A SPECTRAL CHARACTERIZATION OF MAHARAM MEASURES

Mauro Artigiani

UNIVERSIDAD NACIONAL DE COLOMBIA

Aspects of Spectral Theory for Linear Operators – 06/06/2025

WIP with Roberto Castorrini (Scuola Normale Superiore, Pisa), Davide

Ravotti (Université de Lille), Yuriy Tumarkin (University of Zurich).

TRANSLATION SURFACES

DEFINITION

A compact translation surface is a pair (S, ω) where S is a compact Riemann surface and ω is a (non identically zero) holomorphic 1-form on S.

Local integration of ω defines a **Euclidean** metric on *S* with conical singularities at Σ , the zeros of ω . In particular, we have two orthonormal vector fields *X* and *Y* on $S_0 = S \setminus \Sigma$.

DEFINITION

A compact translation surface is a pair (S, ω) where S is a compact Riemann surface and ω is a (non identically zero) holomorphic 1-form on S.

Local integration of ω defines a **Euclidean** metric on *S* with conical singularities at Σ , the zeros of ω . In particular, we have two orthonormal vector fields *X* and *Y* on $S_0 = S \setminus \Sigma$.

AFFINE AUTOMORPHISMS

An homeomorphism $T: S \rightarrow S$ is called an affine automorphism if it fixes the singularities and it is affine in local coordinates.

PSEUDO-ANOSOV AUTOMORPHISMS

We will be interested in pseudo-Anosov affine automorphisms: *DT* is an **hyperbolic** matrix.

If *T* is a pseudo-Anosov automorphism, then there exist two orthogonal foliations, called the stable and unstable foliations, which:

- are **invariant** under *T*.
- DT contracts the stable foliation and expands the unstable foliation (by the same factor λ > 1).

If *T* is a pseudo-Anosov automorphism, then there exist two orthogonal foliations, called the stable and unstable foliations, which:

- are **invariant** under *T*.
- DT contracts the stable foliation and expands the unstable foliation (by the same factor λ > 1).

Let ϕ_t be the flow along the stable foliation. We have the renormalization equation:

 $T\circ \phi_t = \phi_{\lambda^{-1}t}\circ T.$

We will always assume that the stable foliation is the **horizontal** one.

Let ϕ_t be the flow along the stable foliation. We have the renormalization equation:

 $T\circ \phi_t = \phi_{\lambda^{-1}t} \circ T.$

We will always assume that the stable foliation is the **horizontal** one.

COVERS OF TRANSLATION SURFACES AND MAHARAM MEASURES

Consider a cover $p: \widetilde{S} \to S$ of translation surfaces, which is given by translation in charts, with deck group isomorphic to \mathbb{Z}^d .

The geodesic flow $\tilde{\Phi}_t$ on \tilde{S} can be dynamically described as a \mathbb{Z}^d -skew-product:

For every $\eta \in \mathbb{R}_+$, we can define a Maharam measure μ_{η} on \widetilde{S} as:

$$d\mu_{\eta}(x,k) = e^{-k\eta} dm(x),$$

where *dm* is a measure on *S* which is quasi-invariant under the flow:

$$\frac{d\phi_{s*}m}{dm}=e^{\eta}.$$

These are the relevant locally finite Borel measures on \widetilde{S} .

MAHARAM MEASURES, GEOMETRICALLY

THE RESULT

Let *T* be a pseudo-Anosov automorphism of a compact translation surface *S*, and ϕ_t the flow along the stable foliation of *T*. Let $p: \widetilde{S} \to S$ a locally compact \mathbb{Z}^d -cover of *S*, and $\widetilde{\phi}_t$ the flow defined by $p \circ \widetilde{\phi}_t = \phi_t \circ p$. Assume that there exists a pseudo-Anosov automorphism \widetilde{T} of \widetilde{S} such

that $p \circ \widetilde{T} = T \circ p$ and \widetilde{T} commutes with deck transformations.

THE SETTING

Let *T* be a pseudo-Anosov automorphism of a compact translation surface *S*, and ϕ_t the flow along the stable foliation of *T*. Let $p: \widetilde{S} \to S$ a locally compact \mathbb{Z}^d -cover of *S*, and $\tilde{\phi}_t$ the flow defined by $p \circ \tilde{\phi}_t = \phi_t \circ p$.

Assume that there exists a pseudo-Anosov automorphism \tilde{T} of \tilde{S} such that $p \circ \tilde{T} = T \circ p$ and \tilde{T} commutes with deck transformations.

THE SETTING

Let *T* be a pseudo-Anosov automorphism of a compact translation surface *S*, and ϕ_t the flow along the stable foliation of *T*. Let $p: \widetilde{S} \to S$ a locally compact \mathbb{Z}^d -cover of *S*, and $\widetilde{\phi}_t$ the flow defined by $p \circ \widetilde{\phi}_t = \phi_t \circ p$.

Assume that there exists a pseudo-Anosov automorphism \tilde{T} of \tilde{S} such that $p \circ \tilde{T} = T \circ p$ and \tilde{T} commutes with deck transformations.

THE RESULT

A distribution \mathcal{D} is called Maharam if there exists a homomorphism χ : Deck $\rightarrow \mathbb{R}$ such that, for all $D \in$ Deck, and $f \in C_c^{\infty}(\widetilde{S})$,

$$\mathcal{D}(f \circ D) = e^{\chi(D)} \mathcal{D}(f).$$

Theorem (ACRT, '25+)

There exists an infinite countable set $\Xi = \{\mu_i : i \in \mathbb{N}\}$, described explicitly, of complex numbers μ_i , with $|\mu_i| \leq 1$ so that, for any $\mu_i \in \Xi$, there exists an uncountable family of invariant Maharam distributions $\mathcal{D}_{\mu_i,\chi}$, parametrized by $\chi \in \text{Hom}(\text{Deck},\mathbb{R}) \simeq \mathbb{R}$.

We have $\mu_1 = 1$, which is associated to a Maharam measure.

THE RESULT

A distribution \mathcal{D} is called Maharam if there exists a homomorphism χ : Deck $\rightarrow \mathbb{R}$ such that, for all $D \in$ Deck, and $f \in C_c^{\infty}(\widetilde{S})$,

$$\mathcal{D}(f \circ D) = e^{\chi(D)} \mathcal{D}(f).$$

Theorem (ACRT, '25+)

There exists an infinite countable set $\Xi = \{\mu_i : i \in \mathbb{N}\}$, described explicitly, of complex numbers μ_i , with $|\mu_i| \leq 1$ so that, for any $\mu_i \in \Xi$, there exists an uncountable family of invariant Maharam distributions $\mathcal{D}_{\mu_i,\chi}$, parametrized by $\chi \in \text{Hom}(\text{Deck}, \mathbb{R}) \simeq \mathbb{R}$.

We have $\mu_1 = 1$, which is associated to a Maharam measure.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

- Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation, the ergodic Radon measures are Maharam
- Hooper, Hubert and Weiss gave a geometric interpretation.
- Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier hypothesis.
- Tumarkin extended Pollicott and Sharp to our setting.
- Hooper studied via geometrical and spectral analytic (on graphs) methods Maharam measures for "very well renormalizable" surfaces.

A CRASH COURSE ON ANISOTROPIC BANACH SPACES

Anisotropic Banach spaces have been introduced in *hyperbolic* dynamics by Blank, Keller and Liverani in 2001.

After that, there has been a flurry of activity, and many different constructions have been implemented by: Baladi, Faure, Gouëzel, Tsuji, Demers,...

Via renormalization, the have been used for *parabolic* dynamics by: Giulietti-Liverani, Faure-Gouëzel-Lanneau, Forni, Castorrini-Ravotti. Anisotropic Banach spaces have been introduced in *hyperbolic* dynamics by Blank, Keller and Liverani in 2001. After that, there has been a flurry of activity, and many different constructions have been implemented by: Baladi, Faure, Gouëzel, Tsuji, Demers,...

Via renormalization, the have been used for *parabolic* dynamics by: Giulietti-Liverani, Faure-Gouëzel-Lanneau, Forni, Castorrini-Ravotti. Anisotropic Banach spaces have been introduced in *hyperbolic* dynamics by Blank, Keller and Liverani in 2001. After that, there has been a flurry of activity, and many different constructions have been implemented by: Baladi, Faure, Gouëzel, Tsuji, Demers,...

Via renormalization, the have been used for *parabolic* dynamics by: Giulietti-Liverani, Faure-Gouëzel-Lanneau, Forni, Castorrini-Ravotti.

Define a Banach space $\mathcal{B}_{p,q}$ of distributions which are:

- **smooth** in the **horizontal** direction (we can take *p* derivatives)
- "dual smooth" in the vertical one: we can integrate them against functions which can be derived q times in the vertical direction.

Define a Banach space $\mathcal{B}_{p,q}$ of distributions which are:

- **smooth** in the **horizontal** direction (we can take *p* derivatives)
- "dual smooth" in the vertical one: we can integrate them against functions which can be derived q times in the vertical direction.

We show that the transfer operator $\mathcal{L}_T(f) = w \cdot f \circ T^{-1}$ acts on $\mathcal{B}_{p,q}$.

We think of $\mathcal{B}_{p,q}$ as the **strong** space and of $\mathcal{B}_{p-1,q+1}$ as the **weak** one. We show that:

 $\mathcal{B}_{p,q} \hookrightarrow \mathcal{B}_{p-1,q+1}$

is compact.

THE IDEA

We show that the transfer operator $\mathcal{L}_T(f) = w \cdot f \circ T^{-1}$ acts on $\mathcal{B}_{p,q}$.

We think of $\mathcal{B}_{p,q}$ as the **strong** space and of $\mathcal{B}_{p-1,q+1}$ as the **weak** one. We show that:

$$\mathcal{B}_{p,q} \hookrightarrow \mathcal{B}_{p-1,q+1}$$

is compact.

THE IDEA

The key technical lemma is a Lasota-Yorke inequality: there exists some $C \ge 0$ and $\sigma < 1$ such that for all $f \in \mathcal{B}_{p,q}$ and $n \ge 0$:

$\|\mathcal{L}_{T}^{n}(f)\|_{p,q} \leq C\sigma^{n}\|f\|_{p,q} + C\|f\|_{p-1,q+1}.$

A theorem of Hennion implies that the transfer operator \mathcal{L}_T is **quasi-compact** on $\mathcal{B}_{p,q}$:

 $\rho_{\mathsf{ess}}(\mathcal{L}_{\mathsf{T}}) < \rho(\mathcal{L}_{\mathsf{T}}).$

THE IDEA

The key technical lemma is a Lasota-Yorke inequality: there exists some $C \ge 0$ and $\sigma < 1$ such that for all $f \in \mathcal{B}_{p,q}$ and $n \ge 0$:

 $\|\mathcal{L}_{T}^{n}(f)\|_{p,q} \leq C\sigma^{n}\|f\|_{p,q} + C\|f\|_{p-1,q+1}.$

A theorem of Hennion implies that the transfer operator \mathcal{L}_T is **quasi-compact** on $\mathcal{B}_{p,q}$:

 $\rho_{\mathsf{ess}}(\mathcal{L}_T) < \rho(\mathcal{L}_T).$

OUR IMPLEMENTATION OF THE GENERAL STRATEGY, IDEAS

Following [CR, '24] we can decompose smooth functions with compact support on \widetilde{S} with a Fourier decomposition:

$$f(x) = \int_{\mathbb{T}} \pi_{r,\theta}(f)(x) \, d\theta,$$

for $r \in \mathbb{R}$, $\mathbb{T} = S^1$ and $\pi_{r,\theta}(f) \in C(S, r, \theta)$ changes by a character (depending on θ and D) when composed with a deck transformation D.

A FOURIER DECOMPOSITION

Functions on \widetilde{S} which are invariant under deck transformations can be identified with functions on S.

We show that the transfer operator on $C(S, r, \theta)$ can be identified with a twisted transfer operator on functions on S.

A FOURIER DECOMPOSITION

Functions on \widetilde{S} which are invariant under deck transformations can be identified with functions on S.

We show that the transfer operator on $C(S, r, \theta)$ can be identified with a twisted transfer operator on functions on S.

THE BANACH SPACES

We use Sobolev spaces of distributions.

Given $v \in H^{p+2}(S)$ and $x \in S$ we define $\Gamma v(x) \in C^{-q}$ by:

$$\langle \Gamma v(x), u \rangle = \int_0^1 v \circ \phi_t(x) \cdot u(t) dt,$$

for $u \in C^q$.

The map $x \mapsto \Gamma v(x)$ is continuous and p times differentiable, so we define

$$\mathcal{B}_{p,q} = \operatorname{cl}_p(\langle \Gamma v : v \in H^{p+2}(S) \rangle),$$

where we take the closure in $C^{p}(S, C^{-q})$.

THE BANACH SPACES

We use Sobolev spaces of distributions. Given $v \in H^{p+2}(S)$ and $x \in S$ we define $\Gamma v(x) \in C^{-q}$ by:

$$\langle \Gamma v(x), u \rangle = \int_0^1 v \circ \phi_t(x) \cdot u(t) dt,$$

for $u \in C^q$.

The map $x \mapsto \Gamma v(x)$ is continuous and p times differentiable, so we define

$$\mathcal{B}_{p,q} = \operatorname{cl}_{p}(\langle \Gamma v : v \in H^{p+2}(S) \rangle),$$

where we take the closure in $C^{p}(S, C^{-q})$.

THE BANACH SPACES

We use Sobolev spaces of distributions. Given $v \in H^{p+2}(S)$ and $x \in S$ we define $\Gamma v(x) \in C^{-q}$ by:

$$\langle \Gamma v(x), u \rangle = \int_0^1 v \circ \phi_t(x) \cdot u(t) dt,$$

for $u \in C^q$.

The map $x \mapsto \Gamma v(x)$ is continuous and p times differentiable, so we define

$$\mathcal{B}_{p,q} = \mathsf{cl}_{p}(\langle \Gamma v : v \in H^{p+2}(S) \rangle),$$

where we take the closure in $C^{p}(S, C^{-q})$.

We fix a real function *F*, which is smooth and bounded on *S* (the Frobenius function), and for any $z \in \mathbb{C}$ we define

$$\mathcal{L}_{z,F}f(x)=(e^{zF}\cdot f)\circ T^{-1}(x).$$

We prove the Lasote-Yorke inequality for this operator.

We analyze the peripheral spectrum and show that, if $z \in \mathbb{R}$, then the maximal eigenvalue is simple and there is no other eigenvalue on the circle $|\rho(\mathcal{L}_{z,F})|$.

We fix a real function *F*, which is smooth and bounded on *S* (the Frobenius function), and for any $z \in \mathbb{C}$ we define

$$\mathcal{L}_{z,F}f(x)=(e^{zF}\cdot f)\circ T^{-1}(x).$$

We prove the Lasote-Yorke inequality for this operator.

We analyze the peripheral spectrum and show that, if $z \in \mathbb{R}$, then the maximal eigenvalue is simple and there is no other eigenvalue on the circle $|\rho(\mathcal{L}_{z,F})|$.

We fix a real function *F*, which is smooth and bounded on *S* (the Frobenius function), and for any $z \in \mathbb{C}$ we define

$$\mathcal{L}_{z,F}f(x)=(e^{zF}\cdot f)\circ T^{-1}(x).$$

We prove the Lasote-Yorke inequality for this operator.

We analyze the peripheral spectrum and show that, if $z \in \mathbb{R}$, then the maximal eigenvalue is simple and there is no other eigenvalue on the circle $|\rho(\mathcal{L}_{z,F})|$.

We fix a real function *F*, which is smooth and bounded on *S* (the Frobenius function), and for any $z \in \mathbb{C}$ we define

$$\mathcal{L}_{z,F}f(x) = (e^{zF} \cdot f) \circ T^{-1}(x).$$

We prove the Lasote-Yorke inequality for this operator.

We analyze the peripheral spectrum and show that, if $z \in \mathbb{R}$, then the maximal eigenvalue is simple and there is no other eigenvalue on the circle $|\rho(\mathcal{L}_{z,F})|$.