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The intrinsic complexity of algorithmic learning

Introduction

First example

Example:1 Suppose the ripeness of a lulo is a function of its
firmness and color.

Image credit: “Fibonacci,” CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=564934

We can learn the concept of “ripeness” from a small set of labeled
examples, if we know that the region R is of a simple geometric
form (e.g. the interior of a rectangle or ellipse)...

...whereas if the class of possible R is very complicated (e.g. with
many fractal-like sets), maybe this learning task is impossible.

1
Adapted from Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning



The intrinsic complexity of algorithmic learning

Introduction

First example

Example:1 Suppose the ripeness of a lulo is a function of its
firmness and color.

Image credit: “Fibonacci,” CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=564934

We can learn the concept of “ripeness” from a small set of labeled
examples, if we know that the region R is of a simple geometric
form (e.g. the interior of a rectangle or ellipse)...

...whereas if the class of possible R is very complicated (e.g. with
many fractal-like sets), maybe this learning task is impossible.

1
Adapted from Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning



The intrinsic complexity of algorithmic learning

Introduction

First example

Example:1 Suppose the ripeness of a lulo is a function of its
firmness and color.

Image credit: “Fibonacci,” CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=564934

We can learn the concept of “ripeness” from a small set of labeled
examples, if we know that the region R is of a simple geometric
form (e.g. the interior of a rectangle or ellipse)...

...whereas if the class of possible R is very complicated (e.g. with
many fractal-like sets), maybe this learning task is impossible.

1
Adapted from Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning



The intrinsic complexity of algorithmic learning

Introduction

How should we model algorithmic learning?

Questions: How should we model the concept of a “learning task”
mathematically?

Which learning tasks are inherently easy, difficult, or impossible?

Algorithmic learning theory attempts to answer these questions,
just as the study of Turing machines attempts to define what is, in
principle, computable.

Some goals of the theory:

I Find elegant ways to characterize learnability of concepts;

I Find bounds on the number of samples needed to learn
concepts.
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Outline of Talk

1. PAC learning (“Probably Approximately Correct”)

2. Vapnik-Chervonenkis dimension

3. VC bounds for perceptrons and neural nets

4. Other learning models (online learning, etc.)

5. Current directions

DISCLAIMER: This is an expository talk; none of the results
presented here are original.
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PAC learning

PAC learning: introduction

An easy learning task: A Martian wants to learn which range
Earthlings call “room temperature.” She has n labeled samples

S = {(x1, y1), . . . , (xn, yn)}

[yi = 1 if xi degrees C is room temperature, yi = 0 otherwise].

She might guess the interval [xi0 , xi1 ] bounded by the minimum xi0

and maximum xi1 from S which are labeled by 1.

This is a good strategy, even if we do not know the distribution by
which S was selected.
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PAC learning

Definitions

Concept classes

I X is a set of instances (data points we wish to classify);

I A concept is any C ⊆ X , equivalently χC : X → {0, 1};
I A sample (labeled by C) is a finite multiset

S = {(x1, y1), . . . , (xn, yn)}

with xi ∈ X , yi ∈ {0, 1} (and yi = 1 iff xi ∈ C );

I A learning algorithm is any function

A : (X × {0, 1})<ω →H

from the set of all possible samples into a set H ⊆P(X ) of
possible hypotheses. (And usually we assume C ∈H .)

WARNING: In the case where H is uncountable, we should make some extra measurability assumptions. In
particular, we could assume X is a standard Borel space, H = {ht : t ∈ [0, 1]} is parameterized by t ∈ [0, 1],
and {(x, t) : x ∈ ht} is the image of a Borel set under a continuous map.
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PAC learning

Definitions

A loss function

Generally we will consider a probability distribution µ on the
instances X , and consider samples

S = ((x1, y1), . . . , (xn, yn))

labeled by some C ∈H , with xi selected independently according
to µ (that is, S ∼ µn).

The loss function applied to a hypothesis h ⊆ X is

Lµ,C (h) = Pr
x∼µ

[(C \ h) ∪ (h \ C )] ,

i.e. the probability that an x selected randomly by µ is misclassified by h.
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PAC learning

Definitions

PAC learning: the definition (Valiant 1984)
The concept class H ⊆P(X ) is PAC learnable (“Probably
Approximately Correct”) if there are

I a learning algorithm A : (X × {0, 1})<ω →H , and

I a function m : (0, 1)2 → N ,

such that

I for any C ∈H , any δ, ε ∈ (0, 1), and any probability
distribution µ on X ,

I and for any n “big enough” (that is, n ≥ m(δ, ε)),

Pr
S∼µn

[Lµ,C (A(S)) ≤ ε] ≥ 1− δ.

Recall that Lµ,C is the loss function.

Note that the bound m(δ, ε) does not depend on µ nor on C !



The intrinsic complexity of algorithmic learning

PAC learning

Definitions

PAC learning: the definition (Valiant 1984)
The concept class H ⊆P(X ) is PAC learnable (“Probably
Approximately Correct”) if there are

I a learning algorithm A : (X × {0, 1})<ω →H , and

I a function m : (0, 1)2 → N ,

such that

I for any C ∈H , any δ, ε ∈ (0, 1), and any probability
distribution µ on X ,

I and for any n “big enough” (that is, n ≥ m(δ, ε)),

Pr
S∼µn

[Lµ,C (A(S)) ≤ ε] ≥ 1− δ.

Recall that Lµ,C is the loss function.

Note that the bound m(δ, ε) does not depend on µ nor on C !



The intrinsic complexity of algorithmic learning

PAC learning

Definitions

PAC learning: the definition (Valiant 1984)
The concept class H ⊆P(X ) is PAC learnable (“Probably
Approximately Correct”) if there are

I a learning algorithm A : (X × {0, 1})<ω →H , and

I a function m : (0, 1)2 → N ,

such that

I for any C ∈H , any δ, ε ∈ (0, 1), and any probability
distribution µ on X ,

I and for any n “big enough” (that is, n ≥ m(δ, ε)),

Pr
S∼µn

[Lµ,C (A(S)) ≤ ε] ≥ 1− δ.

Recall that Lµ,C is the loss function.

Note that the bound m(δ, ε) does not depend on µ nor on C !



The intrinsic complexity of algorithmic learning

PAC learning

Definitions

PAC learning: a simple example
If X = R and H = {[a, b] : a, b ∈ R} is the class of all closed
bounded intervals, then H is PAC learnable, with bound
m(δ, ε) = 2

ε ln( 2
δ ).

Proof:

Say A(S) selects an interval consistent with S . Pick intervals L and R
containing a and b respectively such that µ(L) = µ(R) = ε

2 . Then

Pr
S∼µn

[S ∩ L = ∅,S ∩ R = ∅] ≤ 2 · (1− ε

2
)n ≤ 2e−

εn
2 ,

so if n ≥ 2
ε ln( 2

δ ), then S will contain points from both L and R with
probability at least 1− δ. But if S contains instances of both L and R
then Lµ,C (A(S)) ≤ ε.
Proof adapted from Example 2.3.1 of NIP Theories and Computational Learning Theory by Vincent Guingona.
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Definitions

Other examples?

That was way too tricky!

Question: Is there an easier way to determine whether simple
classes are PAC learnable without δ − ε manipulations?

Answer: YES, with Vapnik-Chervonenkis dimension.
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VC dimension

Vapnik-Chervonenkis dimension

Say H ⊆P(X ) is a concept class (set of subsets of X ).

1. If A ⊆ X , then H shatters the set A if for every B ⊆ A there
is some hB ∈H such that hB ∩ A = B.

2. The Vapnik-Chervonenkis dimension of H is

VCdim(H ) = max{‖A‖ : A ⊆ X and H shatters A},

the maximum size of a subset of X shattered by H
(VCdim(H ) =∞ if there is no such finite bound).

The class H = {h1, h2, h3, h4} shatters A. VCdim(H ) = 2.

Easy bound: If H is finite, then VCdim(H ) ≤ log2(‖H ‖).
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VC dimension

Simple examples of Vapnik-Chervonenkis dimension

I If Hint is the class of all closed bounded intervals in R, then
VCdim(Hint) = 2. (If x < y < z , then there is no interval
[a, b] such that [a, b] ∩ {x , y , z} = {x , z}.)

I If Hbox is the class of all closed boxes [a, b]× [c , d ] in R2,
then VCdim(Hbox ) = 4.

I If Hfin is the set of all finite subsets of N, then
VCdim(Hfin) =∞.

I The set of all interiors of convex polygons in R2 has infinite
VC-dimension. (Exercise!)
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VC dimension

VC dimension and PAC learnability

Theorem (Blumer, Ehrenfeucht, Haussler and Warmuth, ’89)
H is PAC learnable if and only if VCdim(H ) <∞.

In fact, if VCdim(H ) = d , then H is PAC learnable with bound

m(δ, ε) = max

(
4

ε
log2

(
2

δ

)
,

8d

ε
log2

(
13

ε

))
= O (d log (1/δ) 1/ε log (1/ε)) .

In other words, if we want error at most ≤ ε with probability at least
1− δ, it is sufficient to train with m(δ, ε) data points.

Thus the class Hfin of all finite subsets of N is not PAC learnable,
nor is the class of all convex polygons in the plane.
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VC dimension

VC dimension and growth function

An important tool for studying VC dimension is the growth
function. Let

HA = {C ∩ A : C ∈H }

and define πH : m→ m by

πH (m) = max {‖HA‖ : A ⊆ X , ‖A‖ = m} .

Lemma (Sauer-Shelah): For any H , either

I VCdim(H ) = d and πH (m) ≤
∑d

i=0

(
m
i

)
= O(md ),

I or else VCdim(H ) =∞ and πH (m) = 2m.
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VC dimension and NNs

VC dimension of a perceptron

A perceptron Pn with n real-valued inputs x1, . . . , xn gives a binary
output

Pn(x1, . . . , xn) =

{
1, if

∑n
i=1 bixi + θ ≥ 0;

0, if
∑n

i=1 bixi + θ < 0.

As we train the parameters b1, . . . , bn, θ, the perceptron learns a
concept C ∈HPn bounded by a hyperplane in Rn.

S ⊆ Rn is shattered by HPn iff every subset of S is separable by a
hyperplane iff S is affine independent, so

VCdim(HPn ) = n + 1.
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VC dimension and neural nets
Say N is a feed-forward neural net with n real-valued inputs, W
real-valued parameters, and a binary output.

There is a corresponding concept class HN of all binary concepts
N can “learn” – so what is its VC-dimension?

Theorem: If the activation functions σ are step functions, then

VCdim(HN) < 2W log2

(
2W

log(2)

)
= O(W log(W )).

If the activation functions are sigmoid (σ(z) = 1
1+e−z ), then

VCdim(HN) = O(W 4).

(Karpinski and Macintyre, ’95)

Corollary: neural networks can learn things.
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Sample complexity bounds for Neural Nets

Taigman et al. 2014: achieved 97.35% accuracy (ε = 0.0265)
on facial recognition task using network with W ≈ 1.2× 107

parameters on a training set of 4× 106 samples.

For a linear threshold network N of such a size,

d = VCdim(HN) ≤ 7.1× 109.

The bound by Blumer et al. guarantees 97.35% accuracy only if

m(δ, ε) ≥ 8d

ε
log2

(
13

ε

)
≈ 2× 1013

samples.
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VC dimension and logic (Laskowski’s observation)

Say L is a first-order language, M is an L -structure, and
ϕ(x1, . . . , xn; y1, . . . , ym) is an L -formula in first-order logic.

We may define a concept class

Hϕ(x ;y) = {ϕ(Mn; b) : b ∈ Mm}

where
ϕ(Mn; b) = {a ∈ Mn : M |= ϕ(a; b)}.

Then no Hϕ(x ;y) shatters arbitrarily large finite subsets of Mn iff
no ϕ(x ; y) has the independence property, or “M is NIP.”
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Applications
Model theorists know many interesting structures M with NIP, e.g.:

Theorem (Alex Wilkie): R = (R; +, ·,≤, exp) has NIP (the
ordered field of real numbers with operation x 7→ ex added).

Corollary 1: If H = {Cb : b ∈ Rm} is a parametrized family of
regions in Rn defined by a finite Boolean combination of
polynomial and exponential inequalities of a fixed form, then
VCdim(H ) <∞, hence H is PAC learnable.

Corollary 2: If σ : R→ R is defined piecewise by a finite number
of applications of +, ·, division, and exponentiation, and

H = all f : Rn → {0, 1} computable by a NN with
W weights and activation function σ

then H is PAC learnable.



The intrinsic complexity of algorithmic learning

VC dimension and NNs

Applications
Model theorists know many interesting structures M with NIP, e.g.:

Theorem (Alex Wilkie): R = (R; +, ·,≤, exp) has NIP (the
ordered field of real numbers with operation x 7→ ex added).

Corollary 1: If H = {Cb : b ∈ Rm} is a parametrized family of
regions in Rn defined by a finite Boolean combination of
polynomial and exponential inequalities of a fixed form, then
VCdim(H ) <∞, hence H is PAC learnable.

Corollary 2: If σ : R→ R is defined piecewise by a finite number
of applications of +, ·, division, and exponentiation, and

H = all f : Rn → {0, 1} computable by a NN with
W weights and activation function σ

then H is PAC learnable.



The intrinsic complexity of algorithmic learning

VC dimension and NNs

Applications
Model theorists know many interesting structures M with NIP, e.g.:

Theorem (Alex Wilkie): R = (R; +, ·,≤, exp) has NIP (the
ordered field of real numbers with operation x 7→ ex added).

Corollary 1: If H = {Cb : b ∈ Rm} is a parametrized family of
regions in Rn defined by a finite Boolean combination of
polynomial and exponential inequalities of a fixed form, then
VCdim(H ) <∞, hence H is PAC learnable.

Corollary 2: If σ : R→ R is defined piecewise by a finite number
of applications of +, ·, division, and exponentiation, and

H = all f : Rn → {0, 1} computable by a NN with
W weights and activation function σ

then H is PAC learnable.



The intrinsic complexity of algorithmic learning

VC dimension and NNs

Applications
Model theorists know many interesting structures M with NIP, e.g.:

Theorem (Alex Wilkie): R = (R; +, ·,≤, exp) has NIP (the
ordered field of real numbers with operation x 7→ ex added).

Corollary 1: If H = {Cb : b ∈ Rm} is a parametrized family of
regions in Rn defined by a finite Boolean combination of
polynomial and exponential inequalities of a fixed form, then
VCdim(H ) <∞, hence H is PAC learnable.

Corollary 2: If σ : R→ R is defined piecewise by a finite number
of applications of +, ·, division, and exponentiation, and

H = all f : Rn → {0, 1} computable by a NN with
W weights and activation function σ

then H is PAC learnable.



The intrinsic complexity of algorithmic learning

VC dimension and NNs

Sample compression

PAC learnability is also related to compressibility of samples.

H has a compression scheme of size k + b if for any C ∈H ,
the labels of any C -labeled sample S can be reconstructed from a
size-k subsample S ′ ⊆ S and b bits of extra information.

Example: If H = all closed intervals [a, b] ⊆ R, the labels of a
sample S can be reconstructed from a size-2 subsample S ′ ⊆ S
plus two extra bits of information.

(If S contains at least two positively-labeled instance, let S ′ contain the
least and the greatest positively-labeled instances. Use 2 extra bits of
information to encode case when S contains ≤ 1 positive instance.)
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Warmuth’s conjecture
Theorem (Littlestone and Warmuth, ’86) If H has a compression
scheme of size k , then the growth function πH (m) is O(mk ). In
particular, H is PAC learnable.

Warmuth’s Conjecture: Any PAC learnable class has a
compression scheme of finte size.

Theorem (Moran and Yehudayoff, 2015) Warmuth’s Conjecture is
true; in fact,

VCdim(H ) = d ⇒H has compression scheme of size 2O(d).

Proof uses: existence of good approximation of VC classes by finite

samples, Von Neumann’s Minimax Theorem.
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Other learning models

I Agnostic PAC learning: Maybe the true concept C is not in
H , but our algorithm A chooses the h ∈H which best fits a
given finite sample. This is guaranteed to converge if and only
if H is PAC learnable.

I Efficient PAC learning: Require A to have polynomial
runtime in 1/δ and 1/ε. This was considered by Valiant (’84)
and Kearns-Vazirani (’94).

I Online learning: We guess how to classify given data points,
and hope for a uniform finite bound on the number of
mistakes.

I Equivalence Query learning (Angluin ’86)

I et cetera
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Online learnability

Again, there is a hypothesis class H ⊆P(X ) (known to the
learner) and we try to learn some C ∈H .

Points x1, x2, x3, . . . ∈ X are chosen one at a time.

At stage i , teacher chooses xi , then the learner must “guess”
whether xi ∈ C , and then learner is told whether she was correct.

The teacher may be evil and select tricky examples xi+1

depending on the learner’s responses to x1, . . . , xi .

H is online learnable if there is some algorithm A and some
finite d such that applying A, the learner will never make more
than d mistakes.
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Examples of online learning

Example 1: Fix d , and let Hd ⊆P(Rd ) be all graphs of
degree-d polynomials.

Hd is online learnable: learner should always guess that a sample
point xi is not on the graph, until she has found d + 1 positive
examples, after which she will know the polynomial (Lagrange’s
Interpolation Theorem). She will make no more than d + 1
mistakes.

Example 2: The class H of all closed intervals [a, b] in R is not
online learnable.

Given any algorithm A, we can recursively construct points
x1, x2, . . . ∈ R such that A will always make the wrong guess for xi .
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Littlestone dimension

Theorem (Littlestone ’88): H is online learnable with at most d
mistakes if and only if Ldim(H ) ≤ d , where Ldim(H ) is the
maximum height of a binary T such that

I internal notes of T are labeled by elements of X ;

I leaves of T are labeled by concepts in H ; and

I leaf Xi is right-below node aj iff aj ∈ Xi .

X4 contains a4 and a2, but a1 /∈ X4. Ldim({X1, . . . ,X8}) = 3.
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Online learnability and logic

Chase and Freitag (2018): Just as first-order structures in which
all definable classes are PAC-learnable are NIP, structures in which
all definable classes are online learnable are characterized by
stability.

(Roughly speaking, M is stable if there is no infinite linear oder
definable on its elements.)

We know many examples of stable infinite structures, in which all
definable classes are online learnable:

I Algebraically closed fields;

I Abelian groups;

I Differentially closes fields of characteristic 0;

I (etc.)
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definable classes are online learnable:

I Algebraically closed fields;

I Abelian groups;

I Differentially closes fields of characteristic 0;

I (etc.)
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Future directions

I PAC learnability must work for any sample distribution µ. But
if we know something about µ, can we get better learning
bounds?

I What are optimal learning bounds for neural nets?

I Calculate precise VC-dimension and growth functions in
interesting examples (Abelian groups, NIP fields, ...)

I Model theory (logic) studies many notions of “tameness” for
first-order theories. Do these correspond to other interesting
learning models?

I Applications of compressibility of PAC classes to logic. (E.g.
2019 work by Eshel and Kaplan: proof of Warmuth’s
Conjecture implies “uniform definability of types over finite
sets for NIP formulas.”)
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