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Morning Lectures

Statistical mechanics and Monte Carlo simulations

Monte Carlo methods are considered one of the largest and most important class of numer-
ical methods used for solving statistical mechanics problems. We will offer a brief overview
of the statistical mechanics followed by an introduction to Monte Carlo methods in the
context of statistical physics and quantum mechanics. The material covers the simulation
of equilibrium systems and the theoretical basis of important Monte Carlo algorithms and
ideas such as the Metropolis algorithm in detail. We will devote the part of the afternoons
to the computer implementation, exploration, and application of these ideas through coding
examples.

Introduction to elements of machine learning

We will introduce foundational ideas and models in machine learning ranging from con-
cepts like supervised and unsupervised learning, to linear and logistic regression, multilayer
perceptrons, convolutional neural networks, recurrent neural networks, optimization strate-
gies, overfitting, generalization, regularization, as well as demonstrate how these models
can be applied to problems in a variety of simple physical scenarios in statistical and many-
body physics. We will dedicate part of the afternoons to practice exercises that will give
you hands-on experience implementing these ideas and algorithms on datasets generated
from statistical physics models. These exercises will teach you how to implement machine
learning algorithms with TensorFlow and other open source libraries used in modern deep
learning research.

Generative models, ML-inspired representations of quantum state, and
applications in quantum physics and technology

Unsupervised learning, in particular generative models, have been recently shown to have
the potential to solve problems in quantum physics and quantum technology. We will
introduce energy-based generative models as well as modern generative models used in
state-of-the-art machine learning research and will focus on application and extensions of
these ideas in areas such as quantum state tomography, energy minimization of variational
wave functions, and quantum error correction. We will dedicate part of the afternoons to
practice exercises that will give you hands-on experience implementing energy minimization
(using NetKet) and quantum state tomography with neural networks using and QuCumber,
a specialized software developed at the Perimeter Institute Quantum Intelligence Lab for
quantum state reconstruction using ML ideas.
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Short Communications

Andrés Ángel
Departamento de Matemáticas
Universidad de Los Andes, Bogotá, Colombia

Some examples of topological data analysis

Topological data analysis is a recent area that tries to quantify the shape of data. I will
present two of the main tools to represent the topological nature of data. The Mapper
graph and Persistence diagrams. I will present simple examples using R packages.

John Goodrick
Departamento de Matemáticas
Universidad de Los Andes, Bogotá, Colombia

Intrinsic complexity of algorithmic learning: a logical and combinatorial
perspective

In 1984, Valiant introduced the notion of “Probably Approximately Correct” (PAC) learn-
ability of a concept class (a set C of possible ”hypotheses” predicting labelings of instances).
Roughly, a concept class C is PAC learnable if there is some learning algorithm which is
guaranteed to (”probably and approximately”) learn a true hypothesis from C if it is given
enough training samples, independently of the distribution according to which they are
selected. Surprisingly, whether or not a class is PAC learnable is equivalent to a purely
combinatorial condition on the complexity of C, namely that C should have finite Vapnik-
Chervonenkis dimension, and is also equivalent to the existence of certain kinds of compres-
sion schemes for encoding lists of training instances (by the proof in 2015 of ”Warmuth’s
Conjecture” by Moran and Yehudayoff). The concept of VC-dimension, in turn, has been
extensively studied by researchers in mathematical logic, which has supplied rich families
of new PAC-learnable classes.

We will summarize these interesting connections between machine learning, combinatorics,
and logic, and discuss recent advances by Hunter Chase and James Freitag on links between
various notions of algorithmic learning (online learning, equivalence query learning) and
other combinatorial complexity functions.

Reference: ”Model theory and machine learning,” Chase and Freitag,
https://arxiv.org/abs/1801.06566.
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Andreas Griewank
School of Mathematical and Computational Sciences
Yachay Tech, Urcuqúı, Imbabura, Ecuador

High dimensional integration of kinks and jumps - Smoothing by prein-
tegration

We show how simple kinks and jumps of otherwise smooth integrands over Rd can be dealt
with by a preliminary integration with respect to a single well chosen variable. It is as-
sumed that this preintegration, or conditional sampling, can be carried out with negligible
error, which is the case in particular for option pricing problems. It is proven that under
appropriate conditions the preintegrated function of d − 1 variables belongs to appropri-
ate mixed Sobolev spaces, so potentially allowing high efficiency of Quasi Monte Carlo
and Sparse Grid Methods applied to the preintegrated problem. The efficiency of apply-
ing Quasi Monte Carlo to the preintegrated function are demonstrated on a digital Asian
option using the Principal Component Analysis factorization of the covariance matrix.

Joint work with Frances Y. Kuo, Hernan Leövey, Ian H. Sloan.

Adolfo Alejandro Hernández Cásares
Instituto de F́ısica, Universidad Nacional Autónoma de México,
Apartado Postal 20-364, Ciudad de México 01000, México.

Localization and Artificial Gauge Fields in Quantum Optical Lattices

Ultracold neutral atoms in optical lattices can be used for quantum simulation of Lattice
Gauge Theories specially those involving U(1) which correspond to magnetic fields. In this
case we focus on a 2D lattice with an extra particle or extra hole (with an extra phase
on quantum hoping term due to Aharonov-Bohm effect) finding interesting features as
the Hofstadter’s Butterfly spectrum, particle-hole symmetries and a new localization effect
equivalent to that predicted by the Lorentz force if the particles had positive or negative
charge, suggesting the presence of a synthetic magnetic force acting on both particles and
holes.
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Héctor Iván Reyes
Facultad De Ciencias Básicas e Ingenieŕıas
Universidad de los Llanos, Villavicencio, Colombia

Machine Learning for Spectrum Sensing. Our experiments.

In this speech, I will talk about the application of machine learning methods to spectrum
sensing. Spectrum sensing is a task performed by communications equipment for deter-
mining the occupancy of radiofrequency channels. Detecting unocuppied channels allows
transmitters to discover spectrum holes to be used opportunistically. We conducted exper-
iments with GNU Radio, an open source software for implementing radios, to test different
machine learning methods. In this talk we propose three GNU Radio blocks for performing
spectrum sensing based on the autocorrelation of samples captured with an SDR device
such as HackRF One, RTL-SDR or USRP. The proposed blocks analyze the autocorrela-
tion of samples through different methods to determine if they come from either noise or
signals transmitted by communication devices. The reason for using the autocorrelation
is that this feature is different for noise and for communication signals regardless of the
noise power, which is an advantage in comparison with energy detection, another common
method for spectrum sensing, which requires knowledge of the noise level to determine the
presence or absence of communication signals. The first method consists in calculating
the Euclidean distance between the autocorrelation and a reference line defined by the
maximum values taken by the autocorrelation with high signal to noise ratio samples. To
perform spectrum sensing with this method the proposed block takes the samples, cal-
culates the autocorrelation and its distance to the reference line; if the distance is above
certain threshold the block decides that the samples are signal, otherwise that the samples
are noise. The second method consists in clustering the points defined by the variance
and the mean of the autocorrelation samples. For implementing this method we identify
one cluster containing samples with only noise, and other clusters containing samples from
different communication signals. To put into practice this method, the block takes samples
and estimates to which cluster they belong. The third method is based on the percentiles
(25%, 50%, 75%) of the autocorrelation fast Fourier transform, better known as the power
spectral density (PSD). For this method, we calculate the percentiles of the PSD of noise
and communication signals at different frequencies and labeled them accordingly. We use
the percentiles and their corresponding labels to train a KNN (K-nearest neighbor) clas-
sifier and create a classification model. To apply this method the proposed block takes
the received samples, calculates the percentiles of their PSD and feeds them to the KNN
model, which decides whether the samples come from either noise or communication sig-
nals. We implemented and tested experimentally the aforementioned methods with GNU
radio companion, HackRF one, and RTL-SDR 2832u. In the talk we will present details
about the proposed methods, their performance evaluation and the experiments conducted
during the process.
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Julián Rincón
Department of Applied Mathematics and Computer Science
Universidad del Rosario, Bogotá, Colombia

Understanding continuous quantum matter via matrix product states

The first half of the talk will introduce matrix product states as an ansatz that can ef-
ficiently describe weakly-entangled wave functions of quantum many-body local Hamilto-
nians. I will review their formulation both in the discrete for lattice models, and in the
continuum for quantum field theories. The second part of the talk will focus on a quasi-
exact algorithm that accurately finds the ground state of non-relativistic 1+1 dimensional
quantum field theories. Using this algorithm, I will describe the ground state properties of
a Lieb-Liniger-like model with exponentially decaying interactions.

Ángel Rojas
School of Mathematical and Computational Sciences
Yachay Tech, Urcuqúı, Imbabura, Ecuador

A Target Oriented Averaging Search Trajectory and its Application to
Artificial Neural Network Training

Artificial Neural Network Training (ANNT) usually involves nonsmooth objective func-
tions to be minimized. This optimization problem is currently solved by randomized local
methods in order to handle the nonsmoothness and to improve the chance of reaching
a global minimizer. Usually, the training methods depends on the direction of steepest
descent such as Gradient Descent (GD) or Stochastic Gradient Descent (SGD) for not
getting stuck at stationary points [BCN18]. Further [ACGH18] proves convergence of GD
to a low local minimizer in the weights space under certain strong assumptions on the
smooth objective and a random initialization scheme. Though, in practice, these statisti-
cal learning algorithms work quite well using backpropagation, we develop a deterministic
global optimization algorithm called SALGO which employs a Target Oriented Averaging
Search Trajectory namely TOAST. Actually, the label describes that the search direc-
tion is an average of the steepest descent direction combined linearly by the initial point of
search and proportional to certain sensitivity determined by a target level of search [Gri81].
The analalog of SALGO is the Gradient Momentum Method but differs of its stochastic
versions [LR17]. Also, the sensitivity and the target level are two method parameters
which are selected by the user or set by suitable heuristics to reach a low minimizer of
the ANN’s empirical risk. Typically, the reachable level in machine learning is positive
and rather close to zero, so the target level can be set accordingly and reduce it until a
tolerance. A main difference between our approach and backpropagation is that the latter
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disregards the nonsmoothness of the empirical risk. In contrast, we handle the ”nondiffer-
entiabilites” of the empirical risk surface through its Succesive Abs-Linearization proposed
in [Gri13],[GWS],[GW18]. Finally, we focus on ANN depending on hinge functions (a.k.a
ReLU) as the activation function of the hidden states. Its implementation is due to the
results in [ZBH+16] and allows us to formulate explicitly our TOAST formula when the
sensitivity e = 1. We proved this ANN setup guarantees that the associated empirical
risk’s minima are nondifferentiable. We experiment with different models where ANN and
hinge functions are often used and compare them with ANN trained by SGD and GD.

Joint work with Andreas Griewank.
Palabras Clave: Successive Piecewise Linearization, Quadratic Regularization, Abs-Normal
Form, Generalized descent
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Luis Felipe Vargas
Departamento de Matemáticas
Universidad de Los Andes, Bogotá, Colombia

Distribuciones de Máxima Entroṕıa en Bolas de Wasserstein

Presentamos un método para hallar la distribución de máxima entroṕıa en la Bola de
Wasserstein de un radio dado t centrada en la distribución emṕırica dada por n puntos.
Esta distribución es la más general (minimiza la cantidad de información previa) a una
distancia t de la distribución emṕırica y de aqúı su importancia en inferencia estad́ıstica.
El método depende de un nuevo algoritmo de cutting plane y es generalizado a otro tipo
de funciones, entre ellas los Funcionales Euclidianos Subaditivos. También, damos una
nueva generalización al algoritmo de Fortune para generar el diagrama de Voronoi Pesado
Aditivamente que permite hacer optimización en Bolas de Wasserstein a mayor velocidad.

Mauricio Velasco
Departamento de Matemáticas
Universidad de Los Andes, Bogotá, Colombia

Learning on graphs and the Wasserstein nuclear norm

In this talk we will focus on the problem of detecting “communities” on graphs. Our
main contribution is that this and other machine learning problems on graphs can be
reformulated as instances of robust optimization problems with the appropriate Wasserstein
norm. We will prove new theoretical guarantees for community discovery in the stochastic
block model and introduce new ADMM algorithms for practically solving these problems
on relatively large graphs extending work of Esfahani-Kuhn and Recht-Fazel-Parrilo. These
results are joint work with Daniel De Roux. (Note: The talk will be self-contained and
will not assume previous knowledge of robust optimization.)

Joint work with Daniel De Roux..
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Posters

Leonel Ardila, Juan Flórez
Departamento de F́ısica
Universidad Nacional, Bogotá, Colombia.

Continuous Normalizing Flows applied to RBM

Among the generative models in machine learning one is of particular interest for the
physicists, this model is the Restricted Boltzmann Machine (RBM). A great work has
been done on both it’s inner working and how to efficiently train it [Fis14], however there
are a lot of open questions regarding this model. We focus on the training of and RBM and
propose a new way to train it based on the recent results regarding Continuous Normalizing
Flows [CRBD18] and previous work on the application of Gibbs Flows to generate arbitrary
distributions [JH15]. The scheme proposed is tested on RBM’s with both Gaussian visible
units and uniformly distributed visible units, and a approach to train Deep Belief Networks
is presented. The continuous normalizing flow formalism allows to know the probability of
a given state of the neural network, hence, it gives a much more reliable framework to train
generative models, and can be helpful to numerically estimate the value of the partition
function for energy based generative models; to estimate the value of the partition function
is a useful tool to numerically test results on how the training of an RBM is related to it’s
free energy [Dom17].

References
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Juan Nicolás Claro R., José Alejandro Rojas Venegas
Departamento de F́ısica
Universidad Nacional, Bogotá, Colombia

Machine Learning flux visualization as a wing turbulence test

In the last 20 years, flux visualization has re-emerged as a quantitative technique due to
the advances in digital image analysis. Despite of that, the main image analysis methods
present low efficiency and poor precision. An easy and efficient way to obtain results in
this topic is a Machine Learning (ML) approach. In this work, GoogLeNet(Inception v1)
was retrained by mean of Schlieren local images, which were obtained from systems with
a known and well defined Reynolds number to test airflow passing through a wing-shaped
profile, looking for local turbulence characterization when the critical angle is overpassed.

Natalia Copete, Diego A. Garzón
Departamento de F́ısica
Universidad de los Andes, Bogotá, Colombia.

Mutual information of a fully connected neuronal network learning pro-
cess

Artificial Neural Networks (ANN) were developed in the last 50 years with the intention to
mimic the brain’s process to handle stimuli [Sch15]. Thanks to increasing computing power
at lower costs, ANN have finally become a central feature to the success of the broader
Machine Learning (ML) community. [BL09, CW08, GFDF04, GZ93, Gol16, KWR+01].
Biological studies have found that weak correlations among pairs of neurons coexist with
strong correlations in the states of population as a whole. [SBSB06]. In this work we
want to test whether these correlations also hold for ANN. To this end we train fully con-
nected neuronal network (FCNN) for different classification tasks and measure the mutual
information (MI) between groups of neurons at different stages of the learning process of
the mentioned neural network. Our results suggest that FCNNs behave as their biological
counterpart, that is, the global MI is larger than the local one by an order of magnitude.
We finalize by discussing the implications of these results for ANN training.

Joint work with J. Forero-Romero, J.M. Pedraza.
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G.A. Domı́nguez-Castro
Instituto de F́ısica, Universidad Nacional Autónoma de México,
Apartado Postal 20-364, Ciudad de México 01000, México.

p-wave Superfluid Phases of Fermi Molecules in a Bilayer Lattice Array

We investigate the emergence of superfluid px + ipy phases in an ultracold gas of dipolar
molecules lying in two parallel square lattices in 2D. Also, we determine two zero temper-
ature phase diagrams of this Fermi system, both of them exhibit stable p−wave superfluid
phases as well as a phase separation region as a function of the dipole-dipole interaction
coupling. Finally, we estimate the Berezinskii-Kosterlitz-Thouless critical temperature of
the superfluid in the lattice and discuss possible experimental realizations. p−wave su-
perfluid phases may lead to possible applications in quantum information and quantum
computations.
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Schematic representation of dipolar Fermi molecules situated in a bilayer array composed
of parallel optical lattices in two dimensions

Joint work with R. Paredes.

Alejandro Ferrero Botero
Departamento de F́ısica
Universidad Catlólica de Colombia, Bogotá, Colombia.

Solution to Green Functions Using the Finite Difference Method

Green functions have a great importance in mathematics and physics to solve differential
equations with given boundary conditions. This presentation shows how the Finite Dif-
ference method can be used to solve Green functions with Dirichlet, Neumann, or mixed
boundary conditions. It is indicated how to programm the code in python.

Since most of the physical systems can be modeled by means of second order differen-
tial equations, this work is focused on solving ordinary differential equations of the form
L{G(x, x′)} = δ(x− x′), where L is an arbitrary second order differential operator.

It is also explained how the Green function can be used to solve some physical systems of
great importance such as the driven damped harmonic oscillator, electrostatic potentials
with some symmetries, among others.

Solución a funciones de Green Mediante el Método de Diferenicas Finitas

Las funciones de Green son de gran importancia en el área de la f́ısica y las matemáticas pa-
ra resolver ecuaciones diferenciales con condiciones de frontera dadas. En esta presentación
se muestra cómo el método de diferencias finitas puede ser usado para resolver funciones
de Green con condiciones de frontera de Dirichlet, Neumann, o combinación de éstas. Se
indica como hacer la programación en el lenguaje python.

Dado que la gran mayoŕıa de sistemas f́ısicos pueden ser modelados mediante ecuaciones
diferenciales de segundo grado, este trabajo se enfoca en resolver ecuaciones diferenciales
ordinarias de la forma L{G(x, x′)} = δ(x − x′), donde L es un operador diferencial de
segundo grado arbitrario.
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Se explica, además, como la función de Green encontrada se puede utilizar para resolver va-
rios sistemas f́ısicos de gran importancia como el oscilador armónico forzado y amortiguado,
potenciales electrostáticos con ciertas simetŕıas presentes, entre otros.

Santiago Figueroa Manrique
Departamento de F́ısica
Universidad del Valle, Cali, Colombia.

Towards a quantum Monte Carlo for lattice systems

In this work we build the foundations of a quantum Monte Carlo (QMC) as a numerical
method to solve lattice many-body quantum systems with nearest-neighbor interactions.
As motivation, we briefly describe a system of repulsively interacting spin-1 bosons in
an optical lattice at unit filling in the Mott insulator phase with an external quadratic
Zeeman field. QMC methods circumvent the difficulties that arise on these type of systems
by mapping the quantum partition function into the one of an effective classical model
and then, implementing a Monte Carlo sampling of the new partition function. Such a
mapping is performed by the means of the Suzuki-Trotter decomposition, which transforms
the original partition function into a summation of world lines. Finally, we show how the
Metropolis algorithm can be implemented to sample the world lines, thus allowing us to
measure certain type of observables.

Vı́ctor Alfonso Loaiza Moreno
Departamento de F́ısica
Universidad del Valle, Cali, Colombia.

A quantum treatment of the anisotropic diamagnetic Kepler problem in
a silicon crystal with low concentration of phosphorus impurities

In this work we study the anisotropic diamagnetic Kepler problem which is related with
the behavior of electron interaction with low densities of phosphorus impurities in a silicon
crystal focusing on the case of a magnetic field along the [111] direction of the crystal. Here
we propose a full quantum description to this problem by choosing an appropriate basis
and implementing the complex rotation method to study the resonance states. Within this
approach we were able to reproduce and improve reported results on the bound spectrum
of the field free and the diamagnetic anisotropic Kepler problem. Furthermore, we report
here for the first time an spectrum above the first Landau ionization threshold.
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Mateo Londoño
Departamento de F́ısica
Universidad del Valle, Cali, Colombia.

Optimización de un esquema de control multi-paso para la estabilización
vibracional de moléculas diatómicas

En las últimas dos décadas se han dedicado esfuerzos considerables, tanto experimentales
como teóricos, a la formación de moléculas fŕıas y ultrafŕıas, debido a su importancia para
la comprensión del comportamiento de la materia a temperaturas cercanas al cero absoluto.
En la estrategia de fotoasosiación, se usan pulsos láser para estabilizar vibracionalmente
en el estado electrónico fundamental las moléculas, a partir de colisiones binarias en ga-
ses a T < 1mK. Para el diseño de pulsos óptimos, la teoŕıa del control óptimo cuántico
(QOC) ha resultado útil. en particular, se han propuesto esquemas basados en métodos
de optimización heuŕısticos basados en algoritmos genéticos. En este trabajo se implemen-
ta computacionalmente un esquema de tres pulsos para la estabilización vibracional en
el estado basal de singulete de una molécula de KRb, la cual se encuentra inicialmente
atrapada en una resonancioa de Feschbach del primer estado triplete. En el primer paso, se
implemeta un esquema ladder descending en el infrarrojo para llevar el diátomo a un nivel
de baja energa del primer estado triplete. En el segundo y tercer pasos, se implementa
un esquema pump-dump para llevar el diátomo a un segundo estado triplete, el cual se
encuntra acoplado con un estado singulete excitado, y desde alĺı hacia el nivel basal del
estado singulete fundamental. Encontramos que nuestra estrategia es mucho más eficiente
que estrategias que solo consideran pulsos pump-dump.

Joint work with Julio C. Arce.
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Fernando Naranjo Mayorga, Nicanor Poveda Tejada, Oscar Fabián Téquita
Vargas.
Grupo de F́ısica Teórica y Computacional
Universidad Pedagógica y Tecnológica de Colombia
Tunja, Colombia.

Neuronal Electronic Synchronization Between the Model Morris-Lecar
and the RCLSJ Circuit

The RCSLJ model (resistance, capacitance, inductance, Josephson junction) can simulate
neuronal electrical activity. The article presents a description of how this circuit can sim-
ulate the behavior of neuronal discharges of the biological model Morris-Lecar (M-L). The
problem is presented in the synchronization of the model M-L with the circuit, for this, we
introduce an adaptive control scheme using Lyapunov functions to analytically calculate
a controlling function that allows us the synchronization. The results confirm that the
controller, with appropriate gain coefficients, makes generalized synchronization (identical
frequencies but not amplitudes) and full synchronization (frequencies and identical ampli-
tudes) between the circuit and the M-L model effective. With the results, we can control
the dynamic behavior of the RCLSJ system to reproduce the neuronal electrical behavior
of the Morris-Lecar model. The synchronization of these models could show a path towards
the understanding of neuronal electrical activity.

Palabras Clave: Josephson junctions, RCLSJ circuit, Lyapunov functions, model Morris-
Lecar, control- ling function.

Jairo José Orozco Sandoval
Departamento de F́ısica
Universidad de Puerto Rico, Recinto Universitario de Mayagüez, Puerto
Rico.

Discovering Phase transitions using unsupervised machine learning PCA

Machine learning, specific subset of artificial intelligence, trains a machine to learn from
unexplored data. It has become a robust method for the identification of patterns within
complex physical systems to determine certain physical quantities without prior knowledge
of their physics principles. For many years classifying and discovering phases and phase
transitions is one of the most important topics in Condensed Matter Physics; however, it
is not an easy job to do, especially when we work with complex systems and the number
of states is very large. In this work we applied unsupervised machine learning called Prin-
cipal Component Analysis (PCA) to square and hexagonal Ising model to identify phases
and phase transitions. We found that PCA allow us to identify these phase transitions and
located the critical points for both systems. We demonstrated that the firsts principal com-
ponents are related with physical properties of the model as the order parameter and the
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susceptibility. The weight vectors in PCA have a physical explanation, which is helpful to
get a better understanding of the system’s behavior. The critical temperature Tc in square
and hexagonal systems were determined. For the square system a Tc = 2.26339J/KB was
obtained and for the hexagonal system a Tc = 1.51508J/KB, having a 0.5% percent error
from the true thermodynamic critical temperature.

Nadia Daniela Rivera Torres
Departamento de F́ısica
Universidad del Valle, Cali, Colombia.

The SSH model in the momentum representation

This work is based on the Su-Schrieffer-Heeger model, which describes a system of non-
interacting polarized fermions, i.e. without spin, moving in a one-dimensional superlattice.
We analyze the Hamiltonian of the system in second quantization, in which the optical
lattice has discretized the space, and take into account that the basis that diagonalizes the
kinetic energy is the one of momentum. In the first case, let us consider a finite chain; we
show that the discrete Sine transform type-I respects the finite boundary conditions of the
system, hence, it is the proper transform to be used. This transformation arises from linear
combinations of plane waves and allows us to express our Hamiltonian in the momentum
basis in such a way that will allow us to extend the study of the system to an arbitrary
number of sites. In the second case, when periodic boundary conditions are considered, the
usual Fourier transform can be used; this case will be shortly discussed in this poster as well.

Santiago Salazar Jaramillo
Departamento de F́ısica
Universidad de los Andes
Bogotá, Colombia

Feature Extraction of Neural Networks Applied to Magnetic Models

This undergraduate thesis studies the weight matrices of a neural network trained and
evaluated in spin samples, in order to identify which physical quantities the network uses
to solve the magnetic phase classification problem. A Densely Connected Neural Network
was coded in order to classify the phases of the square-lattice Ising model. Several hidden
layers sizes were tested in order to determine an optimal model, which was then analysed
using Principal Component Analysis and K-means clustering. This analysis separated the
weight matrices in three distinct classes, two of them specialising in positive and negative
magnetisation and a third one that activates in both cases. It was also found that these
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weight matrices reflected the translational invariance and Ising symmetry of the model.
Finally, a possible implementation of the same method on the one dimensional quantum
XY-model is proposed.
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Bogotá, Colombia

Reconstructing the Universe with Machine Learning.

Machine learning has found its way into observational cosmology by tackling on of the most
relevant problems in the field: infering the large scale distribution of Dark Matter (DM)
in the local Universe. The DM spatial distribution is not directly observable and must
be inferred from the observational data. In this talk we will show how machine learning
methods can help us to solve this task. As training data-sets we use different two kinds of
cosmological simulations: hydrodynamical and semi-analytic. We will present preliminary
results for our reconstruction efforts based on SDSS data and comment on its implications
and strategies for improvement.

Joint work with J. Forero-Romero.

Joseph Vergel-Becerra
Grupo de F́ısica Teórica y Matemática Aplicada
Instituto de F́ısica, Universidad de Antioquia, Medelĺın, Colombia.

Assisted Optimal Transfer of Excitonic Energy by Deep Reinforcement
Learning

Light-matter interaction in light-harvesting systems is a hottest topic in molecular physics.
Due to its numerous applications in quantum and photovoltaic systems, understanding
its performance is of paramount relevance in improving efficiency of the current devices.
This research proposes the application of reinforcement learning with neural networks like
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alternative to uncover the design principles behind efficiency and application to other fields
such as dynamical systems and control theory.

Joint work with Leonardo A. Pachón.
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[FTWM18] Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt. Re-
inforcement learning with neural networks for quantum feedback. Physical
Review X, 8(3):031084, 2018.

[MBW+19] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre GR Day, Clint
Richardson, Charles K Fisher, and David J Schwab. A high-bias, low-variance
introduction to machine learning for physicists. Physics Reports, 2019.

[PBB17] Leonardo A Pachón, Juan D Botero, and Paul Brumer. Open system perspec-
tive on incoherent excitation of light-harvesting systems. Journal of Physics
B: Atomic, Molecular and Optical Physics, 50(18):184003, 2017.

David Ricardo Vivas Ordóñez
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Neural Networks as Variational Wavefunctions

The use of deep learning algorithms for solving quantum mechanics problems is a rela-
tively new, interdisciplinary field of study. Recent approaches include the identification of
phases and phase transitions on condensed-matter Hamiltonians using feedforward neural
networks [CM17]; the use of a restricted Boltzmann machine for dimensionality reduction
of the ground state many-body wavefunction [CT17, CNI18]; the use of a perceptron as a
variational anszats for finding the ground state of typical Hamiltonian systems [Ten18] and
the use of deep learning for molecular generation and optimization of quantum materials
for photovoltaic applications [EBFC19]. The main goal of this work is to implement cur-
rent state-of-the-art algorithms that use neural networks as generic variational anszats, in
order to test them on systems of higher complexity, and potentially find alternative neu-
ral network architectures that can compete with the aforementioned methods. We have
currently reproduced the results reported in [Ten18] using an unsupervised neural network
architecture that allows the training of more than one hidden layer, and we have, as ongo-
ing work, performed the implementation of the computational method proposed in [CT17]
for solving extended quantum many-body systems beyond those treated in [CT17].

Joint work with Javier Madroñero, John Henry Reina.
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Monday, May 27th (Room: W-101, W-102, W-404)

8:00 – 9:00 Registration

9:00 – 9:15 Opening

9:15 – 10:15 Roger Melko: Introduction to Many-Body physics

10:15 – 11:15 Roger Melko: Introduction to Monte Carlo simulations

11:15 – 11:45 Break

11:45 – 12:45 Roger Melko: Monte Carlo Tutorial in Python

12:45 – 14:00 Lunch Break

14:00 – 15:00 Practical Session (Estelle Inack)

15:00 – 15:30 Break

15:30 – 16:10 Julián Rincón: Understanding continuous quantum matter via matrix prod-
uct states

16:10 – 16:50 Héctor Reyes: Machine Learning for Spectrum Sensing. Our experiments.
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Tuesday, May 28th (Room: W-102, ML-607, ML-615)

9:00 – 10:00 Juan Carrasquilla: Introduction to machine learning

10:00 – 11:00 Juan Carrasquilla: Neural networks and backpropagation

11:00 – 11:30 Break

11:30 – 12:30 Estelle Inack: Feed-forward neural networks and Tensorflow (Room ML-
606, ML-607, ML-615)

12:30 – 14:00 Lunch Break

Room W-101, ML-606, ML-615

14:00 – 14:25 Ángel Rojas: A Target Oriented Averaging Search Trajectory and its Ap-
plication to Artificial Neural Network Training

14:25 – 14:50 Adolfo Hernández: Localization and Artificial Gauge Fields in Quantum
Optical Lattices

14:50 – 15:15 Luis Felipe Vargas: Distribuciones de Máxima Entroṕıa en Bolas de
Wasserstein

15:15 – 15:40 Break

15:40 – 16:40 Practical Session (Estelle Inack)

16:40 – 17:00 Break

17:00 – Poster Session & refreshments
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Wednesday, May 29th (Room: W-101, ML-607, ML-615)

9:00 – 10:00 Juan Carrasquilla: Unsupervised learning, maximum likelihood, PCA, t-
SNE

10:00 – 11:00 Giacomo Torlai: Restricted Boltzmann machines (RBM) I.

11:00 – 11:30 Break

11:30 – 12:30 Estelle Inack: Unsupervised learning tutorial: PCA, t-SNE
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Thursday, May 30th (Room: B-202, C-104)

9:00 – 10:00 Giacomo Torlai: Restricted Boltzmann machines (RBM) II.

10:00 – 11:00 Giacomo Torlai: Quantum state reconstruction

11:00 – 11:30 Break

11:30 – 12:30 Estelle Inack: Learning thermal states with RBMs tutorial

12:30 – 14:00 Lunch Break

14:00 – 14:40 John Goodrick: Intrinsic complexity of algorithmic learning: a logical and
combinatorial perspective

14:40 – 15:20 Andrés Ángel: Some examples of topological data analysis

15:20 – 15:50 Break

15:50 – 16:50 Practical Session (Estelle Inack)

29



Friday, May 31st (Room: B-202, C-104)

9:00 – 10:00 Estelle Inack: Variational Monte Carlo

10:00 – 11:00 Estelle Inack: VMC Tutorial

11:00 – 11:30 Break

11:30 – 12:30 Practical Session (Estelle Inack)

12:30 – 14:00 Lunch Break

14:00 – 15:00 Practical Session (Estelle Inack)

15:00 – 15:30 Break

15:30 – 16:10 Andreas Griewank: High dimensional integration of kinks and jumps -
Smoothing by preintegration

16:10 – 16:50 Mauricio Velasco: Learning on graphs and the Wasserstein nuclear norm

17:00 – Entrega de certificados de asistencia
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Contact Information

For general information

http://matematicas.uniandes.edu.co/˜cursillo gr/escuela2019/
https://www.facebook.com/escuelafisicamatematica.uniandes
Email: escuela fm2019@uniandes.edu.co

Organizers

Alonso Botero - abotero@uniandes.edu.co
Monika Winklmeier - mwinklme@uniandes.edu.co

Departamento de F́ısica
Universidad de los Andes
Dirección: Carrera 1 # 18A-10.
Bloque IP.
Teléfono: (57) 1 3324516.

Departamento de Matemáticas
Universidad de los Andes.
Dirección: Carrera 1 #18A-10.
Bloque H.
Teléfono: (57) 1 3394949 Ext. 2710.

Hostal la Candelaria.
Dirección: Calle 12F # 2-50, Centro Histórico, Bogotá.
Teléfono: (57) 1 2815724.
Celular: (57) 316 8880421.
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