The toric code

Figure 1: The toric code is a model defined on the square lattice with one spin $1 / 2$ on every bond (black square). The A_{s} operators (star operators) are defined on each site of the lattice and act on the four surrounding spins with the operator σ^{z}. The B_{p} operators (plaquette operators) are defined on each plaquette and act on the corresponding four spins with the operator σ^{x}.

We consider the toric code defined on a square lattice with $L_{x} \times L_{y}$ sites, with a spin $1 / 2$ on each bond, and periodic boundary conditions along both x and y directions (see Figure 1). The Hamiltonian is written in terms of star and plaquette operators A_{s} and B_{p}, which are both products of four individual spin operators:

$$
\begin{equation*}
H=-\sum_{s} A_{s}-\sum_{p} B_{p} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
A_{s} & =\prod_{i \in s} \sigma_{i}^{z} \tag{2}\\
B_{p} & =\prod_{i \in p} \sigma_{i}^{x} \tag{3}
\end{align*}
$$

$\sigma_{i}^{x}, \sigma_{i}^{z}$ are Pauli matrices acting on the spin i.

1) Show that any star operator A_{s} commutes with any plaquette operator B_{p} : $\forall(s, p) \in\left[1, L_{x} L_{y}\right]^{2},\left[A_{s}, B_{p}\right]=0$.
Is this property still true if some of the stars have a number of branches different from 4?
2) What is the energy E_{0} of the ground state of this model? What are the constraints on A_{s} and B_{p} such that a quantum state Ψ verifies $H \Psi=$ $E_{0} \Psi$?
3) The system defined in Figure 1 with periodic boundary conditions is a torus. Let us compute the degeneracy of the ground state

- What is the total number of spin configurations in this system (i.e. the dimension of the Hilbert space)?
- Show that $\prod_{s} A_{s}=I$ and $\prod_{p} B_{p}=I$, where I is the identity operator.
- How many linearly independent equations can be written from the constraints of question 2)?
- What is the degeneracy of the ground state of the toric code on the torus?

4) Follow the same reasoning as question 3) to predict the degeneracy of the ground state of the toric code on the sphere geometry, and on a higher genus surface (for example, a surface with two "holes").
5) Statistics of the excitations of the toric code

We define the paths l^{e} and l^{m} which connect spins on bonds respectively parallel $\left(l^{e}\right)$ and perpendicular $\left(l^{m}\right)$ to them. e (respectively m) excitations can be created at the ends of a l^{e} (resp. l^{m}) path by acting on the ground state with a product of σ^{x} (resp. σ^{z}) operators along an open path $l^{e}\left(l^{m}\right)$. e and m have trivial self-statistics, and non-trivial (-1) mutual statistics, as summarized in Figure 2.

Figure 2: Exchange statistics of the excitations e and m of the toric code
-Using a drawing similar to Figure 2, can you guess what is the selfstatistics of the combined particle $f=e \times m$?
-Prove the above result by considering l^{e} paths of σ^{x} operators and l^{m} paths of σ^{z} operators on the toric code of Figure 1. This reasoning is the same as the one used in the lecture to show the self-statistics of the e and m particles, which used l^{e} and l^{m} loops separately.

