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Artificial Neural Networks (ANN)

Optimization task and learning algorithms

min
W

φ(W ) ≡ 1

m

m∑
k=1

|f (W , xk)− yk |

over a training set of m pairs (xk , yk) ∈ Rn+1

Learning Algorithms

Steepest Descent, i.e., Backpropagation

Gradient Momemtum Variants.

Stochastic Gradient Method

Specially, for SG choice of stepsize is crucial but very difficult.
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Artificial Neural Networks (ANN)

House of Horrors

A single-layer case with constant output weighting p ∈ {−1, 1}d and hinge
activation (ReLU) can be mathematically described by the predictor:

f (W , x) ≡ p>max(0,W1...nx + Wn+1) with W ∈ Rd(n+1)

Nonsmoothness
At all isolated local and at least one global optimizer φ(W ) is not
differentiable.

Multi-modality
There may be local minima with values high above the globally
minimal value.

Zero-PLateau
For large negative Wn+1 the function f (W , x) and the gradient
∇φ(W ) w.r.t. W and x vanish identically.
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Artificial Neural Networks (ANN)

Example with two variable weights

Figure 1: One-layer ANN model and its contours
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Global Optimization (Nonsmooth )

Global Optimization (Nonsmooth)

Most optimization methods move down hill to reach a local minimizer or
possibly a saddle point.
To find the lowest of these local minimizers x∗ is generally a very difficult
problem.

ϕ(x∗) ≤ ϕ(x), ∀x ∈ D

Space covering techniques

If x ∈ Rn, n ≥ 2, these methods tend to exceed computational limitation
as they have to sample the function on a set of points that is sufficiently
dense to cover the search area.

Non-rigorous techniques

Stochastic/Statistics-based searches

Deterministic, but heuristic searches (many parameters).

Hybrid methods
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Global Optimization (Nonsmooth )

Target Oriented Average Search Trajectory (TOAST)

ẍ(t) = −
(
I − ẋ(t)ẋ(t)>

‖ẋ(t)‖2

)
∇φ(x(t))

[φ(x(t))− c]
, with ‖ẋ(t0)‖ = 1

Idea: Adjustment of current search direction ẋ(t) towards the
steepest descent direction.

The closer the current function value φ(x(t)) is to the target level c ,
the more rapidly the direction is adjusted.

In the limit when φ(x(t)) tends to c the trajectory reduces to
steepest descent.

On homogeneous objectives, local minimizers below c are accepted
and local minimizers above the target level are passed by.
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Global Optimization (Nonsmooth )

Closed form solution on prox-linear function

Theorem. If ϕ(x) = g>x + b + q
2‖x‖

2
2

ẍ(t) = −
[
I − ẋ(t) ẋ(t)>

] ∇ϕ(x(t))

[ϕ(x(t))− c]

implies

x(t) = x0 +
sin(ωt)

ω
ẋ0 +

1− cos(ωt)

ω2
ẍ0 (1)

and

ϕ(x(t)) = ϕ0+
[
(g + qx0)>ẋ0

]
sin(ωt)
ω +

[
q − ω2(ϕ0 − c)

] (1−cos(ωt))
ω2 (2)

where

ẍ0 = −
[
I − ẋ0ẋ

>
0

] (g + qx0)

(ϕ0 − c)
and ω = ‖ẍ0‖ . (3)
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Global Optimization (Nonsmooth )

Theorem[3],[4]

1 Every function ϕ(x) that is evaluated by a sequence of smooth
elemental functions and piecewise linear elements like abs,min,max
can be approximated near a reference point x̊ by a piecewise-linear
function ∆ϕ(x̊ ; ∆x) s.t.

|ϕ(x̊ + ∆x)− ϕ(x̊)−∆ϕ(x̊ ; ∆x)| ≤ q
2‖∆x‖2

2 The function y = ∆ϕ(x̊ ; x − x̊) can be represented in Abs-Linear form

z = d + Zx + Mz + L|z |,
y = µ+ a>x + b>z + c>|z |

where Z and L are strictly lower triangular matrices s.t. z = z(x).

This form can be generated automatically by Algorithmic Differentiation
and it allows the computational handling of ∆ϕ in and between the
polyhedra

Pσ = cl{x ∈ Rn; sgn(z(x)) = σ}
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Global Optimization (Nonsmooth )

SALGO-TOAST algorithm

1 Form piecewise linearization ∆ϕ of objective ϕ at the current iterate
x̊ and estimate the proximal coefficient q, set x0 = x̊ ,

2 Select the initial tangent ẋ0 and σ = sgn(z(x0)).

3 Compute and follow circular segment x(t) in Pσ.

4 Determine minimal t∗ where ϕ(x(t∗)) = c or x∗ = x(t?) lies on the
boundary of Pσ with some Pσ̃.

5 If ϕ(x∗) ≤ c , lower c or go to step (1) with x̊ = x∗ or terminate.

6 Else, set x0 = x∗, ẋ0 = ẋ(t∗), σ = σ̃ and continue with step (3).
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Results and Comparison

TOAST path

Figure 2: Reached minimum value 0.591576 and target level 0.519984
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Results and Comparison

Griewank function in 2D with 10 intermediate nodes and
20 training data points
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Figure 3: Stochastic Gradient Method implementation with minimum 0.077943
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Results and Comparison
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Figure 4: Gradient descent implementation
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Results and Comparison
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Figure 5: TOAST-SALGO with minimum 0.037252 and target level 0.031233
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Results and Comparison

Remain Tasks and further development

1 Refining targeting and restarting strategy.

2 Extension to ”deep learning”

3 Application to standard problem MNIST

4 Matrix based implemmentation for HPC

5 Explotation of low-rank updates in polyhedral transition.

6 Sample-wise version in Stochastic Gradient fashion
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End of Presentation

Thank You.
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Introduction and Motivation

Introduction and Motivation

Artificial Neural Network yields nonsmooth and, in general,
nonconvex functions w.r.t. weights, shifts, and input data.

These functions can be written in Abs-Normal Form (ANF) and,
consequently, Abs-Linear Form (ALF). The latter has a uniform
proximal quadratic term ‖q2 ∆x‖2, q > 0 w.r.t. original model.

Nonsmooth optimality conditions are NP-hard to satisfy and there is
no stopping criteria in the nonconvex case.

A common used ANN activation function is hinge function (a.k.a.
ReLU), a suitable piecewise-linear function for ANF.

Formulation of a global nonsmooth optimization method based on a
Target Oriented Average Search Trajectory and Successive
Abs-Linearization routine, namely, TOAST and SALGO, respectively.
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Introduction and Motivation

Tentative comparison

TOAST-SALGO achieves lower minima than SGM and GD
implementations

SGM and GD seems to get stuck in local minima, i.e., zigzagging and
V-shaped valley.

TOAST-SALGO solves the zig-zagging problem, climbing up and
rolling down to achive a new target level.

The singularities of gradient and Hessian is a problematic in SGM and
GD.
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Introduction and Motivation

Artificial Neural Networks (ANN)

”Machine Learning is the science (and art) of programming computers so
they can learn from data.” [1]
ANN is a data-based model in order to predict data on basis of previous
training on similar data.
Such a model is called prediction function to determine an empirical risk
measure based on training data.

Figure 6: A fully-connected-Artificial Neural Network
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