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TRANSLATION SURFACES



DEFINITION

A compact translation surface is a pair (S,ω)where S is a compact
Riemann surface andω is a (non identically zero) holomorphic
1-form on S.
Local integration ofω defines a Euclideanmetric on Swith conical
singularities at ε, the zeros ofω. In particular, we have two
orthonormal vector fields X and Y on S0 = S ⌐ ε.
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AFFINE AUTOMORPHISMS

An homeomorphism T∶S→ S is called an affine automorphism if it
fixes the singularities and it is affine in local coordinates.



PSEUDO-ANOSOV AUTOMORPHISMS

Wewill be interested in pseudo-Anosov affine automorphisms: DT is
an hyperbolicmatrix.



RENORMALIZATION

If T is a pseudo-Anosov automorphism, then there exist two
orthogonal foliations, called the stable and unstable foliations,
which:

• are invariant under T.

• DT contracts the stable foliation and expands the unstable
foliation (by the same factor ϑ > 1).
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COVERS OF TRANSLATION
SURFACES AND MAHARAM
MEASURES



Zd-COVERS

Consider a cover p∶⌜S→ S of translation surfaces, which is given by
translation in charts, with deck group isomorphic toZd.
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Consider a cover p∶⌜S→ S of translation surfaces, which is given by
translation in charts, with deck group isomorphic toZd.
We will always assume that the cover is locally compact.



MAHARAMMEASURES

The geodesic flow ϖ̃t on⌜S can be dynamically described as a
Zd-skew-product:

ϖ̃t∶S ×Zd → S ×Zd
(x, k)↢ (ϖt(x), k + Ft(x))

where Ft is aZd-valued function on S.



MAHARAMMEASURES

For every η ∈ R+, we can define a Maharammeasure µη on⌜S as:
dµη(x, k) = e⌐kη dm(x),

where dm is a measure on Swhich is quasi-invariant under the flow:

dϖs∗m
dm

= eη.
These are the relevant locally finite Borel measures on⌜S.



MAHARAMMEASURES, GEOMETRICALLY

The Maharammeasure µη is semi-conjugated to the Lebesgue
measure on a deformed surface:
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THE RESULT

A distributionD is called Maharam if there exists a homomorphism
χ∶Deck→ R such that, for all D ∈ Deck, and f ∈ C⋊c (⌜S),

D(f ⋊ D) = eχ(D)D(f).
Theorem (ACRT, ’25+)
There exists an infinite countable set φ = {µi : i ∈ N}, described
explicitly, of complex numbers µi, with ⌜µi⌜ ≤ 1 so that, for any µi ∈ φ,
there exists an uncountable family of invariant Maharam distributions
Dµi,χ, parametrized by χ ∈ Hom(Deck,R) ≃ R.
We have µ1 = 1, which is associated to a Maharammeasure.
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(SOME) PREVIOUS RESULTS
The geodesic flow on a translation surface can be seen has a
suspension over a transformation called Intervale Exchange
Transformations (IETs). Zd-skew products over IETs have been
studied:

• Aaronson, Nakada, Sarig and Solomyak: if the IET is a rotation,
the ergodic Radonmeasures are Maharam

• Hooper, Hubert and Weiss gave a geometric interpretation.

• Pollicott and Sharp: ANSS for pseudo-Anosov, under heavier
hypothesis.

• Tumarkin extended Pollicott and Sharp to our setting.

• Hooper studied via geometrical and spectral analytic (on
graphs) methods Maharammeasures for “very well
renormalizable” surfaces.
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A CRASH COURSE ON ANISOTROPIC
BANACH SPACES



POINTERS TO THE LITERATURE

Anisotropic Banach spaces have been introduced in hyperbolic
dynamics by Blank, Keller and Liverani in 2001.
After that, there has been a flurry of activity, andmany different
constructions have been implemented by: Baladi, Faure, Gouëzel,
Tsuji, Demers,. . .

Via renormalization, the have been used for parabolic dynamics by:
Giulietti-Liverani, Faure-Gouëzel-Lanneau, Forni, Castorrini-Ravotti.
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THE IDEA

Define a Banach spaceBp,q of distributions which are:

• smooth in the horizontal direction (we can take p derivatives)

• “dual smooth” in the vertical one: we can integrate them
against functions which can be derived q times in the vertical
direction.
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We show that the transfer operatorLT(f) = w ⋉ f ⋊ T⌐1 acts onBp,q.
We think ofBp,q as the strong space and ofBp⌐1,q+1 as theweak
one. We show that:

Bp,q ↪ Bp⌐1,q+1
is compact.
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The key technical lemma is a Lasota-Yorke inequality: there exists
some C ≥ 0 and σ < 1 such that for all f ∈ Bp,q and n ≥ 0:

⌝LnT(f)⌝p,q ≤ Cσn⌝f⌝p,q + C⌝f⌝p⌐1,q+1.

A theorem of Hennion implies that the transfer operatorLT is
quasi-compact onBp,q:

ρess(LT) < ρ(LT).
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OUR IMPLEMENTATION OF THE
GENERAL STRATEGY, IDEAS



A FOURIER DECOMPOSITION

Following [CR, ’24] we can decompose smooth functions with
compact support on⌜Swith a Fourier decomposition:

f(x) = ⩀
T
πr,θ(f)(x)dθ,

for r ∈ R,T = S1 and πr,θ(f) ∈ C(S, r,θ) changes by a character
(depending on θ and D) when composed with a deck transformation
D.



A FOURIER DECOMPOSITION

Functions on⌜Swhich are invariant under deck transformations can
be identified with functions on S.
We show that the transfer operator on C(S, r,θ) can be identified
with a twisted transfer operator on functions on S.
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THE BANACH SPACES

We use Sobolev spaces of distributions.
Given v ∈ Hp+2(S) and x ∈ Swe define Γv(x) ∈ C⌐q by:

⌝Γv(x),u⌝ = ⩀ 1

0
v ⋊ϖt(x) ⋉ u(t)dt,

for u ∈ Cq.
The map x ↢ Γv(x) is continuous and p times differentiable, so we
define

Bp,q = clp(⌝Γv : v ∈ Hp+2(S)⌝),
where we take the closure in Cp(S,C⌐q).
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THE TRANSFER OPERATOR

We fix a real function F, which is smooth and bounded on S (the
Frobenius function), and for any z ∈ Cwe define

Lz,Ff(x) = (ezF ⋉ f) ⋊ T⌐1(x).
We prove the Lasote-Yorke inequality for this operator.
We analyze the peripheral spectrum and show that, if z ∈ R, then the
maximal eigenvalue is simple and there is no other eigenvalue on the
circle ⌜ρ(Lz,F)⌜.
The associated eigenvector is actually a function in L1(S), and its
dual is a measure (the Maharammeasure).



THE TRANSFER OPERATOR

We fix a real function F, which is smooth and bounded on S (the
Frobenius function), and for any z ∈ Cwe define

Lz,Ff(x) = (ezF ⋉ f) ⋊ T⌐1(x).
We prove the Lasote-Yorke inequality for this operator.
We analyze the peripheral spectrum and show that, if z ∈ R, then the
maximal eigenvalue is simple and there is no other eigenvalue on the
circle ⌜ρ(Lz,F)⌜.
The associated eigenvector is actually a function in L1(S), and its
dual is a measure (the Maharammeasure).



THE TRANSFER OPERATOR

We fix a real function F, which is smooth and bounded on S (the
Frobenius function), and for any z ∈ Cwe define

Lz,Ff(x) = (ezF ⋉ f) ⋊ T⌐1(x).
We prove the Lasote-Yorke inequality for this operator.
We analyze the peripheral spectrum and show that, if z ∈ R, then the
maximal eigenvalue is simple and there is no other eigenvalue on the
circle ⌜ρ(Lz,F)⌜.
The associated eigenvector is actually a function in L1(S), and its
dual is a measure (the Maharammeasure).



THE TRANSFER OPERATOR

We fix a real function F, which is smooth and bounded on S (the
Frobenius function), and for any z ∈ Cwe define

Lz,Ff(x) = (ezF ⋉ f) ⋊ T⌐1(x).
We prove the Lasote-Yorke inequality for this operator.
We analyze the peripheral spectrum and show that, if z ∈ R, then the
maximal eigenvalue is simple and there is no other eigenvalue on the
circle ⌜ρ(Lz,F)⌜.
The associated eigenvector is actually a function in L1(S), and its
dual is a measure (the Maharammeasure).


