High dimensional integration of kinks and jumps – smoothing by preintegration

Andreas Griewank and Hernan Leövey
with thanks to co-authors
F. Kuo and I. Sloan

May 31, 2019 RS:ML Bogotá

Yachay Tech University, Ecuador

- 1 Introduction and Motivation
- **2** Preintegration = Projection
- 3 Examination of QMC Amenability
- 4 Numerical Example
- 5 Conclusion and Outlook
- 6 Extension to Lattice Systems

High Dimensional Quadrature by QMC

To approximate improper integral
$$If = \int\limits_{\mathbb{R}^{1+d}} f(x)\rho(x)dx$$
 with $d \geq 50$ define sample sequence $X = \{x_k\}_{k=1}^{\infty}$ and set
$$If \approx Q_n f \equiv \frac{1}{n} \sum_{k=1}^n f(x_k)$$

For true random choice X = Monte Carlo (MC) w.r.t. probability density ρ

$$\mathbb{E}|Q_nf - If| \sim 1/\sqrt{n}$$

Not so random choice X = Quasi-Monte Carlo (QMC) leads to

$$\mathbb{E}|Q_nf-If| \sim 1/n^{(1-\delta)}$$

where $\delta \geq 0$ depends on method and function *smoothness*.

Not so smooth Example

Path-dependent option pricing problems need high-dimensional numerical integration, but don't fit the theory: options become worthless if the final asset value is below the **strike price** K.

So the integrand in the expected value of the payoff looks like

$$f = \max{\{\text{value} - K, 0\}}.$$

Because of the max function, the integrand does not lie in any mixed derivative function space, as the theory assumes for both Quasi-Monte Carlo (QMC) and sparse grid methods.

The smoothing Mechanism

The following 2-dimensional example is a simplified model of the Asian option pricing problem, with 1+d=2. We call the variables x and y instead of x_0 and x_1 .

$$f(x, y) = \max(\varphi(x, y), 0)$$
 where $\varphi(x, y) = e^x - y$,

Thus $\frac{\partial \varphi}{\partial x} = e^x > 0$, and $\varphi \to \infty$ as $x \to \infty$. Consequently:

$$\int_{-\infty}^{\infty} \max(e^{x} - y, 0) \exp(-\frac{1}{2}x^{2}) dx$$

$$= \int_{\log y}^{\infty} (e^{x} - y) \exp(-\frac{1}{2}x^{2}) dx.$$

which is a perfectly smooth function in y.

Some related publications

- M. Griebel, F. Kuo, I. Sloan, Math Comp 2013 and Note (2016)
- 2 X. Wang (2015)
- 3 P. Glasserman and J. Staum (2001)
- 4 N. Achtsis, R. Cools, and D. Nuyens (2013)
- 5 D. Nuyens and B. J. Waterhouse (2012)
- **6** J.H. Chan and M. Joshi (2015)
- R. Tempone
- 8 Ch. Bayer
- M. Siebenlogen
- <u>10</u> ...

Integrands with Kinks or Jumps

Consider

$$I \equiv \int_{\mathbb{R}^{1+d}} (f(x_0, x)\rho(x_0) dx_0) \rho_d(x) dx \quad \text{with} \quad x \in \mathbb{R}^d$$

where

$$f(x_0,x) = \max(0,\theta(x_0,x)) = \theta(x_0,x)\operatorname{ind}(\theta(x_0,x))$$

or more generally we may also allow jumps by setting

$$f(x_0,x) = \theta(x_0,x)\operatorname{ind}(\varphi(x_0,x))$$

with C^r smooth θ and switching function $\varphi : \mathbb{R}^{1+d} \mapsto \mathbb{R}$.

Elimination of zeroth variable

Monotonicity assumption w.r.t. x_0

$$D_0 \varphi(x_0, x) \equiv \frac{\partial}{\partial x_0} \varphi(x_0, x) > 0$$
 and $\lim_{x_0 \to \infty} \varphi(x_0, x) = \infty$

implies existence of boundary function

$$\psi(x) = \sup\{x_0 \in \mathbb{R} : \varphi(x_0, x) = 0\} : \mathbb{R}^d \to \{-\infty\} \cup \mathbb{R}$$

Lemma

 ψ is (extended) continuous and belongs to $\mathcal{C}^r(\mathcal{U})$ on open

$$\mathcal{U} \equiv \{ x \in \mathbb{R}^d : \psi(x) > -\infty \}$$

with closed complement $\mathcal{U}_+ = \mathcal{U}^c$.

Projection Operator

Consequence of Fubini

$$If \equiv \int_{\mathbb{R}^d} (P_{\psi}\theta)(x) \rho_d(x) \, dx$$

where

$$(P_{\psi}\theta)(x) \equiv \int_{-\infty}^{\infty} f(x_0, x) \rho(x_0) dx_0$$
$$= \int_{\psi(x)}^{\infty} \theta(x_0, x) \rho(x_0) dx_0 : \mathcal{L}_{1+d, 1, \rho_{d+1}} \to \mathcal{L}_{d, 1, \rho_d}$$

Idea

Sample $x \in X \subset \left(\mathbb{R}^d\right)^n$ and evaluate Projection $P_\psi \theta(x) \in \mathbb{R}$ 'exactly'.

Desirable Properties of Projection

- variance reduction, i.e. $\sigma^2(P_{\psi}\theta) = \sigma^2(f)(1 Sob_0(f)^2)$ ✓
- lacksquare continuous differentiability, i.e. $P_{\psi} heta \in \mathcal{C}^r(\mathbb{R}^d)$ \checkmark
- bounded Sobolev norm, i.e. $P_{\psi}\theta \in \mathcal{W}^r_{d,p,
 ho_d}$ ✓
- lacksquare membership in tensor space, i.e. $P_{\psi} heta \in \mathcal{W}^d_1$ (\checkmark)
- boundedness in suitable norm, i.e. $|||P_{\psi} \theta|||_{?} \le c_{\psi} ||\theta||_{?}$

Proof of variance reduction

For a function $f \in \mathcal{L}_{1+d,2,\rho_{1+d}}$, the ANOVA decomposition is

$$f(x) = \sum_{\mathfrak{u} \subseteq \mathcal{D} \equiv \{0,1,2,\ldots,d\}} f_{\mathfrak{u}}(x_{\mathfrak{u}}) \quad \text{with} \quad \mathbf{x}_{\mathfrak{u}} = (x_j)_{j \in \mathfrak{u}}$$

 \Longrightarrow

$$P_{\psi}f_{\mathfrak{u}}=0\quad \text{if}\quad 0\in \mathfrak{u},\quad \text{whereas}\quad P_{\psi}f_{\mathfrak{u}}=f_{\mathfrak{u}}\quad \text{if}\quad 0\notin \mathfrak{u}.$$

Since $f_{\mathfrak{u}}$ and $f_{\mathfrak{v}}$ are $L_{2,\rho_{1+d}}$ -orthogonal if $\mathfrak{u} \neq \mathfrak{v}$ we get

$$\begin{array}{lcl} \sigma^2(f) & = & \displaystyle \sum_{\emptyset \neq \mathfrak{u} \subseteq \mathcal{D}} \sigma^2(f_{\mathfrak{u}}) \\ & = & \displaystyle \sum_{\emptyset \neq \mathfrak{u} \subseteq \mathcal{D} \setminus \{0\}} \sigma^2(f_{\mathfrak{u}}) + \underbrace{\sum_{\{0\} \in \mathfrak{u} \subseteq \mathcal{D}} \sigma^2(f_{\mathfrak{u}})}_{Sob_0^2(f)\sigma^2(f)} \end{array}$$

Examination of Smoothness

By extended Leibniz for $x \in \mathcal{U}$

$$D_k P_{\psi} \theta(x) = P_{\psi}(D_k \theta)(x) + \theta(\psi(x), x) D_k \psi(x) \rho(\psi(x))$$

where by implicit function theorem

$$D_k\psi(x) = -D_k\varphi(\psi(x),x))/D_0(\psi(x),x)$$

Repeated differentiation [see (griebel, kuo, sloan)] yields terms of the form

$$h(x) \equiv \frac{(D^{\tau}\theta)(\psi(x),x) \prod_{i=1}^{s} [(D^{\alpha^{(i)}}\varphi)(\psi(x),x)]}{[(D_0\varphi)(\psi(x),x)]^b} \rho^{(c)}(\psi(x))$$

for suitable integers a, b, c, τ depending on r.

Example with nonsmooth boundary $\delta \mathcal{U}$ with 1+d=2

$$\varphi(x_0, x) = \exp(x_0) - x_+^m \sin(1/x_+) \quad \text{with} \quad z_+ \equiv \max(0, z)$$

$$\Longrightarrow$$

$$x_0 = \psi(x) = m \log(x_+) + \log(\sin(1/x_+)_+) : \mathbb{R} \to \{-\infty\} \cup \mathbb{R}$$

Regular domain:

$$\mathcal{U} = \frac{1}{\pi} \bigcup_{k \in N} \left(\frac{1}{2k+1}, \frac{1}{2k} \right) \cup \left(\frac{1}{\pi}, \infty \right)$$

Complement:

$$\mathcal{U}_+ = (-\infty, 0] \cup \frac{1}{\pi} \bigcup_{k \in N} \left[\frac{1}{2k}, \frac{1}{2k-1} \right]$$

Nonsmooth Boundary Representation

Lemma

Suppose $g \in C^r(U)$ for some open domain $U \subset \mathbb{R}^d$ and that for all $\alpha \in N_0^d$ with $|\alpha| \leq r$

$$U \ni x \to x_* \not\in U \quad \Rightarrow \quad D^{\alpha}g(x) \to 0 .$$

Then setting g(x) = 0 for $x \notin U$ we obtain $g \in C^r(\mathbb{R}^n)$ with $D^{\alpha}(x) = 0$ for all $x \notin U$.

Proof.

By induction on α . Segments $\{x_* + \tau e_i\}_{0 \le \tau \le \bar{\tau}}$ intersect \mathcal{U} on countable union of open interval, mean value theorem can be applied to $D^{\alpha}g$ on last one or in limit to show $D^{\alpha}g(x_* + \bar{\tau}e_i) = o(\bar{\tau})$.

Proposition

Provided (1) holds for all relevant h(x) then

$$\theta, \varphi \in C^r(\mathbb{R}^{1+d}), \rho_0 \in C^{r-1}(\mathbb{R}) \implies P_{\psi}\theta \in C^r(\mathbb{R}^d)$$

(By Lemma applied to $g=P_{\psi}-P_{-\infty}$ which vanishes identially on $U_+.)$

Lemma (Hernan: (1) holds if)

$$\left| \frac{(D^{\eta}\theta)(x_0, x) \prod_{i=1}^{a} [(D^{\gamma^{(i)}}\varphi)(x_0, x)]}{[(D_0\varphi)(x_0, x)]^b} \rho^{(c)}(x_0) \right| \leq E_0(x_0) E(x), \quad (2)$$

where E_0 , E are positive functions satisfying

- E_0 is bounded and $E_0(x_0) \rightarrow 0$ as $x_0 \rightarrow -\infty$,
- E is locally bounded and p-integrable.

Sufficient Condition (Leovëy)

$$\left| \frac{(D^{\tau}\theta)(x_0,x) \prod_{i=1}^{a} [(D^{\alpha^{(i)}}\varphi)(x_0,x)]}{[(D_0\varphi)(x_0,x)]^b} \rho_0^{(c)}(x_0) \right| \leq E_0(x_0) E(x)$$

where E_0 , E are positive functions satisfying

- E_0 is bounded and $E_0(x_0) \to 0$ as $x_0 \to -\infty$,
- **E** is locally bounded and *p*-integrable with respect to ρ .

Can be verified for Asian and Binary options due to Gaussian probability distributions.

Sobolev space

with smoothness parameter $0 \le r \in N_0$

$$\mathcal{W}^r_{d,p,
ho_d} = \left\{ f \, : \, D^{lpha} f \in \mathcal{L}_{p,
ho_d}(\mathbb{R}^d) \quad ext{for all} \quad |lpha| \leq r
ight\},$$

or 'mixed' variant with $\alpha \leq \mathbf{r} \in \mathbf{N}_0^d$

Theorem: Under above differentiability assumption

$$\theta \in \mathcal{W}^r_{1+d,p,(\rho \, \rho_0)} \implies P_{\psi} \theta \in \mathcal{W}^r_{n,p,\rho}$$

provided (griebel, kuo, sloan) for relevant integers a,b,c, au depending on r we have $h(x) \in \mathcal{L}_{d,p,\rho_d}$. Follows from Hernan's Lemma, which applies for Asian and Binary options due to Gaussian probability distributions.

Asian Option

Example: BINARY arithmetic Asian option, with d+1=256 time steps. The **expected value of the payoff** is then a 256-dimensional Gaussian integral

$$\mathbb{E}(\mathcal{P}_{1+d}) = e^{-rT} \int_{\mathbb{R}^{1+d}} \frac{S(0)}{d} \sum_{i=0}^{d} \exp\left(\left(r - \frac{\sigma^2}{2}\right) t_i + \sigma y_i\right)$$

$$\times \operatorname{ind}\left(\frac{S(0)}{d} \sum_{i=0}^{d} \exp\left(\left(r - \frac{\sigma^2}{2}\right) t_i + \sigma y_i\right) - K\right) \frac{\exp(-\frac{1}{2}\mathbf{y}^{\top} \Sigma^{-1}\mathbf{y})}{\sqrt{(2\pi)^{(1+d)}} \det(\Sigma)}$$

where $\Sigma \in \mathbb{R}^{1+d} imes \mathbb{R}^{1+d}$ is the covariance matrix for the Brownian motion,

$$\Sigma_{i,j} = \min(t_i, t_j).$$

Factorizing the covariance matrix - PCA YACHAY RECH

As usual we factorise $\Sigma = AA^{\top}$, and make the change of variable $\mathbf{y} = A\mathbf{x}$, so that

$$\label{eq:sum_equation} \mathbf{y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{y} = \mathbf{x}^{\top} \mathbf{x}.$$

Specifically we make the PCA choice for A, i.e.

$$A = \left[\sqrt{\lambda_1}\eta_1, \dots, \sqrt{\lambda_d}\eta_d\right],\,$$

where $\lambda_1, \ldots, \lambda_d$ are eigenvalues of Σ in decreasing order, and η_1, \ldots, η_d are the corresponding eigenvectors.

Asian Option PCA

Binary Asian Option PCA

Asian Option Brownian Bridge

Conclusion and Outlook

- Smooth simple kinks or jumps in one variable can be eliminated by preintegration operator P_{ψ} .
- Varience is reduced by Sobol Index, yielding benefits for MC and QMC
- $lackbox{ }P_{\psi}$ maintains Differentiability and (mathematical) Integrability under certain (strong) assumptions .
- \blacksquare Boundedness of P_{ψ} remains to be shown in suitable functional setting.
- In principle nested preintegration possible in presence of intersecting kinks and jumps.

Path Integral Quantization of the An- & Harmonic Oscillator

class. eucl. Action:
$$S=\int dt \left[\frac{M}{2}\dot{x}(t)^2+V(x(t))\right]$$
 P.I. quantization: $Z=\int \mathcal{D}[x(t)]e^{-S[x,\dot{x}]}$ harmonic Oscillator: $V(x)=\frac{\mu^2}{2}x^2\;;\quad \mu^2>0$ anharmonic Oscillator: $V(x)=\frac{\mu^2}{2}x^2+\lambda x^4\;;\quad \mu^2\in\mathbb{R},\;\lambda>0$

Structure of the action

generally the lattice action can be written in the form

$$S = \frac{1}{2}x^{t}C^{-1}x + a\lambda \sum_{i=1}^{d} x_{i}^{4}$$

$$C^{-1} = \frac{2M}{a} \begin{pmatrix} u & -\frac{1}{2} & 0 & \dots & 0 & -\frac{1}{2} \\ -\frac{1}{2} & \ddots & \ddots & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \ddots & \ddots & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \dots & 0 & -\frac{1}{2} & u \end{pmatrix}$$

$$u = 1 + \frac{a^{2}\mu^{2}}{2M}$$
(3)

• C is covariance matrix of the variables x_i if $\lambda = 0$

May 31, 2019 RS:ML Bogotá

observable of the harmonic oscillator:

$$\langle O \rangle = \frac{\int O(x) e^{-\frac{1}{2}x^{T}C^{-1}x} d\mathbf{x}}{\int e^{-\frac{1}{2}x^{T}C^{-1}x} d\mathbf{x}} \stackrel{(C=C_{sim})}{=} \frac{I(O(x))}{I(1)}$$

observable of the anharmonic oscillator:

$$\langle O \rangle = \frac{\int O(x) e^{-\frac{1}{2}x^{T}C^{-1}x - a\sum_{i}x_{i}^{4}} d\mathbf{x}}{\int e^{-\frac{1}{2}x^{T}C^{-1}x - a\sum_{i}x_{i}^{4}} d\mathbf{x}} = \frac{I(O(x)W(x))}{I(W(x))}$$
(4)

$$W(\mathbf{x}) = \exp{-\frac{1}{2}\mathbf{x}^{t}(C^{-1} - C_{sim}^{-1})\mathbf{x} - a\sum_{i} x_{i}^{4}}$$
(5)

(
$$C_{sim} \neq C$$
 because if $\mu^2 < 0 \Rightarrow C_{sim} \not> 0$)

Observables

$$X^2 = \frac{1}{d} \sum_{i=1}^d x_i^2$$

$$X^4 = \frac{1}{d} \sum_{i=1}^{d} x_i^4$$

$$E_0 = \mu^2 X^2 + 3\lambda X^4 + \frac{\mu^4}{16}$$

■ Correlator: $C(t) = \frac{1}{d} \sum_{i=1}^{d} x_i x_{i+t/a}$ (not implemented so far)

Parameters:

 \blacksquare \rightarrow Blackboard

Warm-up Exercise: Harmonic Oscillator

Error of <x²> for the Harmonic Oscillator

- trivial, but we demonstrated applicability to physical problems
- three digits more accuracy with QMC at $N = 5 \times 10^5$

Anharmonic Oscillator, MC points, $O = E_0$, d = 100

$$\log \Delta(E_0) = \log C + \alpha \log N$$

- $\alpha = -0.50(1)$
- $\log C = 2.84(12)$

Anharmonic Oscillator, MC points, $O = X^2$, d = 100

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = -0.52(1)$
- $\log C = 0.94(11)$

Anharmonic Oscillator, QMC points, $O = X^2$, d = 100

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = -0.76(1)$
- $\log C = 2.0(1)$

Anharmonic Oscillator, QMC points, $O = X^4$, d = 100

$$\log \Delta(X^2) = \log C + \alpha \log N$$

$$\alpha = -0.76(1)$$

$$\log C = 4.0(1)$$

Anharmonic Oscillator, QMC points, $O = E_0$, d = 100

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = 0.74(1)$
- $\log C = 4.0(1)$

Anharmonic Oscillator, QMC points, $O = X^2$, d = 1000

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = -0.76(1)$
- $\log C = 2.0(2)$

Anharmonic Oscillator, QMC points, $O = X^4$, d = 1000

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = -0.75(1)$
- $\log C = 4.0(2)$

Anharmonic Oscillator, QMC points, $O = E_0$, d = 1000

$$\log \Delta(X^2) = \log C + \alpha \log N$$

- $\alpha = -0.74(1)$
- $\log C = 4.0(2)$