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High Dimensional Quadrature by QMC  YACHRY

To approximate improper integral I f = / f(x)p(x)dx with d > 50
R1+d
define sample sequence X = {x(}?2; and set
1 n
If~ Q,f = = f(xx
- kz::l (xk)

For true random choice X = Monte Carlo (MC) w.r.t. probability density p
E|Quf —1f] ~ 1/vn
Not so random choice X = Quasi-Monte Carlo (QMC) leads to
E|Qnf —If] ~ 1/n(17%)

where § > 0 depends on method and function smoothness.
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Not so smooth Example

Path-dependent option pricing problems need high-dimensional numerical
integration, but don't fit the theory: options become worthless if the final
asset value is below the strike price K.

So the integrand in the expected value of the payoff looks like

f = max{value — K, 0}.

Because of the max function, the integrand does not lie in any mixed
derivative function space, as the theory assumes for both Quasi-Monte
Carlo (QMC) and sparse grid methods.

Andreas Griewank et al Smoothing by Preintegration May 31, 2019 RS:ML Bogota



The smoothing Mechanism

The following 2-dimensional example is a simplified model of the Asian
option pricing problem, with 1 + d = 2. We call the variables x and y
instead of xg and x;.

f(x,y) = max(¢(x,y),0) where o(x,y)=e"—y,
Thus %‘f =eX >0, and ¢ = o0 as x — oo. Consequently:

/ max(e* — y,0) exp (—%xz)dx

= /Ioo (e —vy) exp(—%x2)dx.

ogy

which is a perfectly smooth function in y.
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Integrands with Kinks or Jumps

Consider

/E/ (f(x0, x)p(x0) dxo) pa(x)dx with x € R?
R1+d

where
f(x0,x) = max(0,68(x0,x)) = 6(xo,x)ind(0(x0, X))

or more generally we may also allow jumps by setting

f(x0,x) = 6(x0,x)ind(¢(x0,x))

with C" smooth @ and switching function ¢ : R**9 — R.
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Elimination of zeroth variable

Monotonicity assumption w.r.t. xg
Dop(x0,x) = %go(xo,x) >0 and lim ¢(x,x) = oo

X0 Xo—00

implies existence of boundary function

Y(x) = sup{xo € R:¢(x0,x) =0} : R = {—c0} UR

Lemma

1 is (extended) continuous and belongs to C"(U/) on open
U={xeR?: (x)>—o0}

with closed complement U = U°.
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Projection Operator

Consequence of Fubini

If = /R (Pub)(x)pa(x) dx

where
(Put)) = [ Flo. X))k
= /d)( )H(XO,X)/J(Xo)dXo D Livd1pg = Ldipy
Idea

Sample x € X C (Rd)n and evaluate Projection Py6(x) € R 'exactly’.
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Desirable Properties of Projection

variance reduction, i.e. o%(Pyf) = o?(f)(1 — Sobo(f)?) v
continuous differentiability, i.e. P, € C"(RY) v/

bounded Sobolev norm, i.e. Py € Wy, , v
membership in tensor space, i.e. Py € W¢ (V)

boundedness in suitable norm, i.e. |||Py 0||]> < cy||0]|-
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YACHAY

Proof of variance reduction

For a function f € L1142 the ANOVA decomposition is

»P1l+d!

f(x) = Z fu(xu) with Xy = (Xj)jeu
WCD={0,1.2,....d}

Pyfy =0 if 0€u, whereas Pyf,=1f if 0¢u.

Since f,, and f, are Ly, -orthogonal if u # b we get

*(f) = > o*(f)

0#uCD
S - (A TN STt
0ACD\(0) {o}eucp
02(P,6) Sob2(1)o2(F)
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YACHAY

Examination of Smoothness TECH

By extended Leibniz for x € U
DiPyb(x) = Py(Dit)(x) + 0(x)(x), x) Dt (x)p(¥)(x))
where by implicit function theorem
Dip(x) = —Diep(1h(x), x))/ Do(t(x), x)

Repeated differentiation [see (griebel, kuo, sloan)] yields terms of the form

b = (LT LD ) ($(x)
- [(Doi) ($(x), x)]°

for suitable integers a, b, ¢, 7 depending on r.

2N 0 ()

Key assumption: x — x, U4 = h(x) — 0 (1)
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Example with nonsmooth boundary 6 U/ with 1 + d = 2

©(x0,x) = exp(xp) — x'sin(1/x4) with z, = max(0,z)
—
xo = P(x) = mlog(xy) + log(sin(1/x4)+) : R — {—oc} UR

Regular domain:

Complement:
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Nonsmooth Boundary Representation

L 10.45

10.256
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Lemma
Suppose g € C'(U) for some open domain U C RY and that for all

a € N§ with |a| < r
Usx—-x.¢U = D%(x)—0.

Then setting g(x) = 0 for x ¢ U we obtain g € C"(R") with D*(x) =0
for all x ¢ U.

Proof.

By induction on a.. Segments {x, + Tej}o<r<# intersect U on countable
union of open interval, mean value theorem can be applied to D%g on last
one or in limit to show D%g(x. + Te;) = o(T). O
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YACHAY

Inheritence of Differentiablity TECH

Proposition
Provided (1) holds for all relevant h(x) then

0,0 € C'(R¥™9),po € C"H(R) = Py0c C(RY)

(By Lemma applied to g = Py, — P_ which vanishes identially on U,..)
Lemma (Hernan: (1) holds if)

(D76)(x0, ) I (D™ )00 )] ()
[(Dow)(xo, B (x0)| < Eo(x0)E(x), (2)

where Ey, E are positive functions satisfying
m Ey is bounded and Ey(xp) — 0 as xo — —o0,
m E is locally bounded and p-integrable.
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YACHAY

Sufficient Condition (Leovéy) TECH

(D70)(x0, x) TT2-1 (D" ) (0, x)
[(Dow)(x0, x)]P

L)) < Eol0) E()

where Ey, E are positive functions satisfying
m Ey is bounded and Ep(xp) — 0 as xo — —o0,
m E is locally bounded and p-integrable with respect to p.

Can be verified for Asian and Binary options due to Gaussian probability
distributions.

Andreas Griewank et al Smoothing by Preintegration May 31, 2019 RS:ML Bogota



Inheritence of Integrability

Sobolev space
with smoothness parameter 0 < r € Ny

Wiy = {f : D°F € Lpp,(RY) forall |a| <r},

or 'mixed’ variant with o <r € Ng
Theorem: Under above differentability assumption

RS W{-i-d,p,(ppo) — P¢9 € W,r,,p’p

provided (griebel, kuo, sloan) for relevant integers a, b, ¢, 7 depending on r
we have h(x) € L4 ,,. Follows from Hernan's Lemma, which applies for
Asian and Binary options due to Gaussian probability distributions.
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YACHAY

Asian Option TECH

Example: BINARY arithmetic Asian option, with d + 1 = 256 time steps.
The expected value of the payoff is then a 256-dimensional Gaussian
integral

o2
E(P11d)= e’ /RHd 5(0 Zexp ((r - ?> ti + UYi>

. o2 exp(—3y' T 1y)
ind ( Zexp (( 2 ) i +Uy') K) J(27)1+9) det(x)

where ¥ € R1t9 x R1+4 s the covariance matrix for the Brownian motion,

Z;J = min(t,-, tJ)
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YACHAY
A TECH

Factorizing the covariance matrix - PC

As usual we factorise ¥ = AAT, and make the change of variable y = Ax,
so that

y = ly=x"x

Specifically we make the PCA choice for A, i.e.

A= [\/A_ml,---,\/)\_dﬁd]’

where A1,..., Ay are eigenvalues of ¥ in decreasing order, and n1,...,nq4
are the corresponding eigenvectors.
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Asian Option PCA D
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Binary Asian Option PCA
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Asian Option Brownian Bridge YACHAY
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Conclusion and Outlook

m Smooth simple kinks or jumps in one variable can be eliminated by
preintegration operator Py,.

m Varience is reduced by Sobol Index, yielding benefits for MC and QMC

m P, maintains Differentiability and (mathematical) Integrability under
certain (strong) assumptions .

Boundedness of Py, remains to be shown in suitable functional setting.

In principle nested preintegration possible in presence of intersecting
kinks and jumps.

Andreas Griewank et al Smoothing by Preintegration May 31, 2019 RS:ML Bogota



Path Integral Quantization of the An- & Harmonic

Oscillator

class. eucl. Action: S = /dt [%x(t)z + V(x(t))
P.l. quantization: Z = /D[x(t)]e_s[xv*]
2

2
harmonic Oscillator:  V/(x) = ’%xz ;o opc>0

2
anharmonic Oscillator:  V/(x) = %xz +xxts P eER A>0
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Structure of the action

generally the lattice action can be written in the form

1 d
S= ExtC_lx—i— ard x'

i=1
u -+ 0 ... 0 -3
C—l_ﬂ 0 0
== ;
0 o - -1
-0 0 -1 wu
! !
a2,u2
14+ 7
u + M (3)

m C is covariance matrix of the variables x; if A =0
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observable of the harmonic oscillator:

[ O(x) e 2 xdx (c=Cum) 1(O(x))
J e 2X" Clxgy a I(1)

(0)

observable of the anharmonic oscillator:

f e_%XTCdX_aZiXi‘ldx B I(W(X))

1
W (x) = exp —ixt(C*1 — Cihx — aZx,-4

x eféxTC’leaZixf % X X
(0) = J O(x) dx _ 1(0(x)W(x))

( Csim # C because if 4> < 0= Cgim # 0)
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servables

m X2=13, X

= X4 = %Zf]:l x}

m Ep = 2X2 4 3AX4 + 2

m Correlator: C(t) = %27:1 XiXjtt/a (not implemented so far)
Parameters:

m — Blackboard

u}

)
I
il
it
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Warm-up Exercise: Harmonic Oscillator

Error of <x?> for the Harmonic Oscillator

3 | m trivial, but we
3 demonstrated
& applicability to
v .
5 physical problems
— [Te}
E T m three digits
" " I;AC more accuracy
C_ .
A Rand. QMC with QMC at
|77 10N N =5 x 10°
@ 1= 10/N i=-5:5_
g T — T I
27 210 213 216 219

Number of samples — N
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Anharmonic Oscillator, MC points, O = Ey, d = 100

mc_d100 dEO linear fit

Fit formula:

log A(Ep) = log C + arlog N

s m o= —-0.50(1)
g m log C = 2.84(12)
. X* =4.326063; dof =2
N
log(N)

u}
)
I
il
it
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Anharmonic Oscillator,

log( dx2 )

mc_d100 dx2 linear fit

- X*=1.541091; dof =2

log(N)

MC points, O = X?, d =

Fit formula:

IogA(Xz) =logC+ alogN

m o= -052(1)
m log C = 0.94(11)

u}
)
I
il
it
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Anharmonic Oscillator,

log( dx2 )

-10

gmc_hernan_d100 dx2 linear fit

X*=7.896798; dof =6

log(N)

QMC points, O = X?, d = 100

Fit formula:

IogA(Xz) =logC+ alogN

ma=-0.76(1)
m log C =2.0(1)

u}
)
I
il
it
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Anharmonic Oscillator,

log( dx4 )

gmc_hernan_d100 dx4 linear fit

X?=13.17595; dof =6

log(N)

QMC points, O = X%, d = 100

Fit formula:

IogA(Xz) =logC+ alogN

ma=-0.76(1)
m log C =4.0(1)

u}
)
I
il
it
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Anharmonic Oscillator, QMC points, O = Ey, d = 100

gmc_hernan_d100 dEO linear fit

Fit formula:

IogA(Xz) =logC+ alogN

log( dEO )
5

ma=0.74(1)
m log C =4.0(1)

X?=8.201369; dof =6 ]
T T T T T T T
9 10 11 12 13 14 15
log(N)

u}
)
I
il
it
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Anharmonic Oscillator, QMC points, O = X?, d = 1000

gmc_hernan_d1000 dx2 linear fit

Fit formula:

IogA(Xz) =logC+ alogN

log( dx2 )

ma=—0.76(1)
N m log C =2.0(2)

X =4.963803; dof =4

log(N)
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Anharmonic Oscillator,

log( dx4 )

-5.0 -4.5 -4.0 -35 -3.0 -25

-55

gmc_hernan_d1000 dx4 linear fit

X*=5.663613; dof =4

log(N)

QMC points, O = X*, d = 1000

Fit formula:

IogA(Xz) =logC+ alogN

ma=—-0.75(1)
m log C =4.0(2)

u}
)
I
il
it
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Anharmonic Oscillator,

log( dEO )

gmc_hernan_d1000 dEO linear fit

¥ =4.046288; dof = 4

log(N)

QMC points, O = Ey, d = 1000

Fit formula:

IogA(Xz) =logC+ alogN

B a=—0.74(1)
m log C =4.0(2)

u}
)
I
il
it
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