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1. Preliminaries

The phenomenon of revivals in linear dispersive equations was discovered first
experimentally in optics, in around 1834, then rediscovered several times by the-
oretical and experimental investigations. While the concept has been used sys-
tematically and consistently by many authors, there is no consensus on a rigorous
definition. Several have described it by stating that a given periodic time-dependent
boundary-value problem exhibits a Talbot effect or dispersive quantisation, if the
solution evaluated at a certain dense subset of times, is given by finite superposition
of translated copies of the initial condition. When this initial condition has jump
discontinuities at time zero, these propagate and remain present in the solution at
the times which are a rational multiple of the period.

The complementary phenomenon to revivals is fractality. One instance of this is
that, for initial conditions with jump discontinuities, the solution is continuous in
space for almost every time, but its graph is a curve of high fractal dimension.

In these cursillo notes, I fist present the classical framework, in the context of
harmonic analysis, number theory and fractal geometry. Then, I report on the
presence of revivals and fractality for three types of perturbations of the original
equation, in the context of spectral theory. Concretely, I change the boundary
conditions, add a potential term and make the equation non-local. The presentation
is self-contained and I tried to calibrate the material to the level of a graduate
student in Mathematical Sciences.

Section 2 summarises features of the theory developed by a number of authors
over the last 25 years. Sections 3-5 report on research that I conducted in the last
5 years. The motivation to consider the different models was the PhD project of my
former student George Farmakis of the MIGSAA Centre for Doctoral Training, who
I co-supervised with my friend Beatrice Pelloni. It follows an earlier collaboration
with my colleagues Dave Smith and Peter Olver. The part corresponding to the
Benjamin-Ono equation was developed last Summer as an internship project for the
4th year undergraduate student of Heriot-Watt University, Breagh MacPherson.
The final Appendix A contains exercises with full solutions. Some of these were
developed for a graduate lecture course that I delivered at the Maxwell Institute
for the Mathematical Sciences in Winter 2024.

I am very grateful to Monika Winklmeier, who organised such a stimulating
event at the Universidad de Los Andes. I also wish to thank the participants of the
cursillo, who contributed with so many interesting ideas to simplify many of my
original proofs.

1Support provided by the Universidad de Los Andes and the London Mathematical Society.
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1.1. Conventions and notation. Let en(x) = 1√
2π

einx. Here and everywhere

below, we write the Fourier coefficients of a periodic distribution F with one of the
usual scalings on T = (−π, π], as

F̂ (n) =
1√
2π

⟨F, en⟩ =
1

2π

∫ π

−π

e−inyF (y) dy.

See [19, Chapter 11] or [10, Section 9.3]. This choice makes either series in the
expression

F (x) ∼
∑
n∈Z

⟨F, en⟩en(x) =
∑
n∈Z

F̂ (n)einx,

convenient for long calculations. Recall that {en}n∈Z ⊂ L2(T) is an orthonormal
basis of eigenfunctions for the Laplacian,

−∂2
x : H2(T) −→ L2(T).

Indeed,

−e′′n = n2en,

for all n ∈ Z.
The following function spaces will be considered throughout. The definitions

and relevant properties, are given in the next subsection and in the text.

• BV(T) functions of bounded variation,
• AC(T) absolutely continuous functions,
• Cα(T) Hölder continuous functions of regularity α ∈ (0, 1),
• Hα(T) functions in the L2 Sobolev space with regularity α ≥ 0,
• Bα

p (T) distributions in the ℓ∞-Lp Besov space with regularity α ∈ R and
1 ≤ p ≤ ∞.

On two occasions, instead of T, we will use (0, π] not identifying 0 with π. As
the mapping of the definitions to this subsegment and the properties that we will
require are standard, we omit any further details on this.

1.2. Connections and properties of the classical function spaces. Recall
the definitions of BV(T) and AC(T), given in any classical analysis monograph
such as [16, p.9 and p.47]. We know that

f ∈ AC(T) ⇐⇒ f ′ ∈ L1(T).

We also know that f ∈ BV(T), if and only if f ′ is a complex-valued Radon measure
on T. The latter means that its real and imaginary parts, are finite signed measures
on the Borel σ-algebra of T, compatible with the topology. Moreover, if f ∈ BV(T),
then

f = fac + fs,

for fac ∈ AC(T) with f ′
ac ∈ L∞(T), and f ′

s a singular measure with support of
Lebesgue measure 0. For the proofs of these statements, see the two theorems on
[16, p.53].

Problem 1. Let f ∈ BV(T). Show that there exists a constant C > 0, such that

|f̂(n)| ≤ C

|n|
for all n ̸= 0.
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Let f : T −→ C and α ≥ 0. We will write f ∈ Hα(T), whenever∑
n∈Z

(1 + n2)α
∣∣∣f̂(n)∣∣∣2 < ∞.

It is easy to see that

f ′ ∈ Hα(T) ⇐⇒ f ∈ Hα+1(T).

Let f : T −→ C and α ∈ (0, 1). We will write f ∈ Cα(T), whenever

sup
x∈T
h̸=0

|f(x+ h)− f(x)|
|h|α

< ∞.

Adding ∥f∥∞ to this expression, defines a norm in Cα(T) and makes it a Banach
space, but we will neither use nor prove this fact. See [14, §11.3].

Problem 2. Let f : T −→ R be given by

f(x) = |x| log 1

|x|
.

Show that f ∈ Cα(T) for all 0 < α < 1. Show that f is not a Lipschitz function.
Is f ∈ AC(T)?

Problem 3. Show that H1(T) ⊆ C
1
2 (T). Hint: use the Cauchy-Schwarz inequality.

Is H1(T) = C
1
2 (T)?

2. The Schrödinger equation

The study of different modifications of the following simple dispersive equation
is the main goal of this cursillo,

i∂tu(x, t) = −∂2
xu(x, t) x ∈ T t ∈ R

u(x, 0) = f(x) x ∈ T.
(A)

The regularity of the solutions will play a central role in our analysis. It is routine
to seen that

u(x, t) =
∑
j∈Z

e−ij2tf̂(j)ej(x) =

∞∑
j=−∞

f̂(j)e−ij2t+ijx,

for all t ∈ R. Therefore, the solution does not change its Sobolev norm as t evolves.

Problem 4. Let α ≥ 0. Show that

∥u(·, t)∥Hα(T) = ∥f∥Hα(T)

for all t ∈ R.

Quite remarkably, in this quarter of a Century, it has been discovered that the
regularity properties of u, beyond the Sobolev scale, are intimately connected with
the best approximation of t in continued fractions. Our first theorem illustrates
this in a concrete manner. It assembles results first formulated in [12] and [17].
Some of the original proofs were simplified in [18], [15] and [5].
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Figure 1. Revivals: solution of (A) for f(x) = 1[−π
2 ,π2 ](x) at time

t = 2π 19
7 .

Theorem A. Let f ∈ L2(T). Let u be the solution to (A).

a) If p, q ∈ N are co-prime, then

u
(
x, 2π

p

q

)
=

1

q

q−1∑
m=0

[
q−1∑
k=0

e2πi
km−pm2

q f
(
x− 2π

k

q

)]
.

b) There exists a subset K ⊂ R with |Kc| = 0, such that the following is valid.
For all t ∈ K,

f ∈ BV(T) ⇒ u(·, t) ∈ Cα(T) ∀α <
1

2
. (I)

Additionally, for almost all t ∈ K,

max
{
s > 0 : f ∈ Hs(T)

}
=

1

2
⇒ dim

[
Graph of
Reu(·, t)

]
=

3

2
. (II)

Here |S| for S ⊂ R indicates the Lebesgue measure and “dim” denotes the fractal
dimension. For the latter see the Subsection 2.4.

This theorem prescribes that the regularity of the solution in the space variable,
changes significantly with time, when seen from a perspective different than that
of the Sobolev norm. For example, if f is a step function, the solution is a finite
linear combination of step functions whenever t

2π ∈ Q, while it is continuous but

fractal for almost every t
2π ̸∈ Q. We can call this a revivals/fractality dichotomy,

and illustrate it in figures 1 and 2. Note that Figure 2 suggests that in the fractal
regime, the solution is nowhere differentiable. To the best of my knowledge the
latter has not been proved analytically.

2.1. Proof of Theorem A-a). The proof of the first statement in Theorem A is
as follows.
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Figure 2. Fractality: solution of (A) for f(x) = 1[−π
2 ,π2 ](x) at

time t ≈ 2πe.

Let t = 2π p
q . Take j ≡

q
m so that eij

2t = eim
2t. Then,

u(x, t) =
1

2π

q−1∑
m=0

e−im2t
∑
j∈Z
j≡

q
m

⟨f, eij(·)⟩eijx.

Now,

q−1∑
k=0

e2πi(m−j) k
q =

q j ≡
q
m

0 j ̸≡
q
m.

(1)

Thus,

∑
j∈Z
j≡

q
m

⟨f, eij(·)⟩eijx =
∑
j∈Z

(
1

q

q−1∑
k=0

e2πim
k
q

)
e−2πi k

q j⟨f, eij(·)⟩eijx

=
1

q

q−1∑
k=0

e2πim
k
q

∑
j∈Z

〈
f
(
· −2πk

q

)
, eij(·)

〉
eijx.

From this, the statement of Theorem A-a) follows.

Problem 5. Give the proof of the identity (1).

Problem 6. Let f ∈ L2(0, π). Find the solution to

∂tu(x, t) = i∂2
xu(x, t) x ∈ (0, π) t ∈ R

∂xu(0, t) = ∂xu(π, t) = 0 t ∈ R
u(x, 0) = f(x) x ∈ (0, π).

(2)
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Give your solution in terms of a Fourier series of f . Now, set

f(x) =

{
1 x ∈ [0, π

2 ]

0 x ∈ (π2 , π].

Find t̃ > 0 such that u(·, t̃) has a discontinuity at x = π
8 . Hint: the second part is

tougher than you might think.

2.2. Besov spaces. The Fourier coefficients of Hölder continuous functions have
a specific behaviour, which can be seen through the scale of Besov spaces. The
latter give a more refined criterion for the regularity of a function than the scale
of Sobolev spaces. To simplify our notation, we will write Bα

p (T), for α ∈ R and
p ≥ 1, to denote what is normally written as Bα

p,∞(T), defined as follows.
Let χ : R −→ [0, 1] be a C∞ function, such that

suppχ = [2−1, 2] and

∞∑
j=0

χ(2−jξ) = 1,

for all ξ ≥ 1. Let χj(ξ) = χ(2−jξ) for j ∈ N and χ0(ξ) = 1−
∑∞

j=1 χj(ξ). Let the
Littlewood-Paley projections of a periodic distribution F on T, be given by

(KjF )(x) =
∑
n∈Z

χj(|n|)F̂ (n)einx.

We write F ∈ Bα
p (T), if and only if

sup
j=0,1,...

2αj∥KjF∥Lp(T) < ∞.

We will be mostly concerned with the case p = ∞.
The following two properties will be crucial in our arguments below,

F ′ ∈ Bα
∞(T) ⇐⇒ F ∈ Bα+1

∞ (T) (3)

for all α ∈ R and

Bα
∞(T) = Cα(T), (4)

for all α ∈ (0, 1). We now give the proofs of these statements.

Let g ∈ S(R) be such that Fg(ξ) = χ(ξ), where

Ff(ξ) =

∫
R
f(x)e−iξx dx

is the Fourier transform. Then, (Fgj)(ξ) = χj(ξ) for gj(x) = 2jg(2jx). If f ∈ S(R),
Poisson’s Summation Formula prescribes that,∑

n∈Z
f(x+ n) =

∑
n∈Z

(Ff)(2πn)e2πinx

for all x ∈ R. Letting f̃(x) = f(2πx), gives

(F f̃)(ξ) =
1

2π
(Ff)

(
ξ

2π

)
.

Then, ∑
k∈Z

f(z + 2πk) =
1

2π

∑
k∈Z

(Ff)(k)eikz.
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Hence, we can represent the projections Kj of any periodic distribution F , as

(KjF )(x) =
∑
k∈Z

χj(|k|)
(

1

2π

∫
T
F (y)e−iky dy

)
eikx

=

∫
T

(
1

2π

∑
k∈Z

χj(|k|)eik(x−y)

)
F (y) dy

=

∫
T

(∑
k∈Z

gj(x− y + 2kπ)

)
F (y) dy

=
∑
k∈Z

∫
T
gj(x− y + 2kπ)F (y − 2kπ) dy

=

∫
R
gj(x− y)F (y) dy = (gj ⋆ F )(x).

for all x ∈ R. Here the symbol “⋆” denotes the convolution on R.
Now, according to [1, Lemma 2.1, p.52] in the case p = ∞, there exists a constant

C > 0 which only depends on r1, r2 and λ, ensuring the following estimates. For
any function u ∈ L∞(R), such that

supp(Fu) ⊂ {λξ ∈ R : 0 < r1 ≤ |ξ| ≤ r2},

we have
λ

C
∥u∥L∞(R) ≤ ∥u′∥L∞(R) ≤ Cλ∥u∥L∞(R). (5)

This is some times called Bernstein’s Inequality.

Problem 7. Give the proof of (3). Hint: use (5).

Proof of (4). From the definitions f ∈ Cα(T), if and only if S < ∞ for

S = sup
x∈T
h̸=0

|f(x+ h)− f(x)|
|h|α

;

and f ∈ Bα
∞(T), if and only if R < ∞ for

R = sup
j=0,1,...

sup
x∈T

2αj |Kjf(x)|.

Let f ∈ Bα
∞(T). We show that S < ∞. Firstly note that, since α > 0,

f(x) =

∞∑
j=0

Kjf(x),

where the convergence of the series is pointwise for all x ∈ T. Indeed,
∞∑
j=0

∥Kjf∥L∞(T) ≤
∞∑
j=0

R

2αj
< ∞.

Now, if

S1 = lim sup
h→0

(
sup
x∈T

|f(x+ h)− f(x)|
|h|α

)
< ∞,

then S < ∞. So we focus on S1.
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For j = 0, 1, . . ., let

S2(j) = lim sup
h→0

(
sup
x∈T

|Kj(f(x+ h)− f(x))|
|h|α

)
.

Then, on the one hand,

S1 ≤
∞∑
j=0

S2(j).

On the other hand, by the Mean Value Theorem, for suitable |hj | < 2−2j ,

S2(j) ≤ sup
x∈T

0<|h|≤2−2j

|Kjf(x+ h)−Kjf(x)|
|h|α

≤ sup
x∈T

0<|h|≤2−2j

|(Kjf)
′(x+ hj)||h|
|h|α

= sup
0<|h|≤2−2j

|h|1−α sup
x∈T

|(gj ⋆ f)′(x+ hj)|

≤ 2−2j(1−α)∥(gj ⋆ f)′∥L∞(R)

≤ C2j2−2j(1−α)∥gj ⋆ f∥L∞(R)

= C2−j(1−α)2αj∥Kjf∥L∞(T)

≤ CR2−j(1−α).

Thus, indeed, S1 < ∞. Here we have used that 1 − α > 0. This confirms that
Bα

∞(T) ⊆ Cα(T).

Let us now show that Cα(T) ⊆ Bα
∞(T). Assume that f ∈ Cα(T). That is S < ∞.

Our goal is to show that R < ∞.
Since g ∈ S(R), then there exists a constant c1 > 0, such that

|gj(x)| ≤ c1
2j

(1 + 2j |x|)2
,

for all x ∈ R and j ∈ N. Also, for any φ ∈ R thought of as a constant periodic
function, we have that (gj ⋆ φ)(x) = φχ

j
(0) = 0. Then,

(gj ⋆ f)(x) = (gj ⋆ (f + φ))(x).

Thus,

|(gj ⋆ f)(x)| ≤
∫
R
|gj(y)||f(x− y) + φ| dy

≤ c12
j

∫
R

|f(x− y) + φ|
(1 + 2j |y|)2

dy

= c1

∫
R

∣∣f (x− z
2j

)
+ φ

∣∣
(1 + |z|)2

dz,

for all x ∈ R, φ ∈ R and j ∈ N.
Taking φ = −f(x) above, yields

2αj |(gj ⋆ f)(x)| ≤ c12
αj

∫
R

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz = Aj(x) +Bj(x),
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where we split the integral as follows. The first term is,

Aj(x) = c12
αj

∫ 2j

−2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

= c1

∫ 2j

−2j

|z|α
∣∣f (x− z

2j

)
− f(x)

∣∣(
|z|
2j

)α
(1 + |z|)2

dz

≤ c1S

∫ ∞

−∞

|z|α

(1 + |z|)2
dz ≤ c2 < ∞.

Here we have used that 0 < α < 1. The second term is,

Bj(x) = c12
αj

∫
|z|≥2j

∣∣f (x− z
2j

)
− f(x)

∣∣
(1 + |z|)2

dz

≤ c12
αj2 sup

x∈T
|f(x)|

∫
|z|≥2j

dz

(1 + |z|)2

≤ c32
(α−1)j ≤ c4 < ∞.

Here we have used that α < 1. Then R ≤ c2 + c4 < ∞. This completes the proof
of (4). □

Problem 8. Show that

Bα1
1 (T) ∩ Bα2

∞ (T) ⊂ Hα(T)
for all α < (α1 + α2)/2.

2.3. Proof of Theorem A-b) statement (I). We will use the next lemma, which
was established in [12, Corollaries 2.2 and 2.4]. The formulation with only half of
the Fourier coefficients that we give here will be more convenient for later purposes.

Lemma 1. There exists a subset K ⊂ R with |Kc| < ∞, such that the following
holds true for all t ∈ K. Given δ > 0, there exists a constant C > 0 such that

sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ ≤ C2
j
2 (1+δ), (6)

for all j = 0, 1, . . ..

Proof. According to Dirichlet’s Theorem, for every irrational number a > 0 there
are infinitely many positive co-prime integers p, q ∈ N, such that∣∣∣∣a− p

q

∣∣∣∣ ≤ 1

q2
. (7)

By virtue of [9, Lemma 4], there exists a constant c1 > 0 such that, if the irreducible
fraction p

q satisfies (7), then∣∣∣∣∣
N∑

n=M

e2πi(an
2+bn)

∣∣∣∣∣ =
∣∣∣∣∣
N−M∑
k=1

e2πi(ak
2+bk)

∣∣∣∣∣ ≤ c1

(
N −M
√
q

+
√
q

)
for all N ∈ N, 0 < M < N and b ∈ R. Here c1 is independent of a and b. Take any
sequence {ωn}, such that ωn = 0 for n < M or n > N , and

N∑
n=M

|ωn+1 − ωn| ≤ d.
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Since, ∣∣∣∣∣
N∑

n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M

(ωn+1 − ωn)

n∑
k=M

e2πi(ak
2+bk)

∣∣∣∣∣
≤

N∑
n=M

|ωn+1 − ωn|

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣
≤ d sup

n=M,...,N

∣∣∣∣∣
n∑

k=M

e2πi(ak
2+bk)

∣∣∣∣∣ ,
then ∣∣∣∣∣

N∑
n=M

ωne
2πi(an2+bn)

∣∣∣∣∣ ≤ dc1

(
N −M
√
q

+
√
q

)
. (8)

Let [a0, a1, . . .] be the continued fraction expansion of the irrational number a,

a = a0 +
1

a1 +
1

a2+
1
···

.

Then, the irreducible fractions,

pn
qn

= a0 +
1

a1 +
1

a2+··· 1

an−1+ 1
an

,

are such that (7) holds true with {pn} and {qn} increasing sequences. According to
the Khinchin-Lévy Theorem, for almost every a > 0, the denominators qn satisfy
[13, p.66]

lim
n→∞

log qn
n

= ρ :=
π2

12 log 2
.

If a is such that this limit exists, then for all j ∈ N sufficiently large we can find
quotients

pn(j)

qn(j)
with denominators satisfying qn(j) = 2j(1+rj), where rj → 0 as

j → ∞. Indeed, we can take n(j) equal to the integer part of j(log 2)/ρ. This
choice yields

lim
j→∞

log qn(j)

j
= log 2.

Note that {qn(j)} is not a subsequence of {qn}, since log 2/ρ < 1 and therefore
indices may be repeated, but this does not cause problems.

Let K be the set of times of the form t = 2πa, such that the quotients of |a|
satisfy the conditions of the previous paragraph. Let t ∈ K and fix δ > 0. Let
J > 0 be such that |rj | < δ for all j ≥ J . Taking M = 2j−1, N = 2j+1, ωn = χj(n)
and

d = 2 sup
ξ∈R

|χ′(ξ)|,
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in (8), yields

sup
x∈T

∣∣∣∣∣
∞∑

n=0

χj(n)e
in2t+inx

∣∣∣∣∣ = sup
x∈T

∣∣∣∣∣∣
2j+1∑

n=2j−1

χj(n)e
in2t+inx

∣∣∣∣∣∣
≤ dc1

(
2j+1 − 2j−1

√
qnj

+
√
qnj

)

≤ dc1

(
2j−13

2
j
2 (1−δ)

+ 2
j
2 (1+δ)

)
≤ c22

j
2 (1+δ),

for all j ≥ J . This implies (6) for sufficiently large C > 0. □

The proof of the statement (I) in Theorem A-b) is as follows.
Let the periodic distribution,

Et(x) =
∑
n∈Z

einx−in2t.

Since the Fourier coefficients e−in2t of Et have modulus 1, the series converges in the
weak sense of distributions and determines Et uniquely for all t ∈ R, [19, Theorems
11.6-1 and 11.6-2]. Moreover, for all t ∈ R, Et ∈ Bβ

∞(T) for all β < −1.
Let t ∈ K, with K ⊂ R as in Lemma 1. Then it follows from (6) that the stronger

inclusion Et ∈ Bβ
∞(T) holds for all β < − 1

2 . Define the periodic distribution Ht by
H ′

t = Et, namely

H(t) =
∑

n∈Z\{0}

einx−in2t

in
.

Then, according to (3) and (4), Ht ∈ Cβ(T) for all β < 1
2 .

Now,

f̂(n) =
1

2πin

∫
T
e−iny df(y) =

µ̂(n)

in
, n ̸= 0,

where µ is the Lebesgue-Stieltjes measure associated to f , and |µ|(T) < ∞. Then,
the solution of (A) can be expressed in terms of Ht as follows,

u(x, t) = f̂(0) +
∑

n∈Z\{0}

e−in2tf̂(n)einx

= f̂(0) +
∑

n∈Z\{0}

e−in2tµ̂(n)

in
einx

= f̂(0) + (Ht ∗ µ)(x).

Here and elsewhere below, “∗” denotes the convolution on T,

(H ∗ F )(x) =
1

2π

∫
T
H(x− y)F (y) dy,

so that ̂(H ∗ F )(n) = Ĥ(n)F̂ (n). Hence, since µ is a bounded measure, we indeed
have u(·, t) ∈ Cα(T) for all α < 1

2 .
This completes the proof of the first claim in Theorem A-b).



12 L. BOULTON - CURSILLO ULA 3-6 JUNE 2025

Problem 9. Show that if H ∈ Cα(T) and F is a bounded measure, then (H ∗F ) ∈
Cα(T).

2.4. Fractal dimension of a graph. For the statement (II) in part b) of Theo-
rem A, we first recall the notion of fractal dimension. Then, we give a formula for
the dimension of the graph of a function in terms of its regularity.

Let g : T −→ R be a continuous function. Denote the graph of g, by

Γ =
{
(x, g(x)) ∈ T× R : x ∈ T

}
.

The upper Minkowski (or fractal) dimension of Γ, is defined by the expression

dimΓ = lim sup
ε→0

logN (ε)

log 1
ε

,

where N (ε) is the number of squares that intersect Γ, in a grid (covering T × R)
made of squares of side ε.

First we recall the classical upper bound, formulated in [7, Corollary 11.2-(a)].

Lemma 2. If g ∈ Cα(T), then dimΓ ≤ 2− α.

Proof. We simplify the notation by doing this proof in the interval [0, 1] instead of
(−π, π]. So we show that the function h : [0, 1] −→ R, given by h(x) = g(2πx− π),
has a graph of fractal dimension less than or equal to 2− α. The Hölder constant
of h is α and the fractal dimension does not change with the scaling of the interval.
We adapt the counting function N , accordingly.

Let

Rh[a, b] = sup
x,y∈[a,b]

|h(x)− h(y)|.

Let 0 < ε < 1 and let m be the smallest integer greater than or equal to 1
ε . Then,

N (ε) ≤ 2m+

m−1∑
k=0

Rh[kε, (k + 1)ε]

ε
. (9)

Indeed, split the interval [0, 1] into sub-intervals [kε, (k + 1)ε] all of size ε and
consider a mesh of size ε. Then, the number of squares that intersect the graph of
h in each sub-interval, is at least

Rh[kε, (k + 1)ε]

ε
.

To find the upper bound in (9), we use the fact that h is continuous. The function
may overlap another square, when entering a new sub-interval from below or leaving
one from above. Hence, the maximum number of squares that intersect the graph
of h, is

2 +
Rh[kε, (k + 1)ε]

ε
.

This shows (9).
Now, from the hypothesis, it follows that for a suitable constant c1 > 0,

Rh[kε, (k + 1)ε] ≤ c1ε
α.

Then, using the upper bound in (9) and the fact that m < 1 + ε−1, we have

N (ε) ≤ 2m+ c1mεα−1 ≤ (1 + ε−1)(2 + c1ε
α−1) ≤ c2ε

α−2.
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Taking logarithms, gives

logN (ε)

log ε−1
≤ log c2

log ε−1
+ 2− α.

Hence, taking the limsup, yields the claim of the lemma. □

Finding bounds, complementary to the one in the above lemma, turns out to be
less straightforward. One of the best results currently available was obtained in the
paper [6].

Lemma 3. If g ̸∈ Bα
1 (T), then dimΓ ≥ 2− α.

Proof. This lemma is a direct corollary of the stronger [6, Theorem 4.2]. □

2.5. Proof of Theorem A-b) statement (II). We first show the following lemma,
which was first established in [5]. Our proof follows the rather ingenious strategy
employed in that paper. The important point of this statement is the fact that
the regularity of the real part of the solution (and not only of the solution itself),
cannot improve beyond the regularity of f , for almost all t ∈ R.

Lemma 4. Let f ∈ BV(T) and let

rf = sup{s > 0 : f ∈ Hs(T)}.

If rf ∈ [ 12 , 1), then there exists a subset J ⊂ R with |J c| = 0, such that

sup
{
s > 0 : Reu(·, t) ∈ Hs(T

}
≤ rf

for all t ∈ J .

Proof. Since Hs(T) ⊂ Hr(T) for r < s, without loss of generality we will assume

that r is such that rf < r <
rf+1

2 .
Write the real part of the solution as,

Reu(x, t) =
1

2

(
u(x, t) + u(x, t)

)
=

1

2

∑
j∈Z

(
e−itj2 f̂(j) + eitj

2

f̂(−j)
)
eijx.

Then, the conclusion will follow, if we find a sequence {Jn}∞n=1 ⊂ N, such that

lim
n→∞

Jn∑
j=1

j2r
∣∣∣e−itj2 f̂(j) + eitj

2

f̂(−j)
∣∣∣2 = ∞.

Now,∣∣∣e−itj2 f̂(j) + eitj
2

f̂(−j)
∣∣∣2 = |f̂(j)|2 + |f̂(−j)|2 + 2Re

(
e−2itj2 f̂(j)f̂(−j)

)
.

By hypothesis, we have that ∑
j∈Z

j2r|f̂(j)|2 = ∞.

Then,
∞∑
j=1

j2r(|f̂(j)|2 + |f̂(−j)|2) = ∞. (10)
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Let the partial summations

SL(t) =

L∑
j=1

j2re−2itj2 f̂(j)f̂(−j).

If we can find another sequence {Ln}∞n=0 ⊂ N, such that SLn(t) converges as n → ∞,
this will ensure that

2Re

 Ln∑
j=1

j2r
(
e−2itj2 f̂(j)f̂(−j)

)
converges, and we will be able to find Jn from this convergence and the divergence
(10). Note that we do need to argue through the subsequence Jn, as there might be
some cancellations in the intermediate terms, preventing a “uniform divergence”.

So our next goal is to show that the sequence Ln exists. Since SL is 2π-periodic,
without loss of generality we can assume that t ∈ T. Write SL(t) in the expanded
form,

SL(t) =

∞∑
m=1

e−itm

 ∑
1≤j≤L
2j2=m

j2rf̂(j)f̂(−j)

 .

Since j2 = m
2 has at most two (integer) solutions, the sum inside the bracket has

at most 2 terms for every positive integer m and it is equal to 0 for most of them.
If

∞∑
j=1

j4r
∣∣∣f̂(j)f̂(−j)

∣∣∣2 < ∞, (11)

then S = limL→∞ SL is the limit of a Fourier series, convergent in the norm of
L2(T). Should this happen, by virtue of Carleson’s theorem [11, Theorem 3.6.15],
there would exists a subset J ⊂ R whose complement is of measure 0, satisfying
the following. For all t ∈ J , there is a subsequence {Ln} ⊂ N, such that the limit

lim
n→∞

SLn(t) = S(t)

converges pointwise. Therefore, according to the previous paragraph, J would be
the needed subset in the statement of the lemma.

So we complete the proof by showing that (11) holds true. Since f ∈ H
1
2 (T),

then

|f̂(−j)|2 ≤ c2j
−2

for all j ∈ N. Let s < rf . Since f ∈ Hs(T), then
∞∑
j=1

j2s|f̂(j)|2 < ∞.

Hence,
∞∑
j=1

j4r
∣∣∣f̂(j)f̂(−j)

∣∣∣2 ≤ c2

∞∑
j=1

j4r−2−2s
(
j2s|f̂(j)|2

)
≤ c2

∞∑
j=1

j2s|f̂(j)|2 < ∞,
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for any r < s+1
2 . Taking s < rf close enough to rf , we can always get r to satisfy

both, this latter condition which ensures (11), and the assumption in the beginning
of the proof. □

To complete the proof of Theorem A-b), we proceed as follows.
Let D denote the fractal dimension of the graph of Reu(·, t). By virtue of the

statement (I) in Theorem A-b) and Lemma 2, it follows that D ≤ 3
2 for all t ∈ K.

Now, take rf = 1
2 in the previous lemma. According to this and to the statement

of Problem 8, the hypothesis of (II) imposed on f , implies that Reu(·, t) ̸∈ Br
1(T)

whenever r > 1
2 , for all t ∈ K ∩ J . Thus, by virtue of Lemma 3, we also have the

complementary bound D ≥ 3
2 for all such t.

This completes the proof of Theorem A.

Problem 10. Let u be the solution to the time-evolution equation (2) from Prob-
lem 6. Show that there exists t̃ > 0 such that u(·, t̃) is continuous. Hint: this is
easier than you think.

3. Changing the boundary conditions

Let b ∈ R \ {1}. We now consider

i∂tu(x, t) = −∂2
xu(x, t) x ∈ (0, π) t ∈ R

u′(a, t) =
b

1− b
u(a, t) a = 0, π t ∈ R

u(x, 0) = f(x) x ∈ (0, π)

(B)

which is a modification from the periodic boundary conditions of (A) to a class
of Robin boundary conditions. Our goal is to determine to what extend, this
modification supports any form of revival and or fractality.

If b = 0 we obtain the Neumann boundary conditions. So, Theorem B below
generalises the solutions to the problems 6 and 10 from the previous section. For
b ∈ (0, 1), the part a) of this theorem was established in [2] and the PhD dissertation
[8]. The extension to the other values of b that we give here, does not present any
technical improvement from that case. As far as I am aware, the part b) of the
theorem is new.

Let any function h : [0, π] −→ C. We denote by he, the 2π-periodic extension of
the even function

he(x) =

{
h(x) x ∈ [0, π]

h(−x) x ∈ (−π, 0).

That is, the even extension of h to R. Likewise, we denote by ho the 2π-periodic
extension of the odd function

ho(x) =

{
h(x) x ∈ [0, π]

−h(−x) x ∈ (−π, 0).

That is, the odd extension of h to R.
The next conventions will simplify the arguments below. Let

Ab =
2b

(1− b)
(
e2π

b
1−b − 1

)
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for b ̸= 0 and A0 = 1
π . We denote with the unambiguous symbol ϕ, the function

ϕ : R −→ C which is the 2π-periodic extension of

ϕ(x) =
√

Ab e
b

1−bx,

from x ∈ [0, 2π] to R. We remark that ϕ, regarded as a function of T, has a
discontinuity at 0 but it is C∞ at ±π. Also, note that ϕ satisfies the boundary
conditions of (B) and that ∥ϕ∥L2(0,π) = 1.

For any f ∈ L2(0, π), we will consider an associated function g : T −→ C, given
by the expression

g =
√
πϕ ∗ (fo − fe). (12)

Here, g is a function on the torus and the convolution is, as previously, also on T.

Theorem B. Let f ∈ L2(0, π) and let g be as in the expression (12). Let u be the
solution to (B).

a) If p, q ∈ N are co-prime, then

u
(
x,

2πp

q

)
= e

2πi pb2

q(1−b)2 ⟨f, ϕ⟩L2(0,π)ϕ(x)+

1

q

q−1∑
m=0

[
q−1∑
k=0

e2πi
km−pm2

q (fe + g)
(
x− 2π

k

q

)]
.

b) There exists a subset K ⊂ R with |Kc| = 0, such that the following is valid.
For all t ∈ K,

f ∈ BV(T) ⇒ u(·, t) ∈ Cα(T) ∀α <
1

2
. (I)

Additionally, for almost all t ∈ K,

max
{
s > 0 : fe ∈ Hs(T)

}
=

1

2
⇒ dim

[
Graph of
Reu(·, t)

]
=

3

2
. (II)

In the statement a) of this theorem, we highlight the contribution of fe and of
g to the revival formula, separately. The reason for this is that g is more regular
than f , therefore it does not make a contribution of the fractal part of the solution
in the statement b). This will be seen in the proof below.

Problem 11. Show that the expressions

e
2πi pb2

q(1−b)2 ⟨f, ϕ⟩L2(0,π)ϕ(x)

and

1

q

q−1∑
m=0

[
q−1∑
k=0

e2πi
km−pm2

q g
(
x− 2π

k

q

)]
,

cancel out from the statement a) of this theorem, in the case b = 0. Compare with
your answer to Problem 6.
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3.1. Proof of Theorem B. Let L : Dom(L) −→ L2(0, π) be the self-adjoint
operator L = −∂2

x with domain

Dom(L) =

{
g ∈ H2(0, π) : g′(0) =

b

1− b
g(0) and g′(π) =

b

1− b
g(π)

}
.

We first give the eigenfunctions and the spectrum of L.
To start with, note that

Lϕ = − b2

(1− b)2
ϕ.

For j ∈ N, let

Λj =
b− j(1− b)i

b+ j(1− b)i

and
ϕj(x) = ej(x)− Λje−j(x).

Then, ∥ϕj∥L2(0,π) = 1. Indeed, note that |Λj | = 1. Moreover, ϕj ∈ Dom(L) and

Lϕj = j2ϕj .
The family {ϕ} ∪ {ϕj}∞j=1 is an orthonormal basis of L2(0, π). Therefore, we

know that

Spec(L) =

{
− b2

(1− b)2

}
∪ {j2}∞j=1.

Problem 12. Show that the family of eigenvectors {ϕ} ∪ {ϕj}∞j=1 is indeed an

orthonormal basis of L2(0, π). Hint: the important point here is to show that they
are a complete family.

Then, for all f ∈ L2(0, π). The solution to (B) is

u(x, t) = e
i b2

(1−b)2
t⟨f, ϕ⟩L2(0,π)ϕ(x) +

∞∑
j=1

e−ij2t⟨f, ϕj⟩L2(0,π)ϕj(x).

The crucial point in the proof of Theorem B is the following lemma, which gives a
different representation of the second term on the right hand side of this expression.
This was first obtained in [8].

Lemma 5. Let f ∈ L2(0, π) and let g be given by (12). Let

U(x, t) =

∞∑
j=1

e−ij2t⟨f, ϕj⟩L2(0,π)ϕj(x).

Then U = U1 + U2, where

U1(x, t) =
∑
k∈Z

f̂e(k)e
−ik2t+ikx and U2(x, t) =

∑
k∈Z

ĝ(k)e−ik2t+ikx.

Proof. Begin by re-writing

ϕj(x) =

√
2

π

(
1− Λj

2
cos(jx) + i

1 + Λj

2
sin(jx)

)
.

Then

⟨f, ϕj⟩L2(0,π) =
1− Λj

2
aj +

1 + Λj

2i
bj ,

where aj are the cosine Fourier coefficients of f and bj are the sine Fourier coeffi-
cients of f , in (0, π).
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Let ϕr(x) = ϕ(2π − x). That is the reflection of ϕ about π. Note that,

ϕ̂(j) =
b

2 (b− j(1− b)i)
and ϕ̂r(j) =

b

2 (b+ j(1− b)i)
.

Then, re-writing U with the above representation of the eigenfunctions and inner
products, gives

U(x, t) =
1

2

5∑
k=1

vk(x, t)

where each of the vk are the solution to (A), with corresponding initial conditions

v1(x, 0) = 2fe(x), v2(x, 0) = −(ϕr + ϕ) ∗ fe(x), v3(x, 0) = (ϕr − ϕ) ∗ fe(x)
v4(x, 0) = (ϕ− ϕr) ∗ fo(x) and v5(x, 0) = (ϕr + ϕ) ∗ fo(x).

Once this expression is obtained, we observe that U1(x, t) =
1
2v1(x, t) and

U2(x, t) =
1

2

5∑
k=2

vk(x, t).

□

Problem 13. Give the proof of Theorem B-a), using Lemma 5.

We now present the proof of Theorem B-b). Observe that ϕ ∈ C∞(0, π), so we
can ignore this correction in the solution and concentrate on U .

First consider the claim (I). Let f ∈ BV(0, π). Then fe, fo and hence fo − fe,
are in BV(T). To see this, note that the even and odd extensions can, at most,
introduce a jump discontinuity at x = 0 and x = ±π.

Invoke Lemma 5. Since U1 is a solution to (A) with initial condition fe, according
to Theorem A-b), we know that U1(·, t) ∈ Cα(T) for all α < 1

2 , provided t ∈ K.
Likewise, being a convolution with a regular function, g ∈ BV(T) and U2 is the
solution to (A) with this initial condition. Then, also U2(·, t) ∈ Cα(T). Hence, the
statement (I) in Theorem B-b) is valid.

Note that, seen as a function of T, ϕ ∈ BV(T). Indeed it has a jump discontinuity
at x = 0 for b ̸= 0, but it is C∞ at all other points x ∈ T. We are not using this
fact in the previous paragraph.

Consider now the claim (II). Assume the hypothesis,

max
{
s : fe ∈ Hs(T)

}
=

1

2
.

By virtue of Theorem A-b), it then follows that the graph of ReU1(·, t) : T −→
C has fractal dimension equal to 3

2 for almost all t ∈ K. But since fe is even,
also U1(·, t) is even. Then, necessarily, ReU1(·, t) : (0, π) −→ C has also fractal
dimension equal to 3

2 for almost all t ∈ K.
Now, U2(x, t) = (Ht ∗g)(x). Since g ∈ Cα(T) for all α < 1, then U2(·, t) ∈ Cα(T)

for all α < 1 and t > 0. Hence, ReU2(·, t) ∈ Cα(T) for all α < 1 and t > 0.
Therefore, by virtue of Lemma 2, the graph of ReU2(·, t) has fractal dimension equal
to 1. Thus, the overall fractal dimensions of the graph of ReU = ReU1 +ReU2 is
equal to 3

2 . This completes the proof of Theorem B.
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4. Adding a potential

Let V : (0, π] −→ C be a potential, satisfying either of the following conditions

• V ∈ H2(0, π) and ∥V ∥L∞(0,π) <
3
2 ; or

• V : (0, π] −→ R, V ∈ BV(0, π) and V ∈ L∞(0, π).

In this short section we describe the revival property for the equation,

i∂tu(x, t) = −∂2
xu(x, t) + V (x)u(x, t) x ∈ (0, π) t ∈ R

u(0, t) = u(π, t) = 0 t ∈ R
u(x, 0) = f(x) x ∈ (0, π)

(C)

The proof of the next theorem can be found in [3].

Theorem C. Let f ∈ L2(0, π) and let u be the solution to (C). Then, for all t ∈ R,
there exists w(·, t) ∈ C0(0, π) ensuring the following. If p, q ∈ Z are co-prime, then

u
(
x, 2π

p

q

)
= w

(
x, 2π

p

q

)
+

e−2πi⟨V ⟩ p
q

q

q−1∑
m=0

(
q−1∑
k=1

e2πi
mk−m2p

q fo

(
x− 2π

k

q

))
.

Here ⟨V ⟩ = 1
π ⟨V, 1⟩ is the mean of V .

According to this theorem, the revivals property still holds true for the boundary-
value problem (C), modulo a continuous correction.

Problem 14. Give the proof of Theorem C for V (x) = c, where c ∈ C. Hint: note
that (C) has Dirichlet boundary conditions and that c does not need to satisfy the
hypotheses on V stated in the bullet points.

5. Multiplying by Hilbert’s transform

In this final section we consider the striking example of the linear Benjamin-Ono
equation, where a seemingly substantial change to the right hand side of the equa-
tion, still supports the revivals/fractality dichotomy that we described in Section 2.

Let the Hilbert transform of g : T −→ C, be given by the expression

Hg(x) =
1

2π
p. v.

∫ π

−π

cot
x− y

2
g(y) dy,

assuming that the principal value integral exists. The expression of Hg for g ∈
L2(T) in terms of the Fourier coefficients, given below, implies that

H : L2(T) −→ L2(T)
is a bounded operator.

Let f : T −→ R. The linear Benjamin-Ono (BO) equation, is the time-evolution
problem

∂tu(x, t) = H∂2
xu(x, t) x ∈ T t ∈ R

u(x, 0) = f(x) x ∈ T.
(D)

As we shall see next, this equation supports a revivals/fractality dichotomy that
combines properties observed in all the models discussed previously, except that it
gives rise to cusps of a very specific type in the solution. This is made precise in the
next theorem, formulated in [4], whose conclusion differs from that of Theorem A
only in the first statement. Note that the solution of (D) are real-valued, but the
statement (II) in the part b), is not an immediate consequence of any well-posedness
of this equation in the Sobolev norms.
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Figure 3. Solution of (D) for f(x) = 1[−π
2 ,π2 ](x) at time t = 2π 1

3
superimposed on the real and imaginary parts of the solution of
(A) at −t. The cusp singularities in the solution of (D) correspond
to jump singularities in either part of the solution of (A).

Theorem D. Let f ∈ L2(T) be real-valued. Let u be the solution to (D).

a) If p, q ∈ N are two co-prime integers, then

u
(
x, 2π

p

q

)
=

1

q

q−1∑
m=0

Re

[
q−1∑
k=0

e2πi
km+pm2

q
(
I + iH

)
f
(
x− 2π

k

q

)]
.

b) There exists a subset K ⊂ R with |Kc| = 0, such that the following is valid.
For all t ∈ K,

f ∈ BV(T) ⇒ u(·, t) ∈ Cα(T) ∀α <
1

2
. (I)

Additionally, for almost all t ∈ K,

max
{
s > 0 : f ∈ Hs(T)

}
=

1

2
⇒ dim

[
Graph of
u(·, t)

]
=

3

2
. (II)

The first statement implies that, if f has a jump discontinuity, then the solution
at times t ∈ 2πQ will have logarithmic singularities. See the Figure 3. By contrast,
quite remarkably, the solution is continuous for almost all other t. A difference
between the Schrödinger and this equation, is the fact that, for all initial data of
bounded variation, the solution to (A) is bounded whole the solution to (D) is not.
I suspect that there is an interesting structural connection between the two, using
BMO spaces, but this will be left for further investigation.

Problem 15. Show that

H1[a,b](x) =
1

π
log

∣∣∣∣∣∣
sin
(

x−a
2

)
sin
(

x−b
2

)
∣∣∣∣∣∣ ,

for a, b ∈ T with −π ≤ a < b < π.
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Figure 4. Solution for t
2π a rational approximation of ϕ ∼ p

q for

p = F16 = 2584 and q = F15 = 1597. Note that |ϕ− p
q | < 1.7×10−6.

The estimate of the box counting dimension is D = 1.54.

5.1. Proof of Theorem D. Firstly, note that

Hen =


ien for n < 0

0 for n = 0

−ien for n > 0.

(13)

Problem 16. Compute Hen to verify the previous claim.

Then, H and −∂2
x have the same orthonormal basis of eigenfunctions. Hence,

Hg(x) = i

∞∑
n=1

[ĝ(−n)e−inx − ĝ(n)einx]

for all g ∈ L2(T) and

H∂2
xg(x) = i

∞∑
n=1

n2[ĝ(n)einx − ĝ(−n)e−inx]

for all g ∈ H2(T). In fact the latter is the domain of the integro-differential operator
H∂2

x. This implies that, for any f ∈ L2(T), the solution to (D) is given by the
expression

u(x, t) =

∞∑
n=−∞

einxein|n|tf̂(n)

= f̂(0) +

∞∑
n=1

[einxein
2tf̂(n) + e−inxe−in2tf̂(−n)].

Since f is real-valued, f̂(−n) = f̂(n) and so

e−inxe−in2tf̂(−n) = einxein2tf̂(n).
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Hence, u is also real-valued and

u(x, t) = f̂(0) + 2Re

[ ∞∑
n=1

einxein
2tf̂(n)

]
. (14)

This representation provides the link between the solutions of (D) and (A), as stated
in the next lemma.

Lemma 6. Let f ∈ L2(T) be real-valued. Let v(x, t) denote the solution to (A)
with initial datum f . Then, the solutions to (D), is given by the expression

u(x, t) = Re [v(x,−t) + iHv(x, t)] . (15)

Proof. We have that,

v(x,−t) =
∑
n∈Z

ein
2t+inxf̂(n) = f̂(0) +

∞∑
n=1

[
einxein

2tf̂(n) + e−inxein
2tf̂(n)

]
and

iHv(x,−t) =

∞∑
n=1

[
einxein

2tf̂(n)− e−inxein
2tf̂(n)

]
.

Then,

v(x, t) + iHv(x, t) = f̂(0) + 2

∞∑
n=1

einxein
2tf̂(n).

Hence, (14), yields (15). □

Note that the expression (15) can be written in operator form as

eH∂2
xtf = f̂(0) + 2Re

(
e−i∂2

xtΠf
)
, (16)

where Πf(x) =
∑∞

n=1 f̂(n)e
inx is the modified Szegö projector. Indeed, the latter

commutes with both H and −∂2
x.

The combination of Lemma 6 and Theorem A, gives Theorem D as follows.

Problem 17. Complete the proof of Theorem D-a).

Proof of Theorem D-b) statement (I). By virtue of (14), letting µ = f ′, we have

u(x, t) = f̂(0) + 2Re

[ ∞∑
n=1

einxein
2tµ̂(n)

in

]
= f̂(0) + 2Re

[
(H̃t ∗ µ)(x)

]
,

where

H̃t =

∞∑
n=1

einxein
2t

in
= Ẽ′

t(x)

for Ẽt(x) =
∑∞

n=1 e
inxein

2t.

By virtue of Lemma 1, Ẽt ∈ Cα(T) for all α < − 1
2 , hence H̃t ∈ Cα(T) for all

α < 1
2 , whenever t ∈ K. As the real part of a Cα function is also in Cα, this ensures

(I). □
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Proof of Theorem D-b) statement (II). Recall (16). Since f : T −→ R, then f =

Πf + Πf + f̂(0). The hypothesis of (II) implies that f ∈ H
1
2 (T) but f ̸∈ H

1
2+ε(T)

for any ε > 0. Then, Theorem A-b) gives that the fractal dimension of the graph

of Re
[
e−i∂2

xtΠf
]
is equal to 3

2 for almost every t ∈ K. This ensures the property
(II) of Theorem D. □
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Appendix A. Exercises and solutions

Problem 1. Let f ∈ BV(T). Show that there exists a constant C > 0, such that

|f̂(n)| ≤ C

|n|
for all n ̸= 0.

Solution. Use that

f̂(n) =
f̂ ′(n)

n
and the representation of a bounded variation function given above. □

Problem 2. Let f : T −→ R be given by

f(x) = |x| log 1

|x|
.

Show that f ∈ Cα(T) for all 0 < α < 1. Show that f is not a Lipschitz function.
Is f ∈ AC(T)?

Solution. For the first and second parts, use that for fixed 0 < b < 1,

|y| < |y| log 1

|y|
< |y|b

in a neighbourhood of x = 0. For the third part, note that

f ′(x) = sgn(x)[log
1

|x|
− 1],

so f ′(x) ∈ L1(T). □

Problem 3. Show that H1(T) ⊆ C
1
2 (T). Hint: use the Cauchy-Schwarz inequality.

Is H1(T) = C
1
2 (T)?

Solution. Let f ∈ H1(T). Then f ′ ∈ L2(T). Hence f ′ ∈ L1(T). Then f ∈ AC(T).
Let g = f ′. Then,

|f(x)− f(y)| =
∣∣∣∣∫ x

y

g(z) dz

∣∣∣∣
≤
(∫ x

y

dz

) 1
2
(∫ x

y

|g(z)|2dz
) 1

2

≤ |x− y| 12 ∥g∥L2 .

This ensures that f ∈ C
1
2 (T).

The answer to the second question is “no”. For example, | · | 12 ̸∈ H1(T) but

| · | ∈ C
1
2 (T). □

Problem 4. Let α ≥ 0. Show that

∥u(·, t)∥Hα(T) = ∥f∥Hα(T)

for all t ∈ R.

Solution. Use Parseval’s identity and the fact that |e−ij2t| = 1 for all t ∈ R. □

Problem 5. Give the proof of the identity (1).
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Solution. If j ≡
q
m, then m− j = nq for some n ∈ N and hence

q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

1 = q.

Otherwise, j = nq + r for some r ∈ {1, . . . , q − 1}, so
q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

e2πir
k
q =

1− e2πir

1− e
2πir

q

= 0.

Note that the denominator of the fraction is different from zero. □

Problem 6. Let f ∈ L2(0, π). Find the solution to

∂tu(x, t) = i∂2
xu(x, t) x ∈ (0, π) t ∈ R

∂xu(0, t) = ∂xu(π, t) = 0 t ∈ R
u(x, 0) = f(x) x ∈ (0, π).

(2)

Give your solution in terms of a Fourier series of f . Now, set

f(x) =

{
1 x ∈ [0, π

2 ]

0 x ∈ (π2 , π].

Find t̃ > 0 such that u(·, t̃) has a discontinuity at x = π
8 . Hint: the second part is

tougher than you might think.

Solution. Any f ∈ L2(0, π) can be expanded as

f(x) =

∞∑
n=0

f̃(n) cos(nx) x ∈ (0, π)

where

f̃(0) =
1

π

∫ π

0

f(x) dx f̃(n) =
2

π

∫ π

0

cos(nx)f(x) dx.

Then,

u(x, t) =

∞∑
n=0

e−in2tf̃(n) cos(nx).

Consider now the second part of the question.
Step 1. We derive a version of Theorem A-a). From the proof and the previous

part, we start with

u(x, t) =

∞∑
n=0

e−in2tf̃(n) cos(nx)

and transform into exponential form. Let fe denote the 2π-periodic extension of

fe(x) =

{
f(x) x ∈ [0, π]

f(−x) x ∈ (−π, 0)

By expressing the cosine in exponential form, doubling the integral of the Fourier
coefficients and gathering terms, we get

f̃(n) =
1

π

(∫ 0

−π

+

∫ π

0

)
fe(x)e

−inx dx =
1

π
⟨fe, ein(·)⟩.
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Therefore, u is a solution to (2) with datum f , if and only if the extension ue is a
solution to (A) with datum fe. Indeed, note that a solution to (A) with even initial
datum is even. Hence we have the following.

Theorem A’-a). Let f ∈ L2(0, π) and consider the solution to the equation (2).
Then, for t̃ = 2πp

q where p and q are co-primes,

u(x, t̃) =
1

q

q−1∑
k,m=0

e2πi
km−pm2

q fe(x− 2πk/q).

Step 2. With this result at hand, let us now find t̃ such that the RHS of the

above revival expression has a discontinuity at t̃ = π
8 . First, note that

fe(x) = sgn(cos(x)).

We need an educated guess.
Taking q = 16 gives no discontinuity at x̃ = π

8 despite of having the correct
coefficients to play around with k = 5 and k = 13 in the above formula. See
Figure 5-(a).

Taking q = 32 and p = 1, gives t̃ = π
16 . Now,

π

8
− kπ

16
=

π

2
+ 2nπ ⇐⇒ k ≡32 −6 ≡32 26

and
π

8
− kπ

16
= −π

2
+ 2nπ ⇐⇒ k ≡32 10.

These are the only contributing terms in the revival summation that give a jump
at π/8 in the case q = 32. One is a jump up, the other a jump down. We need to
check that these do not cancel out. Octave gives

octave:1> m=0:31;

octave:2> sum(exp(i*pi*(26*m-m.^2)/16))

ans = 4.4446 + 6.6518i

octave:3> sum(exp(i*pi*(10*m-m.^2)/16))

ans = -4.4446 - 6.6518i

Hence, at k = 26,

A =

31∑
m=0

e−π 26m−m2

16 ≈ 4.4446 + 6.6518i

and, at k = 10,

B =

31∑
m=0

e−π 10m−m2

16 ≈ −4.4446− 6.6518i.

Thus, since A is safely away from B and they are both safely away from 0, we know
that there is a discontinuity at x = π

8 . See Figure 5-(b).
□

Problem 7. Give the proof of (3). Hint: use (5).



JUMPS, CUSPS AND FRACTALS IN PDES 27

(a) (b)

Figure 5. Solution to (2) for f = 1[0,π2 ] at t = 2πp
q , where: (a)

q = 16 and p = 1, (b) q = 32 and p = 1.

Solution. Take u = gj ⋆ F , λ = 2j , r1 = 2−1 and r2 = 2 in (5). Then, the left hand
side inequality yields,

2(α+1)j∥KjF∥L∞(T) ≤ C2αj∥Kj(F
′)∥L∞(T) < ∞,

for F ′ ∈ Bα
∞(T). Conversely, the right hand side inequality yields,

2αj∥Kj(F
′)∥L∞(T) ≤ C2(α+1)j∥KjF∥L∞(T) < ∞,

for F ∈ Bα+1
∞ (T). □

Problem 8. Show that

Bα1
1 (T) ∩ Bα2

∞ (T) ⊂ Hα(T)

for all α < (α1 + α2)/2.

Solution. Recall the definition,

f ∈ Bα
p (T) ⇐⇒ 2αj∥Kjf∥Lp < C ∀j ∈ N.

Since,

∥Kjf∥2L2 ≤ ∥Kjf∥L1∥Kjf∥L∞ ,

then for all α = α1+α2

2 − ε, we have that

f ∈ Bα1
1 (T) ∩ Bα2

∞ (T) ⇒ 22αj∥Kjf∥2L2 ≤ C2−εj ∀j ∈ N.

Hence f ∈ Bα+ε
2 (T). Thus, since by Plancherel’s identity,

∥Kjf∥2L2 =
∑
n∈Z

χj(|n|)|f̂(n)|2,

we have ∑
n∈Z

n2α|f̂(n)| ≤ 22α
∞∑

n=1

22αj∥Kjf∥2L2 ≤ C

∞∑
j=1

2−εj < ∞.

This ensures that f ∈ Hα(T). □

Problem 9. Show that if H ∈ Cα(T) and F is a bounded measure, then (H ∗F ) ∈
Cα(T).
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Solution. Since H ∈ Cα(T), then

sup
x∈T
|h|>0

|H(x+ h)−H(x)|
|h|α

< ∞.

Hence,

sup
x∈T
|h|>0

|(H ∗ F )(x+ h)− (H ∗ F )(x)|
|h|α

≤ sup
x∈T
|h|>0

|H(x+ h)−H(x)|
|h|α

∫
T
d|F | < ∞.

□

Problem 10. Let u be the solution to the time-evolution equation (2) from Prob-
lem 6. Show that there exists t̃ > 0 such that u(·, t̃) is continuous. Hint: this is
easier than you think.

Solution. From what we have discovered so far, a solution to the equation with
Neumann boundary conditions is a solution to (A) with initial condition fe. Since
fe is piecewise constant, it is of bounded variation in T. Therefore, for almost all t̃
the solution is Cα for all 0 ≤ α < 1/2 and hence it is continuous. □

Problem 11. Show that the expressions

e
2πi pb2

q(1−b)2 ⟨f, ϕ⟩L2(0,π)ϕ(x)

and

1

q

q−1∑
m=0

[
q−1∑
k=0

e2πi
km−pm2

q g
(
x− 2π

k

q

)]
,

cancel out from the statement a) of this theorem, in the case b = 0. Compare with
your answer to Problem 6.

Solution. Write u(x, t) = T1 + T2 + T3, where

T1 = e
2πi b2

(1−b)2 ⟨f, ϕ⟩ϕ(x), T2 =
∑
n∈Z

e−in2tf̂e(n)e
inx and

T3 =
∑
n∈Z

e−in2tĝ(n)einx.

For b = 0,

T1 =
1

π

∫ π

0

f(x) dx.

Let us compute T3. Directly,

g(x) =

[√
π

1√
π
∗ (fe − fo)

]
(x) =

−1

2π

∫ 0

−π

2f(−x) dx = −T1.

This means that T3 is a solution to (A) with initial condition g = −T1 a constant.
Therefore, we should have T3 equal to that same constant −T1.

Curiously, note that this calculation gives the following identity,

q−1∑
m=0

q−1∑
k=0

e2πi
−m2p+mk

q = q.

□
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Problem 12. Show that the family of eigenvectors {ϕ} ∪ {ϕj}∞j=1 is indeed an

orthonormal basis of L2(0, π). Hint: the important point here is to show that they
are a complete family.

Solution. It is routine that they form an orthonormal family, because L is a sym-
metric operator and all the eigenvalues listed above are distinct. The proof that
they are complete is as follows.

Observe that Λj is unimodular and that we need its square root to write ϕj in
a more symmetric manner. So write

Λj = e2iλj ,

for λj ∈ (−π, π]. Since Λj → −1 as j → ∞, then we can pick unambiguously
λj → π

2 . This gives,

ϕj(x) =
eiλj

√
2π

(
ei(jx+λj) − e−i(jx+λj)

)
= 2i

eiλj

√
2π

sin(j(x+ λj))

= sje
iλj

√
2

π

(
cos(jx) + tj sin(jx)

)
for sj = sinλj and tj = cotλj . Here sj → 1 and tj → 0 as j → ∞.

Let the linear operator R : L2(0, π) −→ L2(0, π), be the linear extension of the
map R : sin(x) 7→ 1√

π
and R : sin((k + 1)x) 7→ cos(kx) for all k ∈ N. Then, by

Parseval’s identity, it follows that R is an isometry. It is also onto, therefore it is
unitary.

Let J ∈ N be such that |tj | ≤ 1
2 for all j ≥ J . Let the operator

F = (R+ T )S : L2(0, π)⊖ Span{sin(jx)}Jj=1 −→ F (L2(0, π)),

where T : sin((k+1)x) 7→ tk sin(kx) and S : sin((k+1)x) 7→ sk sin((k+1)x) for all
k ≥ J . Its is immediate that F : sin((k+1)x) 7→ ϕk(x) for all k ≥ J . Moreover, F is
invertible with a bounded inverse. Indeed, F is invertible because R is an isometry,
T is compact with ∥T∥ ≤ 1

2 and S is invertible. Furthermore, F (L2(0, π))⊥ has

dimension J . For this, note that the missing subspace in F (L2(0, π)) is

Span{ϕ, ϕ1, . . . , ϕJ−1}

and all these functions are linearly independent, because they are eigenfunctions of
L associated to distinct eigenvalues. From this, the fact that

Span{ϕ, ϕ1, ϕ2, . . .} = L2(0, π)

is immediate. □

Problem 13. Give the proof of Theorem B-a), using Lemma 5.

Solution. Substitute t = 2π p
q and use Theorem A-a) with initial data fe + g. □

Problem 14. Give the proof of Theorem C for V (x) = c, where c ∈ C. Hint: note
that (C) has Dirichlet boundary conditions and that c does not need to satisfy the
hypotheses on V stated in the bullet points.
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Solution. The eigenfunctions of −∂2
x + c are sin(nx) with corresponding eigenfunc-

tions c + n2 for all n ∈ N. Hence, by following a similar argumentation as in the
solution to Problem 6, we have

u(x, t) = e−i2πc p
q

q−1∑
m=0

(
q−1∑
k=1

e2πi
mk−m2p

q fo

(
x− 2π

k

q

))
.

In this case, w(x, t) = 0. □

Problem 15. Show that

H1[a,b](x) =
1

π
log

∣∣∣∣∣∣
sin
(

x−a
2

)
sin
(

x−b
2

)
∣∣∣∣∣∣ ,

for a, b ∈ T with −π ≤ a < b < π.

Solution.

H1[a,b](z) =
1

2π
p.v.

∫ b

a

cot

(
z − w

2

)
dw

=
1

2π
p.v.

∫ b

a

cos
(
z−w
2

)
sin
(
z−w
2

) dw
= − 1

π

∫ z−b
2π

z−a
2π

(sin(πx))′

sin(πx)
dx.

□

Problem 16. Compute Hen to verify (13).

Solution. First observe that

cot
z

2
= 2

∞∑
n=1

sin(nz), (17)

meaning that the periodic distributions on both sides are equal. Indeed, this is
true, because taking the sine Fourier coefficients of cot z

2 ,

f̃(n) =
2

π

∫ π

0

cot
x

2
sin(nx) dx,

we have

πf̃(n) =

∫ π

−π

cot
x

2
sin(nx) dx = A.

Note that there is no singularity at x = 0 any more because the sine vanishes there
too. Writing the cotangent and the sine in exponential form, and simplifying we
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get,

A =
1

2

∫ π

−π

ei
x
2 i + e−i x

2 i

ei
x
2 i − e−i x

2 i
(einx − e−inx) dx

=

∫
γ

(z2 + 1)(z4n − 1)

(z2 − 1)z2n+1
dz

=

∫
γ

(z2 + 1)

2n−1∑
k=0

z2(k−n)−1 dz

= 2π,

where γ is the semi-circle γ(w) = eiw for w ∈ (−π
2 ,

π
2 ). This gives (17).

Now, let g : T −→ C be a periodic distribution. Then,

Hg(x) =
1

2π
p.v.

∫ π

−π

g(y)
∞∑

n=1

2 sin(n(x− y)) dy

=
−i

2π
p.v.

∫ π

−π

g(y)

∞∑
n=1

[
ein(x−y) − e−in(x−y)

]
dy

= i

∞∑
n=1

⟨g, e−n⟩e−n(x)− i

∞∑
n=1

⟨g, en⟩en(x).

From this, taking g = ek, the statement (13) follows. Notice that if, additionally,
g ∈ L2(T), then Hg ∈ L2(T), and therefore the identity is valid in the L2 sense.
Also note that contour integration without (17) does not give the answer directly,
because Jordan’s Lemma is not applicable for this intergation. □

Problem 17. Complete the proof of Theorem D-a).

Solution. Substitute the formula of the theorem, directly into the formula of the
lemma. □
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