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Introduction
In recent years, machine learning has been a helpful tool to discover new physics without prior human knowledge, specifically
in complex problems in physics. This means we can know how a physical system behaves even without knowing its
Hamiltonian. It has been possible to use machine learning to predict crystal structures, approximate density functions, model
molecular atomization energy, and many other applications. For many years classifying and discovering phases and phase
transitions is one of the most important topics in Condensed Matter Physics [1]; however, it is not an easy job to do, especially
when we work with complex systems and the number of states is very large. One of the most important models in the
theoretical physics to study phase transitions is the Ising model, given it was the first model that could successfully predict a
phase transition [5]. Motivated by the search of physical properties through the machine learning techniques, in this work, we
apply unsupervised machine learning technique, the Principal Component Analysis (PCA) to study square and hexagonal
ferromagnetic lattice Ising systems, in order to recognize phases, phase transitions, and related physical properties without
knowing any information about the microscopic theory or the order parameters. We study the Ising model in square lattice as
our toy model, once it was studied, we apply PCA in hexagonal lattice and later compare the results.

Hexagonal system

Monte Carlo method

The Ising model

Proposed by Lenz in 1920

Discussed by Ernst Ising in 
1925

The exact solution of the 
two-dimensional Ising model 

was made by Onsager in 
1944 
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Square system
The interactions are only 
between the three nearest 

neighbors
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Hexagonal Lattice 

• In an infinite system (𝐿~∞)

• In a finite size the correlation 
length is ξ~𝐿.

• The system has a 
pseudocritical point when 

𝑇R(S) − 𝑇R(T)
UV
~ 𝐿

• Then the susceptibility,

𝜒~𝐿X/V

In the Ising model the 1st derivative of the free energy gives 
the magnetization M and the 2nd derivative gives the 

magnetic susceptibility 𝜒Y
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Magnetization, 𝑀~ 𝑇 − 𝑇R d

Magnetic susceptibility, 𝜒~ 𝑇 − 𝑇R UX

Heat capacity, 𝐶~ 𝑇 − 𝑇R Uf

Correlation length, 𝜉~ 𝑇 − 𝑇R UV

The critical exponents for the 2D Ising model are known
exactly:
𝛽 = 0.125 𝛼 = 0 𝛾 = 1.75 𝜈 = 1

Finite size scaling

The idea of the method is to find an algorithm to
generate a long sequence of configurations of a
system, such that after a while each configuration is
generated with the adequate probability to describe
the equilibrium of the system

We start with a disorder random state from the
temperature after the critical point to the
equilibrium temperature.

Pick a random single spin 𝑘 to be flipped.

Calculate the difference in energy before and after 
the flip 𝐸V − 𝐸o.

The change in energy between the two state is thus
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As we flip a single spin, most of the terms in the
calculation in the energy different don’t change and
the different of energy is reduce to

𝐸V − 𝐸o = −𝐽 %
' p.p qr s

𝑆'
o(𝑆sV − 𝑆s

o)

If the spin that we chose is 𝑆s
o = +1, then after it has 

been flipped, we have 𝑆sV = −1, then 𝑆sV − 𝑆s
o = −2

or in the other case that 𝑆s
o = −1 and 𝑆sV = +1,

𝑆sV − 𝑆s
o = +2,

𝑆sV − 𝑆s
o = −2𝑆s

o

And so,
𝐸V − 𝐸o = 2𝐽𝑆s
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If 𝐸V − 𝐸o ≤ 0 we definitely accept the move and 
flip the 

spin 𝑆s → −𝑆s.

If 𝐸V − 𝐸o > 0 we still want to flip the spin with 
probability 

A 𝜇 → 𝜈 = 𝑒Ud(xyUxz).

We choose a random number 𝑟 between zero and
one. If the number 𝑟 is less that our acceptance
ratio 𝑟 < A 𝜇 → 𝜈 , then we flip the spin. If it
isn’t, we leave the spin alone. This process is
repeated over and over. Choosing spin,
calculating the energy change to see if we flip
it, and then deciding whether to flip it
according to the acceptance ratio.

Monte Carlo simulation of ferromagnetic Ising model below 𝑇𝑐, 
over 𝑇𝑐, and above 𝑇𝑐 in a finite size scale. The black dots are the 

spins -1 and the whites are spins +1

T < T c T  ≈ T c T > T c

• Ferromagnetic interaction J = 1
• Square system = 5000 configuration per temperature (109)

having a total of configuration of 545000
• Hexagonal system = 5000 configuration per temperature

(124) having a total of configurations of 620000

Principal Component Analysis (PCA)

• PCA is a powerful tool to compress your data into small dimension without to much loss of information

Representation of data in the variables.

Principal component in the data. Principal component coordinates.

the coordinate components in terms of the initial variables are:
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The orthogonal transformation is due to vector 𝑊 =
(𝑤[; 𝑤~; … ; 𝑤�), where 𝑤’𝑠 are called weights; the first 
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Data was collected by a Monte Carlo simulation in matrix X,
with dimensions 𝑀𝑥𝑁, where 𝑀 = 𝑛𝑇,  and N is the lattice 
size. 
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PCA in the Ising model

the eigenvector corresponding to the largest few eigenvalues
of the matrix 𝑿𝑻X(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) can be found by:

𝑋�𝑋𝑤p = 𝜆p𝑤p

The principal components are calculated as:
𝑌p = 𝑋𝑤p

where w1 will be the vector corresponding to the largest
variance, namely, the largest eigenvalue.

The results are in based in the ‘quantified principal
components’ that are defined as the average over all the
configuration n at the same temperature:
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Data from Monte Carlo Method
Square = 545000 X L2

Hexagonal = 620000 X L2

PCA was performed on Python

Simulation details

Figure 1. PCA variance ratios from the 
Ising configurations for square lattice

Notice that w1⋍1/L.
Then, given a configuration from one of the rows of X.  
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Figure 2. Weights of the first principal 
component for each lattice size for 

square lattice.

PCA results of square lattices

PCA results of hexagonal lattices

If a lattice with only two spin interactions is considered
and 𝑠[ is the spin of the first lattice site

𝑥r�] = (𝑠[, 𝑠[)
and for the disordered phase:
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When PCA is fed with configurations of both phases, the

covariance to be computed is:
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where, 𝑀 is the total number of configurations and 𝑥p is the
𝑛𝑡ℎ configuration.

With enough data, it can be written:
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Figure 3. The quantified first leading 
component versus temperature which 
represents the magnetization of the 

system

Figure 4. Quantified second leading 
component versus temperature which 

represents the susceptibility of the system

Figure 5. Projection of the spin 
configurations onto the plane for the two 
principal components for lattice of size 

10,20,30,40 and 50 with 300 
configurations for each temperature.

weight vector of the second 
component (𝑤~) 
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where ri is the lattice site and k1 = (0, 2𝜋/L), k2 =(2𝜋/L,0) are the lowest
Fourier wave vectors. The first component is associated with the origin in k0= (0,0).

Figure 6. Critical temperatures taken from 
the maximums of  the susceptibility versus 

the inverse of the lattice size.

Figure 7. PCA first explained variance 
ratios from the Ising configurations for 

hexagonal lattice

Figure 8. The Weights of the first principal 
component for each lattice size.

Figure 9. The quantified first 
leading component versus 
temperature for hexagonal 
lattice which represents the 
magnetization of the system

Figure 10. The quantified second leading 
component versus temperature for 

hexagonal lattice which represents the 
susceptibility of the system.

Figure 12. Critical temperature 
predicted in the Ising hexagonal 

system (𝑇/ ≈ 1.51508 𝐽/𝐾3).  This 
result is close to the exact theorical 

value 𝑇/ ≈ 1.519 𝐽/𝐾3, representing a 
0.5% percent error from the true 

thermodynamic critical temperature. 

Figure 11. Projection of the spin 
configurations onto the plane for 
the two principal components for 
lattice of size 20,40,60,180 with 

100 configurations for each 
temperature.

The weights for the second 
component vector plotted on the 

hexagonal lattice L=20 

plot of the equation:
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where ri is the hexagonal x-coordinate lattice
site and 𝑘 = (2𝜋/𝐿, 0).

Results

Conclusions
PCA shows a principal component and a constant weight vector, related to this particular component, for both systems. From this main component, was possible to

identify the order parameter of the system and was possible to mimic the magnetization. Also, the critical temperature 𝑇/ in square and hexagonal systems were
determined. For the square system a 𝑇/ = 2.26339 𝐽/𝐾3 was obtained and for the hexagonal system a 𝑇/ = 1.51508 𝐽/𝐾3, having a 0.5% percent error from the true
thermodynamic critical temperature. When PCA was feed with spin configurations from Monte Carlo, I could recognize order patterns by clustering the data between
the ordered and disordered phases. An interesting fact about PCA technique for the ferromagnetic Ising model is how the weight vectors correspond to the Fourier
modes of the spins configuration. In the ordered phase, the physics of the Ising model is enclosed in a single point k0 = (0,0); for this reason, a single dominant
eigenvalue is shown. Careful analysis reveals that further components also encase relevant information about the system. For example, information about the
susceptibility of the Ising model could be obtained from the second component. The weight vector associated with this component shows that the second Fourier mode
corresponding to the spin’s configurations remains an unknown that can be addressed by future research. The others Fourier mode can potentially explain the physical
meaning of other missing components, which could contribute to the Ising ferromagnetic model.
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