A Target Oriented Averaged Search Trajectory and its Applications in Artificial Neural Networks

Angel Rojas ´ Ph.D. Andreas Griewank

Yachay Tech

28th May 2019

Outline

- Artificial Neural Networks (ANN)
	- Optimization task and learning algorithms
	- The optimizer's house of horror.
- Global Optimization (Nonsmooth)
	- Target Oriented Average Search Trajectory (TOAST)
	- Successive Abs-Linear Global Optimization (SALGO)
- Results and comparison
- **•** Conclusions

Optimization task and learning algorithms

$$
\min_{W} \phi(W) \equiv \frac{1}{m} \sum_{k=1}^{m} |f(W, x_k) - y_k|
$$

over a training set of m pairs $(x_k, y_k) \in \mathbb{R}^{n+1}$

Learning Algorithms

- Steepest Descent, i.e., Backpropagation
- **Gradient Momemtum Variants.**
- Stochastic Gradient Method

Specially, for SG choice of stepsize is crucial but very difficult.

House of Horrors

A single-layer case with constant output weighting $\rho \in \{-1,1\}^d$ and hinge activation (ReLU) can be mathematically described by the predictor:

$$
f(W, x) \equiv p^{\top} \max(0, W_{1...n}x + W_{n+1}) \text{ with } W \in \mathbb{R}^{d(n+1)}
$$

• Nonsmoothness

At all isolated local and at least one global optimizer $\phi(W)$ is not differentiable.

Multi-modality

There may be local minima with values high above the globally minimal value.

Zero-PLateau

For large negative W_{n+1} the function $f(W, x)$ and the gradient $\nabla \phi(W)$ w.r.t. W and x vanish identically.

Example with two variable weights

Figure 1: One-layer ANN model and its contours

Global Optimization (Nonsmooth)

Most optimization methods move down hill to reach a local minimizer or possibly a saddle point.

To find the lowest of these local minimizers x_* is generally a very difficult problem.

$$
\varphi(x_*) \leq \varphi(x), \forall x \in \mathcal{D}
$$

Space covering techniques

If $x \in \mathbb{R}^n$, $n \geq 2$, these methods tend to exceed computational limitation as they have to sample the function on a set of points that is sufficiently dense to cover the search area.

Non-rigorous techniques

- Stochastic/Statistics-based searches
- Deterministic, but heuristic searches (many parameters).
- Hybrid methods

 Δ ngel Adrián Rojas Jiménez (Yachay Tech) [TOAST and its Application in ANN](#page-0-0) 28th May 2019 6/20

Target Oriented Average Search Trajectory (TOAST)

$$
\ddot{x}(t) = -\left(I - \frac{\dot{x}(t)\dot{x}(t)^{\top}}{\|\dot{x}(t)\|^2}\right) \frac{\nabla \phi(x(t))}{[\phi(x(t)) - c]}, \text{ with } \|\dot{x}(t_0)\| = 1
$$

- Idea: Adjustment of current search direction $\dot{x}(t)$ towards the steepest descent direction.
- The closer the current function value $\phi(x(t))$ is to the target level c, the more rapidly the direction is adjusted.
- In the limit when $\phi(x(t))$ tends to c the trajectory reduces to steepest descent.
- On homogeneous objectives, local minimizers below c are accepted and local minimizers above the target level are passed by.

Closed form solution on prox-linear function

Theorem. If $\varphi(x) = g^{\top}x + b + \frac{g}{2}$ $\frac{q}{2}||x||_2^2$

$$
\ddot{x}(t) = -\left[I - \dot{x}(t) \dot{x}(t)^{\top}\right] \frac{\nabla \varphi(x(t))}{\left[\varphi(x(t)) - c\right]}
$$

implies

$$
x(t) = x_0 + \frac{\sin(\omega t)}{\omega}\dot{x}_0 + \frac{1 - \cos(\omega t)}{\omega^2}\ddot{x}_0
$$
 (1)

and

$$
\varphi(x(t)) = \varphi_0 + \left[(g + qx_0)^\top \dot{x}_0 \right] \frac{\sin(\omega t)}{\omega} + \left[q - \omega^2 (\varphi_0 - c) \right] \frac{(1 - \cos(\omega t))}{\omega^2} (2)
$$

where

$$
\ddot{x}_0 = -\left[I - \dot{x}_0 \dot{x}_0^\top\right] \frac{\left(g + q x_0\right)}{\left(\varphi_0 - c\right)} \quad \text{and} \quad \omega = \|\ddot{x}_0\| \; . \tag{3}
$$

 Δ ngel Adrián Rojas Jiménez (Yachay Tech) [TOAST and its Application in ANN](#page-0-0) 28th May 2019 8 / 20

Theorem[\[3\]](#page-15-0),[\[4\]](#page-15-1)

• Every function $\varphi(x)$ that is evaluated by a sequence of smooth elemental functions and piecewise linear elements like abs, min, max can be approximated near a reference point \hat{x} by a piecewise-linear function $\Delta\varphi(\mathring{x}; \Delta x)$ s.t.

$$
|\varphi(\mathring{x} + \Delta x) - \varphi(\mathring{x}) - \Delta \varphi(\mathring{x}; \Delta x)| \leq \frac{q}{2} ||\Delta x||^2
$$

2 The function $y = \Delta \varphi(\hat{x}; x - \hat{x})$ can be represented in Abs-Linear form

$$
z = d + Zx + Mz + L|z|,
$$

$$
y = \mu + a^{\top}x + b^{\top}z + c^{\top} |z|
$$

where Z and L are strictly lower triangular matrices s.t. $z = z(x)$. This form can be generated automatically by Algorithmic Differentiation and it allows the computational handling of $\Delta\varphi$ in and between the polyhedra

$$
P_{\sigma} = cl\{x \in \mathbb{R}^n; \text{sgn}(z(x)) = \sigma\}
$$

SALGO-TOAST algorithm

- **1** Form piecewise linearization $\Delta\varphi$ of objective φ at the current iterate \hat{x} and estimate the proximal coefficient q, set $x_0 = \hat{x}$,
- **2** Select the initial tangent x_0 and $\sigma = \text{sgn}(z(x_0))$.
- Compute and follow circular segment $x(t)$ in P_{σ} .
- \bullet Determine minimal t_{*} where $\varphi(x(t_{*})) = c$ or $x_{*} = x(t_{*})$ lies on the boundary of P_{σ} with some $P_{\tilde{\sigma}}$.
- **5** If $\varphi(x_*) \leq c$, lower c or go to step (1) with $\hat{x} = x_*$ or terminate.
- **6** Else, set $x_0 = x_*$, $\dot{x}_0 = \dot{x}(t_*)$, $\sigma = \tilde{\sigma}$ and continue with step (3).

TOAST path

Figure 2: Reached minimum value 0.591576 and target level 0.519984

Griewank function in 2D with 10 intermediate nodes and 20 training data points

Figure 3: Stochastic Gradient Method implementation with minimum 0.077943

Figure 4: Gradient descent implementation

Figure 5: TOAST-SALGO with minimum 0.037252 and target level 0.031233

Remain Tasks and further development

- Refining targeting and restarting strategy.
- 2 Extension to "deep learning"
- **3** Application to standard problem MNIST
- Matrix based implemmentation for HPC
- ⁵ Explotation of low-rank updates in polyhedral transition.
- ⁶ Sample-wise version in Stochastic Gradient fashion

References

- A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.", 2017.
- 67 A. Griewank, "On stable piecewise linearization and generalized algorithmic differentiation," Optimization Methods and Software, vol. 28, no. 6, pp. 1139–1178, 2013.
- A. Griewank and A. Walther, "Finite convergence of an active signature method to local minima of piecewise linear functions," Optimization Methods and Software, pp. 1–21, 2018.
- A. Griewank, A. Walther, and P. N. SPP1962, "Priority programme 1962."

Thank You.

 Δ ngel Adrián Rojas Jiménez (**Yachay Tech)** [TOAST and its Application in ANN](#page-0-0) 28th May 2019 17 / 20

Introduction and Motivation

- Artificial Neural Network yields nonsmooth and, in general, nonconvex functions w.r.t. weights, shifts, and input data.
- These functions can be written in Abs-Normal Form (ANF) and, consequently, Abs-Linear Form (ALF). The latter has a uniform proximal quadratic term $\|\frac{q}{2}\Delta x\|^2, q>0$ w.r.t. original model.
- Nonsmooth optimality conditions are NP-hard to satisfy and there is no stopping criteria in the nonconvex case.
- A common used ANN activation function is hinge function (a.k.a. ReLU), a suitable piecewise-linear function for ANF.
- Formulation of a global nonsmooth optimization method based on a Target Oriented Average Search Trajectory and Successive Abs-Linearization routine, namely, TOAST and SALGO, respectively.

Tentative comparison

- TOAST-SALGO achieves lower minima than SGM and GD implementations
- SGM and GD seems to get stuck in local minima, i.e., zigzagging and V-shaped valley.
- TOAST-SALGO solves the zig-zagging problem, climbing up and rolling down to achive a new target level.
- The singularities of gradient and Hessian is a problematic in SGM and GD.

Artificial Neural Networks (ANN)

"Machine Learning is the science (and art) of programming computers so they can learn from data." [\[1\]](#page-15-3)

ANN is a data-based model in order to predict data on basis of previous training on similar data.

Such a model is called prediction function to determine an empirical risk measure based on training data.

Figure 6: A fully-connected-Artificial Neural Network