sin(nπx), n = 1, 2, 3, . . .

The PINN is trained to minimize:

L = ∥u′′(x) + λu(x)∥2 + ∥u(0)∥2 + ∥u(1)∥2

We optimize both uθ(x) and λ jointly.

Goal: observe how well the PINN captures different eigenmodes and how
frequency affects convergence.

Andrei-Ionut, Mohut, Spectral Study of PINNs June 3, 2025 20 / 38



Spectral PINN Failure Case: Trivial Solution

The loss function penalizes deviation from the PDE and the Dirichlet
boundary conditions:

L = ∥u′′(x) + λu(x)∥2 + ∥u(0)∥2 + ∥u(1)∥2

We optimize both the function uθ(x) and the eigenvalue λ jointly using
automatic differentiation and Adam optimizer.
However, in this example, the PINN collapsed to a trivial solution u(x) ≈ 0,
which minimizes the loss but is not an eigenfunction.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

1D Laplace Eigenproblem with PINN
PINN solution
  0.8999

Exact sin( x)
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Spectral PINN: Normalization & Implicit BCs

Instead of enforcing boundary conditions via the loss, we embed them into the
neural network output via an ansatz:

u(x) = x(1− x) · ûθ(x)⇒ u(0) = u(1) = 0 automatically

To avoid trivial solutions u(x) ≈ 0, we normalize the output:

Lnorm =
(
∥u∥2 − 1

)2
The total loss becomes:

L = ∥u′′(x) + λu(x)∥2 + α · Lnorm

where α is a weighting parameter (e.g., 100).

This yields a valid eigenfunction shape and eigenvalue without explicitly
enforcing boundary conditions.

Andrei-Ionut, Mohut, Spectral Study of PINNs June 3, 2025 22 / 38



Spectral PINN: Normalization & Implicit BCs

Eigenfunctions are only defined up to sign: both sin(πx) and − sin(πx) are
valid.
We align the sign during training using a phase constraint:

Lphase = ReLU(−u(0.5))2

For fair comparison with ground truth, we normalize:

u(x)← u(x)

max |u(x)|
The PINN now learns the correct frequency and shape, with clean output
thanks to ansatz and normalization.
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Exact sin( x)
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Spectral PINN: Learning Higher Eigenmodes

To compute higher modes (n > 1), we train separate PINNs with:
1 Implicit BCs: Ansatz u(x) = x(1− x) · ûθ(x)
2 Normalization: Enforce ∥u∥L2 ≈ 1
3 Orthogonality: Enforce ⟨un, uk⟩ ≈ 0 for all k < n

Sign ambiguity is expected (both sin(nπx) and − sin(nπx) are valid
eigenfunctions). We postprocess by flipping un to align with the ground truth.
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PINN vs Exact Eigenmodes of 1D Laplace Problem

PINN Mode 1,   9.8696
Exact Mode 1
PINN Mode 2,   39.4785
Exact Mode 2
PINN Mode 3,   88.8194
Exact Mode 3
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Eigenvalue Problem: Setup and Numerical Methods

Problem:

−u′′(x) = λu(x), x ∈ [0, 2], u(0) = 0, u′(2) = 0

Analytical solution: u(x) = sin
(
πx
4

)
, λ =

(
π
4

)2 ≈ 0.6169

Methods Compared:

PINN (Physics-Informed Neural Network)

FDM (Finite Differences)

Shooting Method

Rayleigh Quotient

Galerkin Method

Each method aims to compute the lowest eigenvalue λ1 and associated
eigenfunction u(x), compared to the known analytical ground state.
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Numerical Results and Accuracy

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.0

0.2

0.4

0.6

0.8

1.0
u(

x)

Method     |  Error | L2 Error | Runtime (s)
---------------------------------------------
PINN       | 8.87e-05 | 9.94e-04 |    28.8931
FDM        | 2.05e-03 | 3.31e-03 |     0.0166
Shooting   | 1.22e-04 | 1.22e-04 |     0.0091
Rayleigh   | 5.08e-07 | 2.26e-07 |     0.0008
Galerkin   | 0.00e+00 | 0.00e+00 |     0.0001

Robin BVP Eigenfunction Comparison
Exact ( =0.6169)
PINN (   0.6168)
FDM (   0.6189)
Shooting (   0.6167)
Rayleigh (   0.6168)
Galerkin (   0.6169)

All methods approximate the ground state eigenvalue accurately.
Galerkin and Rayleigh methods nearly exact for this specific
problem.
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Strengths and Weaknesses of Methods

Method Strengths Weaknesses
PINN Flexible, can handle complex ge-

ometries and physics; learns λ au-
tomatically

High runtime; requires tuning and
many epochs

FDM Easy to implement; fast runtime Less accurate near boundaries;
needs fine grids

Shooting Very accurate for 1D problems;
fast

Hard to generalize to higher di-
mensions or multiple eigenmodes

Rayleigh Extremely fast; accurate with good
trial function

Accuracy depends heavily on
choice of trial function

Galerkin Can achieve exact result with ap-
propriate basis

Requires symbolic or analytic
knowledge of solution space

Table 2: Qualitative comparison of numerical methods
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Spectral Bias in PINNs: Motivation & Setup

Goal: Demonstrate the spectral bias of PINNs — their tendency to learn
low-frequency components of a solution faster than high-frequency ones.

We construct a known multi-frequency solution using only odd modes:

u(x) =
∑

n=1,3,5,7,9

1

n2
sin(nπx)

We plug this into:

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0

to obtain a custom ODE with known forcing term f(x), ensuring full control
over the solution.
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PINN Setup and Frequency Tracking

We solve the equation using a PINN with no ansatz:

Boundary conditions u(0) = u(1) = 0 are imposed directly via the
loss.

The total loss includes:
L = LPDE + LBC

During training, the PINN solution is projected onto the Fourier basis:

coeffn = ⟨uθ, sin(nπx)⟩

and compared to the true amplitudes an = 1
n2 .

A mode is considered converged when:∣∣∣∣coeffn − an

an

∣∣∣∣ < 1% for at least 100 epochs

Andrei-Ionut, Mohut, Spectral Study of PINNs June 3, 2025 29 / 38



Results: Convergence of Fourier Modes
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Figure 4: Learned Fourier amplitudes (solid lines) compared to target values (gray
dashed). Dotted vertical lines show when each mode’s error drops and stays below
1% for 100 epochs.
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Interpreting Spectral Bias in PINNs

Spectral bias observed: lower-frequency modes (e.g., sin(πx)) converge first.

Higher modes (e.g., sin(7πx), sin(9πx)) take significantly longer to stabilize.

This behavior reveals a frequency-ordering in how PINNs absorb information.

This is spectral bias:

A known behavior of neural networks trained via gradient descent
More pronounced with smooth activations (e.g., tanh)

Why it matters:

Explains why PINNs may struggle with high-frequency PDEs
Suggests using enriched input encodings (e.g., Fourier features,
positional encoding)
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Random Fourier Feature (RFF) Embedding for PINNs

Motivation: Due to spectral bias, PINNs learn low-frequency features faster
— making high-frequency learning inefficient.

Solution: Use a Random Fourier Feature (RFF) embedding to enrich the
input space with high-frequency content.

The original input vector x = (t, n) is transformed as:

Φ(x) =

[
cos(Bx)
sin(Bx)

]
where:

B ∈ RD×2, with Bij ∼ N (0, s2)
s is a hyperparameter controlling the frequency scale

The PINN is then trained on Φ(t, n) instead of (t, n), allowing the network to
access multi-scale representations.

Effect: Accelerates learning of oscillatory (high-frequency) components that
would otherwise converge slowly due to spectral bias.
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Improving Lane-Emden PINNs with RFF Embeddings

Goal: Reduce absolute error in PINN solutions of the Lane-Emden equation
by mitigating spectral bias.

Method: Use a Random Fourier Feature (RFF) embedding to enrich the
input (t, n) space with high-frequency components.

Observation: RFF-PINNs yield substantial accuracy improvements across all
tested polytropic indices n, including singular and stiff regimes.
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Key Takeaways

Neural networks can approximate any continuous function — but nonlinear
activations are critical to their power.

PINNs embed differential equations directly into the loss function — allowing
solution of ODEs/PDEs without labeled data.

PINNs are flexible but optimization-heavy — high runtime and
convergence sensitivity are key challenges.

Spectral PINNs solve eigenvalue problems by combining physics constraints,
normalization, and ansatz-driven architectures.

Spectral bias causes PINNs to learn low-frequency modes first —
high-frequency accuracy requires enriched encodings.

Random Fourier Features (RFFs) improve high-frequency learning and
address limitations of smooth activations like tanh.
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State of the Art: PINNs and Spectral Approaches

PINNs have been extended to:

Multiphysics (e.g., Navier-Stokes, Maxwell, Schrödinger)
Irregular and multi-domain geometries
Inverse problems and data assimilation

Key Innovations:

Adaptive weighting of loss terms
Domain decomposition for scaling to large domains
Fourier feature embeddings for frequency-rich solutions
Complex PINN architectures

Limitations:

Struggle with stiff or chaotic dynamics
Require extensive hyperparameter tuning
Slow convergence compared to classical solvers
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Thank you!
andrei.mohut@student.upt.ro
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