Homotopy classes and braiding of anyons

Ex.1: Quantum particles in D dimensions and homotopy classes

We consider $N=2$ indistinguishable particles living in a D-dimensional space. Their positions are denoted by $x_{i}, i=1,2, x_{i} \in \mathbb{R}^{D}$. The space of configurations of this system is

$$
\begin{equation*}
X_{2}^{(D)}=\left(\mathbb{R}^{2 D}-I\right) / \mathcal{S}_{2} \tag{1}
\end{equation*}
$$

where I is the set of hyperplanes where the two particles coincide, and \mathcal{S}_{2} is the permutation group of two objects. We also consider the space

$$
\begin{equation*}
Y_{2}^{(D)}=\mathbb{R}^{2 D}-I \tag{2}
\end{equation*}
$$

Propose simple drawings to show that:

- $Y_{2}^{(1)}$ is not connected
- $Y_{2}^{(3)}$ is simply connected and $X_{2}^{(3)}$ is doubly connected
- $Y_{2}^{(2)}$ is multiply connected.

Ex. 2: Abelian anyons and one-dimensional representations of the Braid group

Generically, the transformation of a quantum state upon exchange of anyons can be described by the action of an operator ρ on that quantum state. The set of possible outcomes is determined by considering that ρ is a representation of the braid group \mathcal{B}_{N}. As seen in the lecture, \mathcal{B}_{N} is generated by the set of σ_{i} 's, where σ_{i} is the operator which braids the strand i below the strand $i+1$:

a) Graphically show that $\sigma_{j} \sigma_{j+1} \sigma_{j}=\sigma_{j+1} \sigma_{j} \sigma_{j+1}$
b) Consider the one-dimensional representation ρ of $\mathcal{B}_{N}: \rho\left(\sigma_{j}\right)=e^{i \theta_{j}}$. Show that the $N-1$ phases θ_{j} have to be equal.
c) Using the previous result, can you predict what are the possible outcomes of the braiding of abelian anyons?

Ex.3: Permutation group

a) The permutation group \mathcal{S}_{N} can be formed by the elements s_{i} that exchange particles i and $i+1$. Write the algebra formed by the s_{i}. What is the difference with the one formed by the σ_{i} ?
b) Using the result of Ex.1, comment on the relevance of \mathcal{S}_{N} for the description of systems of N quantum particles in $D=3$.
b) Consider the one-dimensional representation of the s_{i} algebra and explain why one can find only fermionic or bosonic representations.

Ex.4: Expansion of the solutions of a Fuchsian equation

We consider Euler's hypergeometric differential equation

$$
\begin{equation*}
\left(z(1-z) \frac{d^{2}}{d z^{2}}+[\gamma-(\alpha+\beta+1) z] \frac{d}{d z}-\alpha \beta\right) f(z)=0 \tag{3}
\end{equation*}
$$

Eq. (3) is a linear ordinary differential equation (ODE) of Fuchsian type with singularities $z_{1}=0, z_{2}=1$ and $z_{3}=\infty$. To study the monodromy of its solution, we need to write down an expansion around its singularities, which is the purpose of this exercise.
a) Consider the function $f^{(a)}(z)=z^{a} \sum_{n=0}^{\infty} c_{n}(a) z^{n}$, where $c_{0}(a)=1.0$ and $c_{n}(a) \in \mathbb{C}$. Fuch's theorem guarantees the existence of a solution of this form if $z_{1}=0$ is a regular singularity. Determine the possible values of a and a recurrence relation for the $c_{n}(a)$ coefficients.
b) We consider the monodromy associated to a small loop γ_{0} around zero. How do the solutions of Eq. (3) transform under γ_{0} ?
b) How would you verify that $z_{2}=1$ is a regular singularity? Determine the monodromy associated to a small loop γ_{1} around $z_{2}=1$.

