
ABSTRACT
This work is based on the Su-Schrieffer-Heeger model, which describes a system of non-interacting polarized fermions, i.e. without spin, moving in a one-dimensional superlattice. We analyze the 
Hamiltonian of the system in second quantization, in which the optical lattice has discretized the space, and take into account that the basis that diagonalizes the kinetic energy is the one of momentum. In 
the first case, let us consider a finite chain; we show that the discrete Sine transform type-I respects the finite boundary con- ditions of the system, hence, it is the proper transform to be used. This 
transformation arises from linear combinations of plane waves and allows us to express our Hamiltonian in the momentum basis in such a way that will allow us to extend the study of the system to an 
arbitrary number of sites. In the second case, when periodic boundary conditions are considered, the usual Fourier transform can be used; this case will be shortly discussed in this poster as well. 
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PERSPECTIVES

Ionic bounding

Transfer of electrons from 
a metal  to a non-metal  in order 
to obtain a full valence shell for 
both atoms.

Optical and crystal lattice

Optical lattice: 

- Made by the interference of counter-propagating laser beams.
- Makes a perfect periodic potential.
- Ultra low temperatures, therefore atoms are congregated in sites of potential 

minima.
- The resulting arrangement resembles a crystal lattice.
- Highly controllable system, therefore it can be used for quantum simulation.
- Tunable interactions.

Ultracold atoms: atoms that are at temperatures close 
to 0 Kelvin  (absolute zero), typically below temperatures of 
some hundreds of nanokelvins (µK).

a. An optical lattice looks like a crystal 
but it is made of light and b. a crystal 
lattice is an arrangement of atoms, ions 
or molecules in a crystalline material.

Lattice potential

Lattice
beams

Initial cloud of 
ultracold atoms

Optical lattices can be built for 
different dimensions.

https://www.quora.com/What-are-the-bond-types-in-transition-metals

https://www.nature.com/articles/453736a

Diluted gas

cooling down
Bose-Einstein 
condensate

Degenerated 
Fermi gas

Ef

Optical lattice
https://www.quora.com/Why-cant-atoms-having-odd-number-of-neutron-+-proton-+-electron-form-a-Bose-Einstein-Condensate 

https://www.researchgate.net/figure/Setup-Atoms-in-an-optical-lattice-are-probed-by-a-coherent-light-beam-and-the-light_fig2_274319667 

https://www.researchgate.net/figure/Optical-lattice-potentials-formed-by-superimposing-two-or-three-orthogonal-standing_fig7_200030688 

Quantum simulators: they permit the study of quantum systems  that 
are difficult to study in the laboratory and intractable on classical computers. 
Quantum simulators are controllable quantum systems that can be used to 
simulate other quantum systems. 
http://inspirehep.net/record/1251940/plots 

The SSH model [1] describes polarized fermions hopping on a one-
dimensional lattice with staggered hopping amplitudes.

staggered hopping 
amplitudes unit cell m=6

sublattice A

sublattice B

superlattice

v wL. O. János K. Asbóth and A. Palyi, A Short Course On Topological Insulators (Springer International Publishing Switzerland, 2016).

Non interacting fermions single-particle Hamiltonian
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One particle per cell half filling simplest insulators like polyacetylene

Su, W. P. and Schrieffer, J. R. and Heeger, A. J. Soliton excitations in polyacetylene, 1980. 

Discrete Fourier transform:

Rewriting the Hamiltonian in the 
momentum space

To study it in the thermodynamic limit 
and to extend the problem to an 
arbitrary number of sites

Unitary Fourier transform Expansion in plane waves Transform used to describe systems 
with periodic boundary conditions.
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and

Discrete Sine transform type I [2]:

But our systems satisfies hard wall boundary conditions.
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The values at the ends are zero

Therefore the transformation of the staggered 
operators from the position representation to the 
momentum representation and vice versa are:
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Using the transformation of the staggered operators, the 
Hamiltonian takes the following form:
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Now, considering periodic boundary conditions [3], m=N+1 
is identified with site m=1 or m very large, and using the 
Fourier transform we have: 
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is a geometric Berry phase.

- Study the Berry phase of the system and the differences between the topology of the system with PBC and the system with 
HWBC.


- Implement the Bogoliubov-de Gennes method to the fermionic unidimensional system described by de SSH model in the 
momentum space.


- Diagonalize the coupling matrix to visualize the edge modes with it’s eigenenergy and wave function localized in the finite 
SSH fermionic chain.
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