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Abstract

In this work we build the foundations of a quantum Monte Carlo (QMC) as a numerical method to solve lattice many-body quantum systems with nearest-neighbor interactions. As motivation, we briefly
describe a system of repulsively interacting spin-1 bosons in an optical lattice at unit filling in the Mott insulator phase with an external quadratic Zeeman field. QMC methods circumvent the difficulties that
arise on these type of systems by mapping the quantum partition function into the one of an effective classical model and then, implementing a Monte Carlo sampling of the new partition function. Such a
mapping is performed by the means of the Suzuki-Trotter decomposition, which transforms the original partition function into a summation of world lines. Finally, we show how the Metropolis algorithm can
be implemented to sample the world lines, thus allowing us to measure certain type of observables.

Bose-Hubbard model

The Bose-Hubbard model describes interacting bosons in an optical lattice.
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The model presents two phases: the Mott insulator and the superfluid.

Mott insulator: J < U Superfluid: J > U

The interest of this work is to focus on the Mott insulator phase at unit filling
and at ultralow (nK) temperatures.

Endres M., Thesis: Probing correlated quantum many-body systems at the single-particle level, Ludwig-Maximilians-Universitat Minchen, Germany, (2013).

Effective Hamiltonian

Van Vleck quasi degenerate perturbation theory is used to retrieve the
effective Hamiltonian. The tunneling term is taken as the perturbation.

0

transformation.

Full Hamiltonian. Block Hamiltonian.

The effective Hamiltonian is a bilinear biquadratic Heisenberg model.
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The goal is to develop a method to study the ferromagnetic phases of this

model in a 1D optical lattice filled with spin-1 bosons.

Winkler R., Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Springer, Berlin, 201-206 (2003).
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Suzuki-Trotter decomposition

First, one needs the Trotter approximation.
A > A > 2
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A Hamiltonian with nearest neighbor interactions at most such as the one of
interest, may be divided into bond Hamiltonians of neighboring sites.
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The quantum partition function of the Hamiltonian becomes:
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The Trotter number is introduced to get rid of the error.
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Expanding the partition function explicitly and adding completeness
relations between the products of exponentials.
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The partition function is transformed into the summation of world lines
weights given by the imaginary time evolution plaquettes [2, 3].
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Spin-1 and external magnetic field

When the spin degree of freedom is considered and an  Spin preserving and spin changing collisions appear with the
external Zeeman field is applied, the Hamiltonian takes a more  addition of the spin.

complicated form.
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We want to study the field induced phases in the regimen of 0
interest [1]. The field strength is comparable with the tunneling. q<0 q=10 q>0

Spin-1/2 Heisenberg model and world lines

The spin-1/2 Heisenberg model is presented for a better understanding of the partition function and the world lines after the
Suzuki-Trotter decomposition.
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The quantum partition function is mapped into the one of an effective model with one extra dimension. The extra dimension is
given by the world lines, which restrict the possible configurations.

Observables and Metropolis scheme

The observables that can be measured must be 1-site or 2-site  “Metropolis” algorithm:
separable operators and they need to conserve the basis 1. Markov process.
locally. Some correlations can not be measured. Now, the 2. Ergodicity.
observables are calculated explicitly by taking advantage of the 3. Detailed balance:
trace properties and the world lines weights.
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This measures the observables in one time slice, to obtain v Z S

better statistics, one must average over all the time slices.
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Results for the energy as a function of the temperature for
the spin-1/2 Heisenberg model were measured.
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Now one can proceed to use a classical stochastic method to = o044l .
do the measurements. A Metropolis like algorithm is chosen. ot
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Perspectives

Measure quantum and thermodynamical observables, such as magnetization and von Neumann entropy, using the QMC
developed to characterize the ferromagnetic phases of the spin-1 system.
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