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Part 1:Introduction Singular interactions

The Schrödinger equation

The possible states that the electron can occupy are determined by the Schrödinger
equation

− h2

2m
d2Ψ
dx2 + V (x)Ψ = EΨ.

We study the differential expression

H := − d2

dx2 + V (x), on (a, b).

• V ∈ L1
loc(a, b) and real

• V is a distribution

• V is complex
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Konnig-Penney Model

Published on proceedings of the royal society A.

Figure: Potential
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Part 1:Introduction Singular interactions

• b→ 0 and V0 →∞.

V (x) ≈
∑

δ(x− na)

”The energy values which an electron moving through the lattice may have, hence form
a spectrum consisting of continuous pieces separated by finite
intervals.” Kronig-Penney 1930.
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Part 1:Introduction Singular interactions

Schrödinger equation with δ interactions

• X = (xn), α = (αn) ⊂ R with (xn) increasing.

The energy states are determined by the equation

−d
2f

dx2 +
∞∑
n=1

αnδ(x− xn)f = Ef.

We want to study the differential expression

Uf := −d
2f

dx2 + q(x)f +
∞∑
n=1

αnδ(x− xn)f. (U)

Is it possible to find a self-adjoint operator for this differential expression?
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Part 1:Introduction Definitions

Definition (Symmetric operator)

We say that A is a symmetric operator if and only if for all x, y ∈ D(A)

〈Ax, y〉 − 〈x,Ay〉 = 0.

Definition (Deficiency indices)

For a symmetric operator A, we define the deficiency indices of A by

η±(A) := dim(rg(A± i)).

Definition (Self-adjoint operator)

We say that A is a (essentially) self-adjoint operator if and only if is symmetric with
deficiency indices (0, 0).
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Part 1:Introduction Definitions

Weyl-Titchmarsh function

Consider the Sturm-Liouville problem

−y′′(x) + V (x)y(x) = λy(x), x ∈ [a, b).

Let {u,v} be a fundamental system with boundary conditions

u(a, λ) = 0, v(a, λ) = 1,
u′(a, λ) = 1, v′(a, λ) = 0.

If v /∈ L2(a, b),

then the Weyl-Titchmarsh function for the Sturm-Liouville problem is the
complex function m(·) such that

w = v +m(λ)u ∈ L2(a, b).

• The Weyl-Titchmarsh function is also called the Dirichlet to Neumann map.

• The eigenvalues of the problem with boundary condition y(a) = 0 are precisely the
poles of the Weyl function.
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on an interval

• Consider in L2(0, π) :

Af = −f ′′(x), D(A) = H2
0 (0, π)

with

H2
0 (0, π) =

{
f ∈ L2(0, π) : f, f ′ ∈ ACloc(0, π), f ′′ ∈ L2(0, π),

f(0) = f(1) = 0
f ′(0) = f ′(1) = 0

}
.

• Integration by parts shows that A is symmetric and its deficiency indices are (2, 2).
• The eigenvalue equation

−f ′′(x) = λf(x), x ∈ [0, π], λ ∈ C,

has general solution

f(x) = C1sin(
√
λx) + C2cos(

√
λx).

• There is no Weyl function.
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Part 1:Introduction Definitions

Example 1: Sturm-Liouville on a ray

• Consider in L2(0,∞) :

Af = −f ′′(x), D(A) = H2
0 (0,∞)

with

H2
0 (0,∞) =

{
f ∈ L2(0,∞) : f, f ′ ∈ ACloc(0,∞), f ′′ ∈ L2(0,∞), f(0) = f ′(0) = 0

}
,

• Integration by parts shows that A is symmetric and its deficiency indices are (1, 1).
• The eigenvalue equation

−f ′′(x) = λf(x), x ∈ [0,∞), λ ∈ C.

has general solution

f(x) = C1
sin(
√
λx)√
λ

+ C2 cos(
√
λx).

• The Weyl function is

m(λ) = i
√
λ. There are no eigenvalues
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Part 1:Introduction Definitions

Examples of self-adjoint operators

Free particle

• Af = −f ′′ with D(A) = H2
D(a, b) := H2(a, b) ∩ {f(a) = f(b) = 0}.

σ(A) = σd(A) =
{(

πk

b− a

)2
}
k∈N

.

• Af = −f ′′ with D(A) = H2
D(a, b) := H2(0,∞) ∩ {f(0) = 0}.

σ(A) = σess(A) = [0,∞).

• with no eigenvalues

Harmonic oscillator

• Af = −f ′′+x2f with D(A) = {f ∈ L2(R) : f, f ′ ∈ ACloc(R),−f ′′+x2f ∈ L2(R)}.

σ(A) = σd(A) =
{
k + 1

2

}
k∈N∪{0}

.
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b− a

)2
}
k∈N

.

• Af = −f ′′ with D(A) = H2
D(a, b) := H2(0,∞) ∩ {f(0) = 0}.

σ(A) = σess(A) = [0,∞).

• with no eigenvalues

Harmonic oscillator

• Af = −f ′′+x2f with D(A) = {f ∈ L2(R) : f, f ′ ∈ ACloc(R),−f ′′+x2f ∈ L2(R)}.

σ(A) = σd(A) =
{
k + 1

2

}
k∈N∪{0}

.
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Part 2: Operators with δ interactions
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Part 2: Operators with δ interactions

Conditions associated to the δ interactions

• Let f be a function in H2(−∞, y)⊕H2(y,∞).

−f ′′ + αδ(x− y)f = λf

−f ′(y + ε) + f ′(y − ε) + f(y) = λ

∫ y+ε

y−ε
f(x) dx

• ε→ 0
f ′(y+)− f ′(y−) = αf(y).

f

y

x
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Part 2: Operators with δ interactions

Schödinger operators with δ interactions

• Consider X = {xn}n∈N ⊂ R and α = {αn}n∈N ⊂ R.

dn

xn xn+1

• Consider the operator
Aα = −f ′′

with

D(Aα) = {f ∈ H2(R \X) ∩H1(R) : f ′(xn+)− f ′(xn−) = αnf(xn)}.

Is Aα always self-adjoint? What about σ(Aα)?
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Part 2: Operators with δ interactions

Finite δ interactions case

• |X| = m <∞.

• Aα is always self-adjoint.

• σess(Aα) = σess(A) = [0,∞).
• (Albeverio 1988; Goloshapova, Oridoroga 2010)
|σ(Aα) ∩ (−∞, 0)| ≤ m and the negative eigenvalues have at most total
multiplicity m.

m

σess(Aα)
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Part 2: Operators with δ interactions

Infinite δ interactions

• Consider |X| =∞ but inf dn > 0

• Aα is always self-adjoint.

• (Alveberio, Kostenko, Malhamud, 2010) If limn→∞ αn =∞,

σ(Aα) = σd(Aα).
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Part 2: Operators with δ interactions

Infinite δ interactions

• Consider |X| =∞, inf dn = 0 but xn →∞.
xnxn+1

xn+2

xn+3

xn+4

• Aα is always self-adjoint.

• (Albeverio, Kostenko, Malamud, 2012) If limn→∞
∑

xk∈[n,n+1] |αk| = 0,

σess(Aα) = σess(A).

• If limn→∞ αnd
−1
n =∞, then

σ(Aα) = σd(Aα).
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Part 2: Operators with δ interactions

Infinite δ interactions on a non-discrete set

• If xn → c ∈ R

xn c

• (Eckhardt, Teschl 2014) If α ∈ l1(R),

σess(Aα) = σess(A).

σ(Aα)

0
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Part 2: Operators with δ interactions

Embedded eigenvalues

Definition

We say that λ is an embedded eigenvalue of A if λ is an eigenvalue and λ ∈ σess(A).

Known facts about Schödinger equation.

− f ′′(x) + V (x)f(x) = λf(x), with 0 ≤ x <∞ (∗)

• (Wallach, 1948) If
lim sup
x→∞

x|V (x)| <∞,

then (∗) has finite embedded eigenvalues.

• (Eastham, 1977) If ∫ x

0
|V (t)| dt ≤ k ln(x),

then (∗) has at most k2 eigenvalues.

• Can embedded eigenvalues appear in the essential spectrum of Aα?
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Part 2: Operators with δ interactions

In (Eckhart and Teschl, 2013) they introduce measure valued Sturm-Liouville problems.

Quasi-derivative

Let µ be a locally finite Borel complex measure. A µ-measurable function f is called
absolutely continuous with respect to µ if there exists a measurable function h such that

f(x) = f(c) +
∫ x

c

h dµ, for all x, c ∈ R.

We say that h is the quasi-derivative of f and we denote it by df
dµ

.

Linear measure differential equations

Let µ, χ be complex Borel measures. Consider the differential expression on R

τf := − d

dx

(
df

dµ
+
∫ x

c

f dχ

)
. (τ )

Here d
dx

represents the derivative with respect to the Lebesgue measure.
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Part 2: Operators with δ interactions

Singular interactions as measures

δ-interactions

• If µ = λ, and χ =
∞∑
n=1

αnδxn , then (τ ) coincides with (U).

• Conditions: f [1](xn+)− f [1](xn−) = αnf(xn).

Theorem (Eckhart,Teschl 2013)

• There exists a Weyl function as in the classical case and the poles of m(·) are the
eigenvalues of Aα.
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Part 2: Operators with δ interactions

Fundamental system

Proposition (Leguizamón, Winklmeier, 2024)

The fundamental system for (τ ) is {u(·, λ), v(·, λ)}, given by

u(x, λ) = −1√
λ

∑
n∈N

αnunH(x− xn)
(
sin(
√
λ(x− xn))

)
+ sin(

√
λx)√
λ

,

v(x, λ) = −1√
λ

∑
n∈N

αnvnH(x− xn)
(
sin(
√
λ(x− xn))

)
+ cos(

√
λx),

where H(·) is the Heaviside function and

un = sin(
√
λxn)√
λ

− 1√
λ

∑
j<n

αjuj sin(
√
λ(xn − xj)),

vn = cos(
√
λxn)− 1√

λ

∑
j<n

αjvj sin(
√
λ(xn − xj)).
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Part 2: Operators with δ interactions

Formula for the eigenvalues

Proposition (Leguizamón, Winklmeier, 2024)

The Weyl function of Aα is

m(λ) = −


1
i
√
λ

∑
n∈N

αnvne
i
√
λxn + 1

1
i
√
λ

∑
n∈N

αnune
i
√
λxn − 1

i
√
λ

 .

• For |X| = 1 there are no embedded eigenvalues.

• For |X| = 2 there are no embedded eigenvalues.

• |X| = n > 2
• We have analogous results for δ′ interactions.
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Part 3: Future work and other directions
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Part 3: Future work and other directions

About the real case (in progress)

• What happens with the embedded eigenvalues when |X| > 2?

• What happens to the absolutely continuous and singular continuous spectrum?

• What happens if α /∈ l1(N)?. We loose self-adjointness of Aα.
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Part 3: Future work and other directions
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Part 3: Future work and other directions

¡Gracias!
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