
JUMPS, CUSPS AND FRACTALS, IN TIME-EVOLUTION PDES

LYONELL BOULTON (HERIOT-WATT UNIVERSITY)
CURSILLO UNIVERSIDAD DE LOS ANDES1
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1. Preliminaries

1.1. Conventions and notation. Let en(x) =
1√
2π

e(nx). Here and everywhere

below, we write the Fourier coefficients of a periodic distribution F , see [18, Chap-
ter 11] or [9, Section 9.3], with one of the usual scalings on T = (−π, π], as

F̂ (n) =
1√
2π

⟨F, en⟩ =
1

2π

∫ π

−π

e−inyF (y) dy.

This choice makes either series in the expression

F (x) ∼
∑
n∈Z

⟨F, en⟩en(x) =
∑
n∈Z

F̂ (n)einx,

convenient for long calculations.
Recall that {en}n∈Z ⊂ L2(T) is an orthonormal basis of eigenfunctions for the

Laplacian,
−∂2

x : H2(T) −→ L2(T).
Indeed, for all n ∈ Z,

−∂2
xen = n2en.

The following function spaces will be considered throughout. The definitions
and relevant properties, are given in the next subsection and in the text. In two
occasions we will use (0, π] not identifying 0 with π, instead of T, as the mapping
of the definitions and properties is obvious we omit the details.

• BV(T) functions of bounded variation,
• AC(T) absolutely continuous functions,
• Cα(T) Hölder continuous functions of regularity α ∈ (0, 1),
• Hα(T) functions in the L2 Sobolev space with regularity α ≥ 0,
• Bα

p (T) distributions in the ℓ∞-Lp Besov space with regularity α ∈ R and
1 ≤ p ≤ ∞.

1.2. Connections and properties of the classical function spaces. Recall the
classical definitions of BV(T) and AC(T), given in standard analysis monographs
such as [15, p.9 and p.47]. We know that

f ∈ AC(T) ⇐⇒ f ′ ∈ L1(T).
We also know that f ∈ BV(T) if and only if f ′ is a finite Radon measure on the
Borel σ-algebra. Moreover, if f ∈ BV(T), then

f = fac + fs,
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for fac ∈ AC(T) with f ′
ac ∈ L∞(T), and f ′

s singular with support of Lebesgue
measure 0. For the proofs of these statements, see the two theorems on [15, p.53].

Problem 1. Let f ∈ BV(T). Show that there exists a constant, such that

|f̂(n)| ≤ c

|n|

for all n ̸= 0.

Solution. Use that

f̂(n) =
f̂ ′(n)

n

and the representation of a bounded variation function given above. □

Let f : T −→ C and α ≥ 0. We will write f ∈ Hα(T), whenever∑
n∈Z

(1 + n2)α
∣∣∣f̂(n)∣∣∣2 < ∞.

It is easy to see that

f ′ ∈ Hα(T) ⇐⇒ f ∈ Hα+1(T).

Let f : T −→ C and α ∈ (0, 1). We will write f ∈ Cα(T), whenever

sup
x∈T

|f(x)|+ sup
x∈T
h̸=0

|f(x+ h)− f(x)|
|h|α

< ∞.

This expression defines a norm in Cα(T) and makes it a Banach space, but we will
neither use nor prove this fact. See [13, §11.3].

Problem 2. Let f : (−π, π] −→ R be given by

f(x) = |x| log 1

|x|
.

Show that f ∈ Cα(T) for all 0 < α < 1. Show that f is not a Lipschitz function.
Is f ∈ AC(T)?

Solution. For the first and second parts, use that for fixed 0 < b < 1,

|x| < |x| log 1

|x|
< |x|b

in a neighbourhood of x = 0. For the third part, note that

f ′(x) = sgn(x)[log
1

|x|
− 1].

Thus f ′(x) ∈ L1(T). Therefore, indeed f ∈ AC(T). □

Problem 3. Show that H1(T) ⊆ C
1
2 (T). Hint: use the Cauchy-Schwarz inequality.

Is H1(T) = C
1
2 (T)?
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Solution. Let f ∈ H1(T). Then f ′ ∈ L2(T). Hence f ′ ∈ L1(T). Then f ∈ AC(T).
Let g = f ′. Then,

|f(x)− f(y)| =
∣∣∣∣∫ x

y

g(z) dz

∣∣∣∣
≤
(∫ x

y

dz

) 1
2
(∫ x

y

|g(z)|2dz
) 1

2

≤ |x− y| 12 ∥g∥L2 .

This ensures that f ∈ C
1
2 (T).

The answer to the second question is “no”. For example, | · | 12 ̸∈ H1(T) but

| · | ∈ C
1
2 (T). □

2. The Schrödinger equation

The study of different modifications of the following Schrödinger’s equation, is
the main goal of this cursillo. We are interested in the regularity of the solution.
Consider

(A)
i∂tu(x, t) = −∂2

xu(x, t) x ∈ T t ∈ R
u(x, 0) = f(x) x ∈ T.

It is routine to seen that, for t ∈ R,

u(x, t) =
∑
j∈Z

e−ij2tf̂(j)ej(x) =

∞∑
j=−∞

e−ij2t+ijxf̂(j).

Therefore, the solution does not change its Sobolev norm for any t ∈ R.

Problem 4. Let α ≥ 0. Show that

∥u(·, t)∥Hα(T) = ∥f∥Hα(T)

for all t ∈ R.

Solution. Use Parseval’s identity and the fact that |e−ij2t| = 1 for all t ∈ R. □

Quite remarkably, in this quarter of a Century, it has been discovered that the
regularity properties of the solution, beyond the Sobolev scale, are intimately con-
nected with the best approximation of t, in continued fractions. The next theorem
illustrates this in a concrete manner. It assembles results first formulated in [11]
and [16]. Some of the original proofs were simplified in [17], [14] and [4].

Theorem A. Let f ∈ L2(T). Let u be the solution to (A).

a) If p, q ∈ N are co-prime, then

u
(
x, 2π

p

q

)
=

1

q

q−1∑
m=0

[
q−1∑
k=0

e2πi
km−pm2

q f
(
x− 2π

k

q

)]
.

b) There exists a subset K ⊂ R with complement of measure 0, such that the
following property is valid. If f ∈ BV(T), then

u(·, t) ∈
⋃
ϵ>0

C
1
2−ϵ(T)
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Figure 1. Revivals: solution of (A) for f(x) = 1[−π
2 ,π2 ](x) at time

t = 2π 19
7 .
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Figure 2. Fractality: solution of (A) for f(x) = 1[−π
2 ,π2 ](x) at

time t ≈ 2πe.

for all t ∈ K. Moreover, if additionally f ∈ H
1
2 (T) but

(1) f ̸∈
⋂
ϵ>0

H
1
2+ϵ(T),

then the graph of Reu(·, t) has fractal dimension 3
2 for almost all t ∈ K.

This theorem prescribes that the regularity of the solution in the space variable,
changes significantly with time, when seen from a perspective different than that
of the Sobolev norm. For example, if f is a step function, the solution is a finite
linear combination of step functions whenever t

2π ∈ Q, while it is continuous but
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“rough” for almost every t
2π ̸∈ Q. We can call this a revivals/fractality dichotomy,

and illustrate this in figures 1 and 2.

2.1. Proof of Theorem A-a). The proof of the first statement in Theorem A is
as follows.

Let t = 2π p
q . Take j ≡

q
m so that eij

2t = eim
2t. Then,

u(x, t) =
1

2π

q−1∑
m=0

e−im2t
∑
j∈Z
j≡

q
m

⟨f, eij(·)⟩eijx

Now,

(2)

q−1∑
k=0

e2πi(m−j) k
q =

q j ≡
q
m

0 j ̸≡
q
m.

Thus, ∑
j∈Z
j≡

q
m

⟨f, eij(·)⟩eijx =
1

q

q−1∑
k=0

e2πim
k
q

∑
j∈Z

e−2πi k
q j⟨f, eij(·)⟩eijx

=
1

q

q−1∑
k=0

e2πim
k
q

∑
j∈Z

〈
f
(
· −2πk

q

)
, eij(·)

〉
eijx.

From this, the statement of Theorem A-a) follows.

Problem 5. Give the proof of the identity (2).

Solution. If j ≡
q
m, then m− j = nq for some n ∈ N and hence

q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

1 = q.

Otherwise, j = nq + r for some r ∈ {1, . . . , q − 1}, so
q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

e2πir
k
q .

Suppose, for simplicity, that r = 1 so we want to check that

S =

q−1∑
k=0

e2πi
k
q = 0.

Note that this is the sum of the roots of unit. For the variable z ∈ C, they are the
roots of the polynomial

q−1∏
k=0

(z − e2πi
k
q ) = zq − 1.

By developing the product on the left hand side, the coefficient for zq−1 is −S. But
the right hand side has no such power of z, so S = 0. A similar trick applies to
r > 1. □
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Problem 6. Let f ∈ L2(0, π). Find the (unique) solution to

(3)

∂tu(x, t) = i∂2
xu(x, t) x ∈ (0, π) t ∈ R

∂xu(0, t) = ∂xu(π, t) = 0 t ∈ R
u(x, 0) = f(x) x ∈ (0, π).

Give your solution in terms of the Fourier series of f . Now, set

f(x) =

{
1 x ∈ [0, π

2 ]

0 x ∈ (π2 , π].

Find t̃ > 0 such that u(·, t̃) has a discontinuity at x = π
8 . Hint: the second part is

tougher than you think.

Solution. Any f ∈ L2(0, π) can be expanded as

f(x) =

∞∑
n=0

f̃(n) cos(nx) x ∈ (0, π)

where

f̃(0) =
1

π

∫ π

0

f(x) dx f̃(n) =
2

π

∫ π

0

cos(nx)f(x) dx.

Then,

u(x, t) =

∞∑
n=0

e−in2tf̃(n) cos(nx).

Consider now the second part of the question.
Step 1. We derive a version of Theorem A-a). From the proof and the previous

part, we start with

u(x, t) =

∞∑
n=0

e−in2tf̃(n) cos(nx)

and transform into exponential form. Let fe denote the 2π-periodic extension of

fe(x) =

{
f(x) x ∈ [0, π]

f(−x) x ∈ (−π, 0)

By expressing the cosine in exponential form, doubling the integral of the Fourier
coefficients and gathering terms, we get

f̃(n) =
1

π

(∫ 0

−π

+

∫ π

0

)
fe(x)e

−inx dx =
1

π
⟨fe, ein(·)⟩.

This is now in the notation of the proof of the theorem and it has the same expres-
sion, except that it involves the even extension of the initial data.

Therefore, using exactly the same steps in that poof, we obtain,

Theorem A’-a). Let f ∈ L2(0, π) and consider the solution to the equation (3).
Then, for t̃ = 2πp

q where p and q are co-primes,

u(x, t̃) =
1

q

q−1∑
k,m=0

e2πi
km−pm2

q fe(x− 2πk/q).
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(a) (b)

Figure 3. (a) q = 16 and p = 1, (b) q = 32 and p = 1.

Step 2. With this result at hand, let us now find t̃ such that the RHS of the

above revival expression has a discontinuity at t̃ = π
8 . First, note that

fe(x) = sgn(cos(x)).

Then we need an educated guess.
Taking q = 16 gives no discontinuity at x̃ = π

8 despite of having the correct
coefficients to play around with k = 5 and k = 13 in the above formula. See
Figure 3.

Taking q = 32 and p = 1, gives t̃ = π
16 . Now,

π

8
− kπ

16
=

π

2
+ 2nπ ⇐⇒ k ≡32 −6 ≡32 26

and
π

8
− kπ

16
= −π

2
+ 2nπ ⇐⇒ k ≡32 10.

These are the only contributing terms in the revival summation that give a jump
at π/8 in the case q = 32. One is a jump up, the other a jump down. We need to
check that these do not cancel out. Octave gives

octave:1> m=0:31;

octave:2> sum(exp(i*pi*(26*m-m.^2)/16))

ans = 4.4446 + 6.6518i

octave:3> sum(exp(i*pi*(10*m-m.^2)/16))

ans = -4.4446 - 6.6518i

Hence, at k = 26,

A =

31∑
m=0

e−π 26m−m2

16 ≈ 4.4446 + 6.6518i

and, at k = 10,

B =

31∑
m=0

e−π 10m−m2

16 ≈ −4.4446− 6.6518i.

Thus, since A is safely away from B and they are both safely away from 0, we know
that there is a discontinuity at x = π

8 . See Figure 3. □
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2.2. Besov spaces. The Fourier coefficients of Hölder continuous functions have
a specific behaviour, which can be seen through the scale of Besov spaces. The
latter give a more refined criterion for the regularity of a function than the scale
of Sobolev spaces. To simplify our notation, we will write Bα

p (T), for α ∈ R and
p ≥ 1, to denote what is normally written as Bα

p,∞(T), precisely defined as follows.
Let χ : R −→ [0, 1] be a C∞ function, such that

suppχ = [2−1, 2]

and
∞∑
j=0

χ(2−jξ) = 1

for all ξ ≥ 1. Let the Littlewood-Paley projections of a periodic distribution on T,
be given by

(Kjf)(x) =
∑
n∈Z

χj(|n|)f̂(n)einx,

where χj(ξ) = χ(2−jξ) for j ∈ N and χ0(ξ) = 1−
∑∞

j=1 χj(ξ). We write f ∈ Bα
p (T),

if and only if,

sup
j=0,1,...

2αj∥Kjf∥Lp(T) < ∞.

We will be concerned almost exclusively with the case p = ∞.
We highlight the following two properties,

(4) f ′ ∈ Bα
∞(T) ⇐⇒ f ∈ Bα+1

∞ (T)

for all α ∈ R and

(5) Bα
∞(T) = Cα(T),

for all α ∈ (0, 1). Let us prove these statements.

Let g ∈ S(R) be such that Fg(ξ) = χ(ξ), where

Ff(ξ) =

∫
R
f(x)e−iξx dx

is the Fourier transform. Then, (Fgj)(ξ) = χj(ξ) for gj(x) = 2jg(2jx).
If f ∈ S(R), Poisson’s Summation Formula prescribes that,∑

n∈Z
f(x+ n) =

∑
n∈Z

(Ff)(2πn)e2πinx

for all x ∈ R. Letting f̃(x) = f(2πx), gives

(F f̃)(ξ) =
1

2π
(Ff)

(
ξ

2π

)
.

Then, ∑
k∈Z

f(z + 2πk) =
1

2π

∑
k∈Z

(Ff)(k)einz.
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Hence, we can represent the projections Kj of any periodic distribution F , as

(KjF )(x) =

∞∑
k=−∞

χj(|k|)
(

1

2π

∫
T
F (y)e−iky dy

)
eikx

=

∫
T

(
1

2π

∞∑
k=−∞

χj(|k|)eik(x−y)

)
F (y) dy

=

∫
T

( ∞∑
k=−∞

gj(x− y + 2kπ)

)
F (y) dy

=

∞∑
k=−∞

∫
T
gj(x− y + 2kπ)F (y − 2kπ) dy

=

∫
R
gj(x− y)F (y) dy = (gj ⋆ F )(x).

for all x ∈ R. Here the symbol “⋆” denotes the convolution on R.
Now, according to [1, Lemma 2.1, p.52] in the case p = ∞, there exists a constant

C > 0 which only depends on r1, r2 and λ, ensuring the following estimates. For
any function u ∈ L∞(R), such that

supp(Fu) ⊂ λ{ξ ∈ R : 0 < r1 ≤ |ξ| ≤ r2},
we have

(6)
λ

C
∥u∥L∞(R) ≤ ∥u′∥L∞(R) ≤ Cλ∥u∥L∞(R).

This is some times called Bernstein’s Inequality.

Problem 7. Give the proof of (4). Hint: use (6).

Solution. Take u = gj ⋆ F , λ = 2j , r1 = 2−1 and r2 = 2 in (6). Then, the left hand
side inequality yields,

2(α+1)j∥KjF∥L∞(T) ≤ C2αj∥Kj(F
′)∥L∞(T) < ∞,

for F ′ ∈ Bα
∞(T). Conversely, the right hand side inequality yields,

2αj∥Kj(F
′)∥L∞(T) ≤ C2(α+1)j∥KjF∥L∞(T) < ∞,

for F ∈ Bα+1
∞ (T). □

Proof of (5). We know that f ∈ Cα(T), if and only if S1 + S2 < ∞, for

S1 = sup
x∈T

|f(x)|

and

S2 = sup
x∈T
h̸=0

|f(x+ h)− f(x)|
|h|α

.

Recall that, f ∈ Bα
∞(T), if and only if R < ∞, for

R = sup
j=0,1,...

sup
x∈T

2αj |Kjf(x)|.

Let f ∈ Bα
∞(T). We show that S1 and S2 are finite. Firstly note that,

f(x) =

∞∑
j=0

Kjf(x).
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Hence,

S1 ≤
∞∑
j=0

∥Kjf∥L∞(T) ≤
∞∑
j=0

R

2αj
< ∞.

Here we have used that α > 0.
Now, if

S3 = lim sup
h→0

(
sup
x∈T

|f(x+ h)− f(x)|
|h|α

)
< ∞,

then S2 < ∞. For j = 0, 1, . . ., let

S4(j) = lim sup
h→0

(
sup
x∈T

|Kj(f(x+ h)− f(x))|
|h|α

)
.

Then, on the one hand,

S3 ≤
∞∑
j=0

S4(j).

On the other hand, by the Mean Value Theorem, for suitable |hj | < 2−2j ,

S4(j) ≤ sup
x∈T

0<|h|≤2−2j

|Kjf(x+ h)−Kjf(x)|
|h|α

≤ sup
x∈T

0<|h|≤2−2j

|(Kjf)
′(x+ hj)||h|
|h|α

= sup
0<|h|≤2−2j

|h|1−α sup
x∈T

|(gj ⋆ f)′(x+ hj)|

≤ 2−2j(1−α)∥(gj ⋆ f)′∥L∞(R)

≤ C2j2−2j(1−α)∥gj ⋆ f∥L∞(R)

= C2−j(1−α)2αj∥Kjf∥L∞(T)

≤ CR2−j(1−α).

Thus, indeed, S3 < ∞. Here we have used that 1 − α > 0. This confirms that
Bα

∞(T) ⊆ Cα(T).
Now, let us show that Cα(T) ⊆ Bα

∞(T). Assume that f ∈ Cα(T). That is
S1 < ∞ and S2 < ∞. Considering f as a periodic function of x ∈ R, we have

S1 = sup
x∈R

|f(x)| < ∞

and

S2 = sup
x∈R
h̸=0

|f(x+ h)− f(x)|
|h|α

< ∞.

Our goal is to show that R < ∞.
Since g ∈ S(R), then there exists a constant c3 > 0, such that

|gj(x)| ≤ c3
2j

(1 + 2j |x|)2
,

for all x ∈ R. Now for any φ ∈ R, thought of as a constant periodic function, we
have that (gj ⋆ φ)(x) = φχj (0) = 0 for j = 1, 2, . . .. Then,

(gj ⋆ f)(x) = (gj ⋆ (f + φ))(x)
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for all x ∈ R and j ∈ N. Thus,

|(gj ⋆ f)(x)| ≤
∫
R
|gj(y)||f(x− y) + φ|dy

≤ c32
j

∫
R

|f(x− y) + φ|
(1 + 2j |y|)2

dy

= c3

∫
R

∣∣f (x− z
2j

)
+ φ

∣∣
(1 + |z|)2

dz.

for all x ∈ R, φ ∈ R and j ∈ N.
This gives, taking φ = −f(x), that

2αj |(gj ⋆ f)(x)| ≤ c32
αj

∫
R

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz = Aj(x) +Bj(x),

where we split the integral as follows. The first term is,

Aj(x) = c32
αj

∫ 2j

−2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

= c3

∫ 2j

−2j

|z|α
∣∣f (x− z

2j

)
− f(x)

∣∣(
|z|
2j

)α
(1 + |z|)2

dz

≤ c3S2

∫ ∞

−∞

|z|α

(1 + |z|)2
dz ≤ c4 < ∞,

for all j = 1, 2, . . . and x ∈ T. Here we have used that 0 < α < 1. The second term
is,

Bj(x) = c32
αj

∫
|z|≥2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

≤ c32
αj2S1

∫
|z|≥2j

dz

(1 + |z|)2

≤ c5S12
(α−1)j ≤ c6 < ∞,

for all j = 1, 2, . . . and x ∈ T. Here we have used that α < 1. Then R ≤ c4+c6 < ∞.
This completes the proof of (5). □

Problem 8. Show that

Bα1
1 (T) ∩ Bα2

∞ (T) ⊂ Hα(T)
for all α < (α1 + α2)/2.

2.3. Proof of Theorem A-b) first statement. We will make use of the next
lemma, which is analogous to [11, Corollaries 2.2 and 2.4]. The formulation with
only half of the Fourier coefficients that we give here will be useful later on.

Lemma 1. There exists a subset K ⊂ R with complement of measure 0, such that
the following holds true for all t ∈ K. Given δ > 0, there exists a constant C > 0
such that

(7) sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ ≤ C2
j
2 (1+δ),

for all j = 0, 1, . . ..
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Proof. According to Dirichlet’s Theorem, for every irrational number a > 0 there
are infinitely many positive integers p, q ∈ N, such that p and q are co-prime, and

(8)

∣∣∣∣a− p

q

∣∣∣∣ ≤ 1

q2
.

By virtue of [8, Lemma 4], there exists a constant c1 > 0 such that, if the irreducible
fraction p

q satisfies (8), then∣∣∣∣∣
N∑

n=M

e2πi(an
2+bn)

∣∣∣∣∣ =
∣∣∣∣∣
N−M∑
k=1

e2πi(ak
2+bk)

∣∣∣∣∣
≤ c1

(
N −M
√
q

+
√
q

)

for all N ∈ N, 0 < M < N and b ∈ R. Here c1 is independent of a and b. Take any
sequence {ωn}, such that ωn = 0 for n < M or n > N , and

N∑
n=M

|ωn+1 − ωn| ≤ d.

Since, ∣∣∣∣∣
N∑

n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M

(ωn+1 − ωn)

n∑
k=M

e2πi(ak
2+bk)

∣∣∣∣∣
≤

N∑
n=M

|ωn+1 − ωn|

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣
≤ d sup

n=M,...,N

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣ ,
then,

(9)

∣∣∣∣∣
N∑

n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ ≤ dc1

(
N −M
√
q

+
√
q

)
.

Let [a0, a1, . . .] be the continued fraction expansion of the irrational number a,

a = a0 +
1

a1 +
1

a2+
1
···

.

Then, the irreducible fractions,

pn
qn

= a0 +
1

a1 +
1

a2+··· 1

an−1+ 1
an

,

are such that (8) holds true with {pn} and {qn} increasing sequences. According
to the Khinchin-Lévy Theorem, for almost every a > 0 the denominators qn satisfy
[12, p.66]

lim
n→∞

log qn
n

= ρ :=
π2

12 log 2
.

If a is such that this limit exists, then for all j ∈ N sufficiently large we can find

quotients pn(j)
qn(j)

with denominators satisfying qn(j) = 2j(1+rj), where rj → 0 as
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j → ∞. Indeed, we can take n(j) equal to the integer part of j(log 2)/ρ. This
choice implies

lim
j→∞

log qn(j)

j
= log 2.

Note that {qn(j)} is not a subsequence of {qn}, since log 2/ρ < 1 and therefore
indices may be repeated, but this does not cause problems.

Let K be the set of times of the form t = 2πa, such that the sequence of quotients
of |a| satisfies the conditions of the previous paragraph. Let t ∈ K and fix δ > 0.
Let J > 0 be such that |rj | < δ for all j ≥ J . Taking M = 2j−1, N = 2j+1,
ωn = χj(n), and

d = 2 sup
ξ∈R

|χ′(ξ)|,

in (9), yields

sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ = sup
x∈T

∣∣∣∣∣∣
2j+1∑

n=2j−1

χj(n)e
in2t+inx

∣∣∣∣∣∣
≤ dc1

(
2j+1 − 2j−1

√
qnj

+
√
qnj

)

≤ dc1

(
2j−13

2
j
2 (1−δ)

+ 2
j
2 (1+δ)

)
≤ c22

j
2 (1+δ),

for all j ≥ J . This implies (7) for sufficiently large C > 0. □

The proof of the first statement of Theorem A-b) is as follows.
Let the periodic distribution,

Et(x) =
∑
n∈Z

einx+in2t.

Since the Fourier coefficients ein
2t of Et are unimodular, the series converges in the

weak sense of distributions and determines Et uniquely for all t ∈ R, [18, Theorems
11.6-1 and 11.6-2]. Moreover, for all t ∈ R, Et ∈ Bβ

∞(T) for all β < −1. This is a
good start.

Let t ∈ K, with K ⊂ R as in Lemma 1. Then it follows from (7) that in fact the
stronger inclusion Et ∈ Bβ

∞(T) for all β < − 1
2 . Define the periodic distribution Ht

by H ′
t = Et, namely

H(t) =
∑

n∈Z\{0}

einx+in2t

in
.

Then, according to (4) and (5), Ht ∈ Cβ+1(T) for all β < − 1
2 .

Note that

f̂(n) =
1

2πin

∫
T
e−iny df(y) =

µ̂(n)

in
, n ̸= 0,
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where µ is the Lebesgue-Stieltjes measure associated to f , which satisfies |µ|(T) <
∞. Then the solution of (A), can be expressed in terms of Ht as follows,

u(x, t) = f̂(0) +

∞∑
n ̸=0, n=−∞

ein
2tf̂(n)einx

= f̂(0) +

∞∑
n ̸=0, n=−∞

ein
2tµ̂(n)

in
einx

= f̂(0) + (Ht ∗ µ)(x).

Here and elsewhere below, “∗” denotes the convolution on T,

(H ∗ F )(x) =
1

2π

∫
T
H(x− y)F (y) dy,

so that ̂(H ∗ F )(n) = Ĥ(n)F̂ (n). Hence, since µ is a bounded measure, we indeed
have u(·, t) ∈ Cα(T) for all α < 1

2 .
This completes the proof of the first claim in Theorem A-b).

Problem 9. Show that if H ∈ Cα(T) and F is a periodic distribution, then (H ∗
F ) ∈ Cα(T).

2.4. Fractal dimension of a graph. For the second statement in part b) of
Theorem A, we first recall the notion of fractal dimension. Then, we give a formula
for the dimension of the graph of a function, in terms of its regularity.

Let g : T −→ R be a continuous function. Denote the graph of g, by

Γ =
{
(x, g(x)) ∈ T× R : x ∈ T

}
.

The upper Minkowski (or fractal) dimension of Γ, is defined by the expression

dimB Γ = lim sup
ε→0

logN (ε)

log 1
ε

,

where N (ε) is the number of squares that intersect Γ, in a grid (covering T × R)
made of squares of side ε.

First we recall the classical upper bound, formulated in [6, Corollary 11.2-(a)].

Lemma 2. If g ∈ Cα(T), then dimB Γ ≤ 2− α.

Proof. We simplify the notation by doing this proof in the interval [0, 1] instead of
(−π, π]. So we show that the function h : [0, 1] −→ R, given by h(x) = g(2πx− π),
has a graph of fractal dimension less than or equal to 2− α. The Hölder constant
of h is α and the fractal dimension does not change with the scaling of the interval.
We adapt the counting function N , accordingly.

Let

Rh[a, b] = sup
x,y∈[a,b]

|h(x)− h(y)|.

Let 0 < ε < 1 and let m be the smallest integer greater than or equal to 1
ε . Then,

(10) N (ε) ≤ 2m+

m−1∑
k=1

Rh[kε, (k + 1)ε]

ε
.
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Indeed, split the interval [0, 1] into sub-intervals [kε, (k + 1)ε] all of size ε and
consider a mesh of size ε. Then, the number of squares that intersect the graph of
h in each sub-interval, is at least

Rh[kε, (k + 1)ε]

ε
.

To find the upper bound in (10), we use the fact that h is continuous. The function
may overlap another square, when entering a new sub-interval from below or leaving
one from above. Hence, the maximum number of squares that intersect the graph
of h, is

2 +
Rh[kε, (k + 1)ε]

ε
.

This shows (10).
Now, from the hypothesis, it follows that for a suitable constant c1 > 0,

Rh[kε, (k + 1)ε] ≤ c1ε
α.

Then, using the upper bound in (10) and the fact that m < 1 + ε−1, we have

N (ε) ≤ 2m+ c1mεα−1 ≤ (1 + ε−1)(2 + c1ε
α−1) ≤ c2ε

α−2.

Taking logarithms, gives

logN (ε)

log ε−1
≤ log c2

log ε−1
+ 2− α.

Hence, taking the limsup, yields the claim of the lemma. □

Finding bounds, complementary to the one in the above lemma, turns out to be
less straightforward. One of the best results currently available was obtained in the
paper [5].

Lemma 3. If g ̸∈ Bα
1 (T), then dimB Γ ≥ 2− α.

Proof. This lemma is a direct corollary of the stronger [5, Theorem 4.2]. □

2.5. Proof of Theorem A-b) second statement. We first show the following
lemma, which was first established in [4]. Out proof follows the rather ingenious
strategy employed in that paper. The important point of this statement is the fact
that the regularity of the real part of the solution (and not only of the solution
itself), cannot improve beyond the regularity of the initial data f , for almost all
t ∈ R.

Lemma 4. Let f ∈ BV(T) and let

r0 := sup{s > 0 : f ∈ Hs(T)}.

If r0 ∈ [ 12 , 1), then there exists a subset J ⊂ R with complement of measure 0, such
that the following holds true for all t ∈ J . Whenever r > r0, we have Reu(·, t) ̸∈
Hr(T).

Proof. Since Hs(T) ⊂ Hr(T) for r < s, without loss of generality we will assume
that r is such that r0 < r < r0+1

2 .
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Write the real part of the solution as,

Reu(x, t) =
1

2

(
u(x, t) + u(x, t)

)
=

1

2

∑
j∈Z

(
eitj

2

f̂(j) + e−itj2 f̂(−j)
)
ej(x).

Then, the conclusion will follow, if we find a sequence {Jn}∞n=1 ⊂ N, such that

lim
n→∞

Jn∑
j=1

j2r
∣∣∣eitj2 f̂(j) + e−itj2 f̂(−j)

∣∣∣2 = ∞.

Now,∣∣∣eitj2 f̂(j) + e−itj2 f̂(−j)
∣∣∣2 = |f̂(j)|2 + |f̂(−j)|2 + 2Re

(
e2itj

2

f̂(j)f̂(−j)
)
.

By hypothesis, we have that ∑
j∈Z

j2r|f̂(j)|2 = ∞.

Then,

(11)

∞∑
j=1

j2r(|f̂(j)|2 + |f̂(−j)|2) = ∞.

Let the partial summations

SL(t) =

L∑
j=1

j2re2itj
2

f̂(j)f̂(−j).

If we can find another sequence {Ln}∞n=0 ⊂ N, such that SLn
(t) converges as n → ∞,

this will ensure that

2Re

 Ln∑
j=1

j2r
(
e2itj

2

f̂(j)f̂(−j)
)

converges, and we will be able to find Jn from this convergence and the divergence
(11). Note that we do need to argue through the subsequence Jn, as there might be
some cancellations in the intermediate terms, preventing a “uniform divergence”.

So our next goal is to show that the sequence Ln exists. Since SL is 2π-periodic,
without loss of generality we can assume that t ∈ (−π, π]. Write SL(t) in the
expanded form,

SL(t) =

∞∑
m=1

eitm

 ∑
1≤j≤L
2j2=m

j2rf̂(j)f̂(−j)

 .

Since j2 = m
2 has at most two (integer) solutions, the sum inside the bracket has

at most 2 terms for every positive integer m and it is equal to 0 for most of them.
If

(12)

∞∑
j=1

j4r
∣∣∣f̂(j)f̂(−j)

∣∣∣2 < ∞,
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then S = limL→∞ SL is the limit of a Fourier series, convergent in the norm
of L2(−π, π). Should this happen, by virtue of Carleson’s theorem [10, Theo-
rem 3.6.15], there would exists a subset J ⊂ R whose complement is of measure 0,
satisfying the following. For all t ∈ J , there is a subsequence {Ln} ⊂ N, such that
the limit

lim
n→∞

SLn
(t) = S(t)

converges pointwise. Therefore, according to the previous paragraph, J would be
the needed subset in the statement of the lemma.

So we complete the proof by showing that (12) holds true. Since f ∈ H
1
2 (T),

then
|f̂(−j)|2 ≤ c2j

−2

for all j ∈ N. Let s < r0. Since f ∈ Hs(T), then
∞∑
j=1

j2s|f̂(j)|2 < ∞.

Hence,
∞∑
j=1

j4r
∣∣∣f̂(j)f̂(−j)

∣∣∣2 ≤ c2

∞∑
j=1

j4r−2−2s
(
j2s|f̂(j)|2

)
≤ c2

∞∑
j=1

j2s|f̂(j)|2 < ∞,

for any r < s+1
2 . Taking s < r0 close enough to r0, we can always get r to satisfy

both, this latter condition which ensures (12), and the assumption in the beginning
of the proof. □

To complete the proof of Theorem A-b), we proceed as follows.
Let D denote the upper Minkowski dimension of the graph of Reu(·, t). By

virtue of the first statement in Theorem A-b) and Lemma 2, it follows that D ≤ 3
2

for all t ∈ K.
Now, take r0 = 1

2 in the previous lemma. According to it and to the statement
of Problem 8, the condition (1) imposed on f implies that Reu(·, t) ̸∈ Br

1(T) when-
ever r > 1

2 , for all t ∈ K ∩ J . Thus, by virtue of Lemma 3, we also have the

complementary bound D ≥ 3
2 for all such t.

This completes the proof of Theorem A.

Problem 10. Let u be the solution to the time-evolution equation (3) from Prob-
lem 6. Show that there exists t̃ > 0 such that u(·, t̃) is continuous. Hint: this is
easier than you think.

Solution. From what we have discovered so far, a solution to the equation with
Neumann boundary conditions is a solution to

∂tu = i∂2
xu

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t)

u(x, 0) = fe(x)

for x ∈ T. This is the equation from Theorem A. Indeed, the Fourier expansions
of the solutions match exactly. Then, for the answer to this problem, just invoke
the theorem part b) first statement. Since fe is piecewise constant, it is of bounded
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variation in T. Therefore, the answer is immediate: for almost all t̃ the solution is
Cα for all 0 ≤ α < 1/2 and hence it is continuous. □

3. Changing the boundary conditions

Let b ∈ R \ {1}. We now consider

(B)

i∂tu(x, t) = −∂2
xu(x, t) x ∈ (0, π) t ∈ R

u′(a, t) =
b

1− b
u(a, t) a = 0, π t ∈ R

u(x, 0) = f(x) x ∈ (0, π)

which is a modification from the periodic boundary conditions of (A) to so-called
Robin boundary conditions. Our goal is to determine to what extend, this modifi-
cation supports any form of revival and or fractality.

If b = 0 we obtain the Neumann boundary conditions. So, Theorem B below
generalises the solutions to the problems 6 and 10 from the previous section. For b ∈
(0, 1), the part a) of this theorem, was established in [2] and the PhD dissertation
[7]. The extension to the other real b that we give here does not present any
technical improvement from that case. As far as I am aware, the part b) of the
theorem is new.

Let any function h : [0, π] −→ C. We denote by he the 2π-periodic extension of
the even function

he(x) =

{
h(x) x ∈ [0, π]

h(−x) x ∈ (−π, 0).

That is, the even extension of h to R. Likewise, we denote by ho the 2π-periodic
extension of the odd function

ho(x) =

{
h(x) x ∈ [0, π]

−h(−x) x ∈ (−π, 0).

That is, the odd extension of h to R.
The next conventions will simplify the arguments below. Let

Ab =
2b

(1− b)
(
e2π

b
1−b − 1

)
for b ̸= 0 and A0 = 1

π . We denote with the unambiguous symbol ϕ, the function
ϕ : R −→ C, which is the 2π-periodic extension of

ϕ(x) =
√
Ab e

b
1−bx,

from x ∈ [0, 2π] to R. We remark that ϕ, regarded as a function of T, has a
discontinuity at 0 but it is C∞ at ±π. Also, note that ϕ satisfies the boundary
conditions of (B) and that ∥ϕ∥L2(0,π) = 1.

For any f ∈ L2(0, π), we will consider an associated function g : T −→ C, given
by the expression

(13) g =
√
πϕ ∗ (fo − fe).

Here, I clarify that g is a function on the whole torus and the convolution is, as
previously, also on T.

Theorem B. Let f ∈ L2(0, π) and let g be as in the expression (13). Let u be the
solution to (B).


