The toric code

Figure 1: The toric code is a model defined on the square lattice with one spin 1/2 on every bond (black square). The A_s operators (star operators) are defined on each site of the lattice and act on the four surrounding spins with the operator σ^z . The B_p operators (plaquette operators) are defined on each plaquette and act on the corresponding four spins with the operator σ^x .

We consider the toric code defined on a square lattice with $L_x \times L_y$ sites, with a spin 1/2 on each bond, and periodic boundary conditions along both xand y directions (see Figure 1). The Hamiltonian is written in terms of star and plaquette operators A_s and B_p , which are both products of four individual spin operators:

$$H = -\sum_{s} A_s - \sum_{p} B_p \tag{1}$$

where

$$A_s = \prod_{i \in s} \sigma_i^z \tag{2}$$

$$B_p = \prod_{i \in p} \sigma_i^x \tag{3}$$

 σ_i^x, σ_i^z are Pauli matrices acting on the spin *i*.

1) Show that any star operator A_s commutes with any plaquette operator B_p : $\forall (s,p) \in [1, L_x L_y]^2, \ [A_s, B_p] = 0.$

- 2) What is the energy E_0 of the ground state of this model? What are the constraints on A_s and B_p such that a quantum state Ψ verifies $H\Psi = E_0 \Psi$?
- 3) The system defined in Figure 1 with periodic boundary conditions is a torus. Let us compute the degeneracy of the ground state

Is this property still true if some of the stars have a number of branches different from 4?

- What is the total number of spin configurations in this system (i.e. the dimension of the Hilbert space)?

- Show that $\prod_s A_s = I$ and $\prod_p B_p = I$, where I is the identity operator. - How many linearly independent equations can be written from the constraints of question 2)?

- What is the degeneracy of the ground state of the toric code on the torus?

- 4) Follow the same reasoning as question 3) to predict the degeneracy of the ground state of the toric code on the sphere geometry, and on a higher genus surface (for example, a surface with two "holes").
- 5) Statistics of the excitations of the toric code
 - We define the paths l^e and l^m which connect spins on bonds respectively parallel (l^e) and perpendicular (l^m) to them. e (respectively m) excitations can be created at the ends of a l^e (resp. l^m) path by acting on the ground state with a product of σ^x (resp. σ^z) operators along an open path l^e (l^m) . e and m have trivial self-statistics, and non-trivial (-1) mutual statistics, as summarized in Figure 2.

Figure 2: Exchange statistics of the excitations e and m of the toric code

-Using a drawing similar to Figure 2, can you guess what is the self-statistics of the combined particle $f = e \times m$?

-Prove the above result by considering l^e paths of σ^x operators and l^m paths of σ^z operators on the toric code of Figure 1. This reasoning is the same as the one used in the lecture to show the self-statistics of the e and m particles, which used l^e and l^m loops separately.