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The Schrédinger equation

The possible states that the electron can occupy are determined by the Schrédinger
equation

W&
2m dz?
We study the differential expression

+V(z)¥ = EU.

d2
H = gzt V(z), on(a,b).
o Ve Li(a,b)and real
e V is adistribution @

e V' is complex @
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Konnig-Penney Model

Quantum Mechanics of Electrons wn Crystal Lattices.
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Part 1:Introduction Singular interactions

eb—0and Vy — co.

V(z) = > é(z — na)

“The energy values which an electron moving through the lattice may have, hence form
a spectrum consisting of continuous pieces separated by finite
intervals.” Kronig-Penney 1930.
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Part 1:Introduction Singular interactions

Schrédinger equation with § interactions

o X = (zn), a = (an) C Rwith (z,) increasing.

The energy states are determined by the equation

Pf
—@—i— _1an6(m—xn)f—Ef.
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Schrédinger equation with § interactions

o X = (zn), a = (an) C Rwith (z,) increasing.

The energy states are determined by the equation

Pf —
Tz + _1an6(m —xzn)f = Ef.
We want to study the differential expression
Z/{f:=——+q f—l—Zan —zn)f. )

v
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Part 1:Introduction Singular interactions

Schrédinger equation with § interactions

o X = (zn), a = (an) C Rwith (z,) increasing.

The energy states are determined by the equation

Pf —
Tz + _1an6(m —xzn)f = Ef.
We want to study the differential expression
Z/{f:=——+q f—l—Zan —zn)f. )

v

Is it possible to find a self-adjoint operator for this differential expression?
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Part 1:Introduction Definitions

Definition (Symmetric operator)

We say that A is a symmetric operator if and only if for all x,y € D(A)

(Az,y) — (z, Ay) = 0.
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Definition (Symmetric operator)

We say that A is a symmetric operator if and only if for all x,y € D(A)

<A$,y> - <$7Ay> =0.

Definition (Deficiency indices)

For a symmetric operator A, we define the deficiency indices of A by

Nt (A) := dim(rg(A £ 7).
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We say that A is a symmetric operator if and only if for all x,y € D(A)

(Az,y) — (vay> =0.

Definition (Deficiency indices)
For a symmetric operator A, we define the deficiency indices of A by

Nt (A) := dim(rg(A £ 7).

A,

Definition (Self-adjoint operator)
We say that A is a (essentially) self-adjoint operator if and only if is symmetric with
deficiency indices (0, 0).

v

_ Aspects of Spectral Theory for Linear Operators June 5, 2025 10/30



Part 1:Introduction Definitions

Definition (Symmetric operator)
We say that A is a symmetric operator if and only if for all x,y € D(A)

(Az,y) — (vay> =0.

Definition (Deficiency indices)
For a symmetric operator A, we define the deficiency indices of A by

Nt (A) := dim(rg(A £ 7).

A,

Definition (Self-adjoint operator)
We say that A is a (essentially) self-adjoint operator if and only if is symmetric with
deficiency indices (0, 0).

v

_ Aspects of Spectral Theory for Linear Operators June 5, 2025 10/30



Part 1:Introduction Definitions

Weyl-Titchmarsh function

Consider the Sturm-Liouville problem
—y"(z) + V(2)y(z) = My(x), € [a,b).
Let {u,v} be a fundamental system with boundary conditions

u(a,\) =0, v(a,\) =1,
uw'(a,\) =1, v'(a,\)=0.

lfv ¢ L%(a,b),
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Part 1:Introduction Definitions

Weyl-Titchmarsh function

Consider the Sturm-Liouville problem
—y' (@) + V(2)y(z) = Xy(z), = € [a,b).
Let {u,v} be a fundamental system with boundary conditions

u(a,\) =0, v(a,\) =1,
w(a,\) =1, v'(a,\) =0.

If v ¢ L?(a,b),then the Weyl-Titchmarsh function for the Sturm-Liouville problem is the
complex function m(-) such that

w=uv+m\u € L*(a,b).
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Weyl-Titchmarsh function

Consider the Sturm-Liouville problem
—y"(z) + V(2)y(z) = My(x), € [a,b).
Let {u,v} be a fundamental system with boundary conditions

u(a,\) =0, v(a,\) =1,
uw'(a,\) =1, v'(a,\)=0.

If v ¢ L?(a,b),then the Weyl-Titchmarsh function for the Sturm-Liouville problem is the
complex function m(-) such that

w=v+m(\u € L*(a,b).

e The Weyl-Titchmarsh function is also called the Dirichlet to Neumann map.

e The eigenvalues of the problem with boundary condition y(a) = 0 are precisely the
poles of the Weyl function.
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Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :

Af=—f"(z), D(A)=Hj(0,)
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :
Af = —f"(z), D(A)= H;(0,)

with

H3(0,7) = {f € L*(0,7) : f, f' € ACic(0,7), f € L*(0, ), ;
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :
Af = —f"(z), D(A)= H;(0,)

with

2 _ 2 . ’ " 2 f(O):f(l):O
Hy(0,7) = {f € L°(0,m): f,f € ACioc(0,7), f7 € L (O,W),f,(o) (1) = }

e Integration by parts shows that A is symmetric and its deficiency indices are (2, 2).
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Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :
Af = —f"(z), D(A)= H;(0,)

with

2 _ 2 . ’ " 2 f(O):f(l):O
Hy(0,7) = {f € L°(0,m): f,f € ACioc(0,7), f7 € L (O,W),f,(o) (1) = }

e Integration by parts shows that A is symmetric and its deficiency indices are (2, 2).
e The eigenvalue equation

—f"(x) =Xf(z), z€[0,7], XeC,

has general solution
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Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :
Af = —f"(z), D(A)= H;(0,)

with

2 _ 2 . ’ " 2 f(O):f(l):O
Hy(0,7) = {f € L°(0,m): f,f € ACioc(0,7), f7 € L (O,W),f,(o) (1) = }

e Integration by parts shows that A is symmetric and its deficiency indices are (2, 2).
e The eigenvalue equation

—f"(x) = Xf(x), xze€l0,7], XeC,
has general solution

f(x) = Cisin(VAz) + Cacos(VAz).
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Example 1: Sturm-Liouville on an interval

e Consider in L*(0,7) :
Af = —f"(z), D(A)= H;(0,)

with

2 _ 2 . ’ " 2 f(O):f(l):O
Hy(0,7) = {f € L°(0,m): f,f € ACioc(0,7), f7 € L (O,W),f,(o) (1) = }

e Integration by parts shows that A is symmetric and its deficiency indices are (2, 2).
e The eigenvalue equation

—f"(x) = Xf(x), xze€l0,7], XeC,
has general solution

f(x) = Cisin(VAz) + Cacos(VAz).

e There is no Weyl function.
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Example 1: Sturm-Liouville on a ray
e Consider in L*(0, c0) :
Af ==f"(z), D(A)= Hg(0,00)
with
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e Integration by parts shows that A is symmetric and its deficiency indices are (1,1).
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on a ray

e Consider in L*(0, c0) :
Af=~f"(2), D(A)=Hg(0,00)
with
H{(0,00) = {f € L*(0,00) : f, f' € ACic(0,00), f” € L*(0,00), f(0) = f'(0) =0},

e Integration by parts shows that A is symmetric and its deficiency indices are (1,1).
e The eigenvalue equation

—f"(x) = Af(z), x€[0,00), Ne€C.

has general solution
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Example 1: Sturm-Liouville on a ray

e Consider in L*(0, c0) :
Af=~f"(2), D(A)=Hg(0,00)
with
H{(0,00) = {f € L*(0,00) : f, f' € ACic(0, 00), f” € L*(0,00), f(0) = f'(0) = 0},

e Integration by parts shows that A is symmetric and its deficiency indices are (1,1).
e The eigenvalue equation

—f"(x) = Af(z), x€[0,00), Ne€C.
has general solution

sin(v/Az)

¥y + C cos(VAx).
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Example 1: Sturm-Liouville on a ray

e Consider in L*(0, c0) :
Af=~f"(2), D(A)=Hg(0,00)
with
H{(0,00) = {f € L*(0,00) : f, f' € ACic(0, 00), f” € L*(0,00), f(0) = f'(0) = 0},

Integration by parts shows that A is symmetric and its deficiency indices are (1,1).
The eigenvalue equation

—f"(x) = Af(z), x€[0,00), Ne€C.

has general solution

sin(v/Az)

¥y + C cos(VAx).

The Weyl function is
m(\) = ivVA.
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on a ray

e Consider in L*(0, c0) :
Af =—f"(z), D(A)= Hj(0,00)
with
Hg(0,00) = {f € L*(0,00) : f, f" € ACiec(0,00), f" € L*(0, 00), £(0)

The eigenvalue equation
—f"(x) = Af(z), x€[0,00), Ne€C.

has general solution

flz) = 01% + C cos(VAx).
e The Weyl function is
m(\) =iVA.  There are no eigenvalues
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Part 1:Introduction Definitions

Examples of self-adjoint operators

Free particle

o Af = —f" with D(A) = H3(a,b) := H?(a,b) N {f(a) = f(b) = 0}.
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Free particle

o Af = —f" with D(A) = H3(a,b) := H?(a,b) N {f(a) = f(b) = 0}.

o(A) = o4(A) = {(bw_kay}k .

o Af = —f" with D(A) = HZ(a,b) := H*(0,00) N {f(0) = 0}.
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Examples of self-adjoint operators

Free particle

o Af = —f" with D(A) = H3(a,b) := H?(a,b) N {f(a) = f(b) = 0}.

o(A) = o4(A) = {(bw_kay}k .

o Af = —f" with D(A) = HZ(a,b) := H*(0,00) N {f(0) = 0}.
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Part 1:Introduction Definitions

Examples of self-adjoint operators

Free particle

o Af = —f" with D(A) = H3(a,b) := H?(a,b) N {f(a) = f(b) = 0}.

o(A) = ag(A) = {(bw_kay}k :

o Af = —f" with D(A) = HZ(a,b) := H*(0,00) N {f(0) = 0}.

O'(A) = Oess(4) = [0,00).

e with no eigenvalues

V.

Harmonic oscillator

o Af = —f"+ 22 fwith D(A) = {f € L*(R) : f, f' € ACioc(R), —f"" + 2% f € L*(R)}.

v
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Part 1:Introduction Definitions

Examples of self-adjoint operators

Free particle

o Af = —f" with D(A) = H3(a,b) := H?(a,b) N {f(a) = f(b) = 0}.

o(A) = ag(A) = {(bw_kay}k :

o Af = —f" with D(A) = HZ(a,b) := H*(0,00) N {f(0) = 0}.

O'(A) = Oess(4) = [0,00).

e with no eigenvalues

V.

Harmonic oscillator

o Af = —f"+2fwith D(A) = {f € L*(R) : f, ' € ACuo(R), —f" +22f € L*(R)}.
o(A) =04(A4) = {k + %}kGNU{O} .

_ Aspects of Spectral Theory for Linear Operators June 5, 2025 14/30




Part 2: Operators with & interactions

Table of Contents

e Part 2: Operators with ¢ interactions

_ Aspects of Spectral Theory for Linear Operators June 5, 2025 15/30



Part 2: Operators with & interactions

Conditions associated to the § interactions

e Let f be a function in H?(—oo,y) & H?(y, 00).
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Conditions associated to the § interactions

e Let f be a function in H?(—oo,y) & H?(y, 00).
—f"+ad(x—y)f=\f
y+e

PO+ -+ ) = A / f(x)de

Yy—€
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Conditions associated to the § interactions

e Let f be a function in H?(—oo,y) & H?(y, 00).
—f"+ad(x—y)f=\f

y+e
PO+ -+ ) = A / f(x)de

y—e
ec— 0

f'y+) = F(y=) = af(y).
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Part 2: Operators with & interactions

Conditions associated to the § interactions

e Let f be a function in H?(—oo,y) & H?(y, 00).
—f"+ad(x—y)f=\f

y+e
PO+ -+ ) = A / f(x)de

y—e
ec— 0

f'y+) = F(y=) = af(y).

f

|
T

Yy
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Part 2: Operators with & interactions

Schodinger operators with § interactions

e Consider X = {zn}nen CRand a = {an}nen C R.
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dn
A

In Tn+1
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Part 2: Operators with & interactions

Schodinger operators with § interactions

e Consider X = {zn}nen CRand a = {an}nen C R.

dn
A

In Tn+1

e Consider the operator
Aa — *f”

with

D(Aa) ={f € H* R\ X)NH'(R) : f'(zn+) — f'(&n—) = anf(zn)}.
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Part 2: Operators with & interactions

Schodinger operators with § interactions

e Consider X = {z,}nen C Rand a = {an}neny C R.

dn
A

In Tn+1

e Consider the operator
Aa — *f”

with
D(Aa) ={f € H* R\ X) N H'(R) : f'(xn+) — ['(¥n—) = anf(zn)}.

Is A, always self-adjoint? What about o(A4)?
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Part 2: Operators with & interactions

Finite ¢ interactions case

e | X|=m < 0.
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Finite ¢ interactions case

e | X|=m < 0.
e A, is always self-adjoint.
e Oess(Aa) = gess(A) = [0, 00).
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Part 2: Operators with & interactions

Finite ¢ interactions case

e | X|=m < 0.

Aq is always self-adjoint.
Oess(Aa) = Tess(A) = [0, 00).
(Albeverio 1988; Goloshapova, Oridoroga 2010)

|o(Aa) N (—o0,0)| < m and the negative eigenvalues have at most total
multiplicity m.
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Finite ¢ interactions case

e | X|=m < 0.

Aq is always self-adjoint.
Oess(Aa) = Tess(A) = [0, 00).
(Albeverio 1988; Goloshapova, Oridoroga 2010)

|o(Aa) N (—o0,0)| < m and the negative eigenvalues have at most total
multiplicity m.

O'ess(Aa)

%M._F%_
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Part 2: Operators with & interactions

Infinite / interactions

e Consider | X| = co but infd,, > 0
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Part 2: Operators with & interactions

Infinite / interactions

e Consider | X| = co but infd,, > 0
e A, is always self-adjoint.
e (Alveberio, Kostenko, Malhamud, 2010) If lim,— 00 an, = 00,

0(As) = 0¢(Aq).
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Part 2: Operators with & interactions

Infinite / interactions

e Consider | X| = oo, inf d, = 0 but 2, — .
TnTn+1 Tn+3
Tn+2 Tn+4
e A, is always self-adjoint.

e (Albeverio, Kostenko, Malamud, 2012) If limn—c0 Y | |ak| =0,

T €[n,n+1
Uess(Aa) = Uess(A)~

If limy, 00 and,jl = o0, then

0(As) = 0¢(4q).
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Part 2: Operators with & interactions

Infinite /6 interactions on a non-discrete set

o lfz, »ceR
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Part 2: Operators with & interactions

Infinite /6 interactions on a non-discrete set

o lfz, »ceR
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Infinite /6 interactions on a non-discrete set

o lfz, »ceR

e (Eckhardt, Teschl 2014) If « € I*(R),
UeSS(Aa) = O'ess(A).

o(Aa)
0
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Embedded eigenvalues

Definition

We say that \ is an embedded eigenvalue of A if X is an eigenvalue and X € oess(A).
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Embedded eigenvalues

Definition

We say that \ is an embedded eigenvalue of A if X is an eigenvalue and X € oess(A).

Known facts about Schédinger equation.

— f'(x) + V(z)f(x) = Af(z), with 0<2< o0 (%)

o (Wallach, 1948) If
limsup z|V (z)| < oo,

T —r00

then (x) has finite embedded eigenvalues.
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Part 2: Operators with & interactions

Embedded eigenvalues

Definition

We say that \ is an embedded eigenvalue of A if X is an eigenvalue and X € oess(A).

Known facts about Schédinger equation.

— f'(x) + V(z)f(x) = Af(z), with 0<2< o0 (%)

o (Wallach, 1948) If
limsup z|V (z)| < oo,

Tr— 00
then (x) has finite embedded eigenvalues.
e (Eastham, 1977) If

x

V()| dt < kIn(z),

then (x) has at most k? eigenvalues.

e Can embedded eigenvalues appear in the essential spectrum of A, ?
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Part 2: Operators with & interactions

In (Eckhart and Teschl, 2013) they introduce measure valued Sturm-Liouville problems.

Quasi-derivative

Let 1 be a locally finite Borel complex measure. A u-measurable function f is called
absolutely continuous with respect to u if there exists a measurable function % such that

flz) = f(c)Jr/z hdp, forallz,ceR.

We say that £ is the quasi-derivative of f and we denote it by 5 ’”

Linear measure differential equations

Let i, x be complex Borel measures. Consider the differential expression on R

__4d(d
Tf'__dx(d,u /fd> (1)

Here L represents the derivative with respect to the Lebesgue measure.
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Part 2: Operators with & interactions

Singular interactions as measures

o-interactions

e lf =X andy = Z onba, , then (7) coincides with ().
n=1

e Conditions: f[l](xn—&—) - fm(x,,,—) = anf(xn).

Theorem (Eckhart,Teschl 2013)

e There exists a Weyl function as in the classical case and the poles of m(-) are the
eigenvalues of A,,.
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Part 2: Operators with & interactions

Fundamental system

Proposition (Leguizamén, Winklmeier, 2024)
The fundamental system for (7) is {u(-, \),v(-, \)}, given by

_ -1 . B sin(v/Az)
HEEN antnH(z — 240) (sm(\/X(x xn))) + —A
1 )
v(z, \) = 7 néN anvn H(x — 24) (sm(ﬁ(az - xn))) + cos(VAz),

where H () is the Heaviside function and

w — w _ % > ajuysin(Va(za — z;)),

<n

vn = cos(VAz,) — Za]v]sm T — Xj))-

J<n
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Part 2: Operators with & interactions

Formula for the eigenvalues

Proposition (Leguizamén, Winklmeier, 2024)

The Weyl function of A, is

1 iVAzn
oY g QpUne +1

neN
m(\) = — : T
1 IV Ty
75 D anune T =
7
neN

v
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Formula for the eigenvalues

Proposition (Leguizamén, Winklmeier, 2024)

The Weyl function of A, is

1 iVAzn
oY g QpUne +1

neN
m(\) = —
A S
iV nen .
neN Z\/X

e For | X| = 1 there are no embedded eigenvalues.
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The Weyl function of A, is

1 iVAzn
oY E QpUne +1

neN
m(\) = —
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neN Z\/X

e For | X| = 1 there are no embedded eigenvalues.
e For | X| = 2 there are no embedded eigenvalues.
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Formula for the eigenvalues

Proposition (Leguizamén, Winklmeier, 2024)

The Weyl function of A, is

1 iVAzn
oY E QpUne +1

neN
m(\) = —
A S
iV nen .
neN Z\/X

e For | X| = 1 there are no embedded eigenvalues.
e For | X| = 2 there are no embedded eigenvalues.

e | X|=n>2
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Part 2: Operators with & interactions

Formula for the eigenvalues

Proposition (Leguizamén, Winklmeier, 2024)

The Weyl function of A, is

neN

1 iVAzn
oY E QpUne +1

1 iVATn
VA E QnpUn€

neN

1

i

For | X| = 1 there are no embedded eigenvalues.
For | X| = 2 there are no embedded eigenvalues.

X|=n>2 ()

We have analogous results for §" interactions.
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Part 3: Future work and other directions

About the real case (in progress)

e What happens with the embedded eigenvalues when | X| > 2?7
e What happens to the absolutely continuous and singular continuous spectrum?
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Part 3: Future work and other directions

About the real case (in progress)

e What happens with the embedded eigenvalues when | X| > 2?7
e What happens to the absolutely continuous and singular continuous spectrum?
e What happens if o« ¢ I*(N)?. We loose self-adjointness of A,,.
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iGracias!
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