
Lecture three: the magic of dimension D = 2

We consider now the complex C with an Euclidean flat metric. The x1 and x2 are the

plane coordinates. It is convenient to introduce the complex coordinates

z = x1 + ix2 z̄ = x1 − ix2.

The conformal transformations, in their infinitesimal form, take the form (see Ex 1 of the

previous lecture)

z = z + α(z), z̄ = z̄ + ᾱ(z̄) (0.1)

Since the action of the conformal group factorizes into the action on the holomorphic and

anti-holomorphic sector, we can assume the variables z and z̄ as independent.

Consider to expand α(z) around the origin:

α(z) =
∞∑
n≥1

αnz
n+1 (0.2)

where αn are complex numbers.The α(z) and ᾱ are functions that are analytic on a finite

region D containing the origin and zero elsewhere, see chapter 2 of [1].

Quantum fields transformations

Consider the space of functions f(z) defined on the complex plane C. The transformation

z → z+α(z) correspond to a reparametrization of f(z), f(z)→ f̃(z) = f(z+α(z)). One

has

δf(z) = φ̃(z)− φ(z) =
∑
n≤1

αnz
n+1∂zf(z) (0.3)

The operators ln = zn+1∂z, satisfy the Witt algebra:

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)l̄n+m, (0.4)

where we add the anti-holomorphic transformation ᾱ(z̄), l̄n = z̄n+1∂z̄. Note that for

n = −1, 0, 1 we find back the generators of the transformations we have seen in the

previous lecture:

Translations: l−1, l̄−1

Rotations: i(l0 − l̄0)

Dilatations: l0 + l̄0

Special Conformal: l1, l̄1 (0.5)

The f(z) are deterministic function. What we are really interested in, is the transforma-

tion of quantum field Φ(z). We recall that a quantum field can be thought as a random

field Φ(z) = Φ [φ(z)] generated by a given probability P [φ]. For instance, in a free bo-

son theory, the (primary) fieldsΦa(z, z̄) = eaφ(z,z̄) where ψ(z, z̄) is a scalar field generated

from a distribution P [φ] = e
∫
d zd z̄ ∂zφ∂z̄φ . So, when we give properties concerning the

fields Φ(z) of a quantum field theory, we are always thinking about the properties of the
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correlation function (expectation values) 〈Φ(z) · · · ..〉 containing this field. In mathemat-

ical jargon, we are giving its weak properties. One can show that, under an infinitesimal

transformation (0.2), aroun:

δαΦ(z) =
∑
n

αnLnΦ(z) (0.6)

where the generators Ln satisfy the celebrated Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,m, (0.7)

So, with respect to the Witt algebra, there is one additional term (in algebra jargon, it is

called the central extension). The constant c (that you can in general consider complex)

is called the central charge and it is a crucial parameter. Note that for n = −1, 0, 1 the

Virasoro algebra is equal to the Witt one, and the parameter c does not play any role.

This is related to the fact that these L−1, L0, L1 are the generators of the global conformal

group:

z → az + b

cz + d
, (a, b, c, d) ∈ C, ab− cd = 1. (0.8)

(note that you find the (2 + 1)(2 + 2)/2 = 6 parameters studied in the previous lecture) It

is an old result of complex analysis that the global conformal group is the greatest group

that is an automorphism of C∪∞, i.e. maps sphere into spheres. The central charge is a

conformal symmetry anomaly and originates from the fact that a general conformal map,

e.g. a mapping of the plane to a cylinder of radius R, introduces a macroscopic length

into the system. The central charge c can be shown to be proportional to the Casimir

energy.

In CFT, we call primary fields Φ∆(z), of dimension ∆, the fields that, under conformal

map z → g(z) transform as

Primary fields: Φ(z)→
(
dg(z)

dz

)∆

Φ (g(z)) , (0.9)

that, roughly speaking, generalize the behavior of the scaling fields under a global dilation.

The primary operator with scaling dimension ∆ satisfies therefore:

L0Φ∆ = ∆Φ∆ (0.10)

The stress energy tensor an Ward identities

The conformal symmetry implies the existence of two non-vanishing components of the

stress-energy, an holomorphic T (z) and anti-holomorphic T̄ (z̄) field. The Virasoro op-

erators Ln defined above are defined from the Laurent series of the stress-energy tensor

T (z)

T (z)Φ(0) ≡
∑
n

1

zn+2
LnΦ(0) (0.11)

The conformal Ward identities associated to the Noether current T (z) take the form [1]:〈
T (z)

N∏
i=1

Φ(zi)

〉
=

N∑
i=1

(
∆i

z − zi
+

1

z − zi
∂zi

)〈 N∏
i=1

Φ(zi)

〉
(0.12)
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From the asymptotic behavior of T (z), lim
z→∞

T (z) ∼ 1/z4 the 0.12 implies the following

three identities:

N∑
j=0

∂zj

〈
N∏
i=1

Φαi
(zi)

〉
= 0,

N∑
j=0

(
∆j + zj∂zj

)〈 N∏
i=1

Φαi
(zi)

〉
= 0,

N∑
j=0

2zj∆j + 2zj∂zj

〈 N∏
i=1

Φαi
(zi)

〉
= 0 (0.13)

These identities express the invariance of the CFT correlation function under the global

conformal transformation. The stress energy tensor is not a primary operator and trans-

forms as:

T (z) =

(
dg(z)

z

)2

T (g(z)) + c{g, z}, {g, z} =
g

′′′

g′
− 3

2

(
g

′′

g′

)2

. (0.14)

Note that the Scwhartzian derivative {g, z} vanishes for global conformal transformation,

consistently with what we have said about the intepretation of the central charge.

CFT Hilbert space: representation Virasoro algebra

The Hilbert space H construction in quantum field theory starts from the foliation of

the space-time (in these lectures we are always assuming Euclidean metric, but in the

following we call one space direction as time). Each leaf of the foliation is associated to the

Hilbert space. On one of this leaf, one typically define an reference |in〉 > state, the QFT

vacuum, that is then propagated on the others leafs by the generators of the symmetry.

In a (massive) QFT, with Poincare’ symmetry, the foliation is done by hyperplanes at

constant t. The |in〉 state is associate to the t = −∞ hyperplane that is successively

propagated by the time translation generators, the Hamiltonian. Note that the space

of linear operators acting on |in〉 is not isomorphic to the space H, i.e. it has not the

same dimension. To understand this, let discretize each space direction in M sites. A

state |A〉 ∈ H, corresponding to a certain slice of time, it is a vector with M components

and the space of linear operator acting on it are M2 matrices, as one can define a local

operator acting on each point M . In a CFT theory, the presence among the symmetry

generators of the dilation operators, make convenient to construct the Hilbert space by

radial quantization, that means that the foliation of the space is done by concentric

hyperspheres. The state |in〉 defined on each hypersphere is then evoluted by using the

dilation generators, that plays the role of the Hamiltonian. So, one can see that the

state in〉 is associated to a point, the origin. This is at the basis of the operator-state

correspondence in CFT. Assume |0〉 is the vacuum of the theory, then

|∆〉 = lim
z→0

Φ∆(z)|0〉 (0.15)
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Brief review of angular momentum theory

The theory of angular momentum in quantum mechanics is the study of the representation

of the Lie algebra sl2, that is the Lie algebra of the group of rotations SU(2). We briefly

review here the algebraic construction of its representations. This is a (relatively) simple

example where we can apply an approach which is analogous to the one we will apply for

Virasoro algebra later.

The Lie generators J+, J− and Jz, are the infinitesimal generators of the SU(2)

rotations and they satisfy the following Lie algebra:[
J+, J−

]
= ∓2Jz,

[
J+, Jz

]
= J+,

[
J−, Jz

]
= J− (0.16)

The J2 operator, defined by:

J2 =
1

2

(
J+J− + J−J+

)
+ (Jz)2 (0.17)

commutes with the algebra. We can then define a vectorial space j,m〉 of eigenvectors of

J2, Jz indexed by the two eigenvalues (j(j + 1),m),

J2|j,m〉 = j(j + 1)|j,m〉, Jz|j,m〉 = m|j,m〉 (0.18)

Note that, at this stage, the fact that we we j(j+ 1) as eigenvalue of J2 is purely a conve-

nient parametrization. In the eigenspace with eigenvalue j, we have from the commuation

relation:

J+|j,m〉 = c+(m)|j,m+ 1〉, J−|j,m〉 = c−(m)|j,m− 1〉 (0.19)

The fact that

(J±)† → J∓, (0.20)

implies that that the J+J−| and J−J+ matrix elements:

〈j,m|J+J−|j,m〉 = ||J−|j,m〉||, 〈j,m|J−J+|j,m〉 = ||J+|j,m〉||, (0.21)

are norms. Imposing the inner product to be positive definite, one obtains the condition:

〈j,m|J+J− + J−J+|j,m〉 = 2〈j,m|J2 − (Jz)2 |j,m〉 = j(j + 1)−m2 ≥ 0 (0.22)

So the above condition fixes upper (mmax) and lower (mmin) for the possible values of m.

This in turn implies that J+|j,mmax〉 = 0 and J−|j,mmin〉 = 0. It is straightforward by

using J−J+ = J2− (Jz)2 + Jz and J+J− = J2− (Jz)2− Jz to derive mmax = −mmin = j

and j = n/2 with n non-integer.

Verma modules

We can back now to the Virasoro algebra. We apply the same approach as seen above.

Noting as |∆〉 the highest weight state with conformal dimension ∆, L0|∆〉 = ∆ |∆〉,
the descendant states L−n1 · · ·L−nN

|∆〉, with n1 ≥ n2 ≥ · · · ≥ nN , form a basis of the

Verma module, V∆ with dimension ∆. We indicate a general element of this basis with

L−Y Φ∆(0), where Y =
n1, · · · , nN

 is a Young diagram that has N non-zero parts.

One has,

L0 |L−Y ∆〉 =
∆ + |Y |

 |L−Y ∆〉, (0.23)

where |Y | =
∑N

i=1 ni is the number of cells in the Young diagram Y .
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Inner product

We can define an inner product in the Hilbert space by impose that :

lim
z→∞

z2∆1〈Φ∆1(z)Φ∆2(0)〉 = 〈∆1|∆2〉 = δ∆1,∆2 (0.24)

where 〈∆1 is the (dual) outer state at the z = ∞. You see from the above relation that

states at different ∆ are orthogonal. Consider the field:

LnΦ∆1(0) =
1

2πi

∮
0

d zzn+1T (z)Φ∆(0). (0.25)

Using the transformations (0.9) and (0.14), and using Φ∆(∞) = limz→∞ z2∆Φ∆(z), under

the inverse mapping ω = g(z) = 1/z one obtains:

LnΦ∆1(∞) =
1

2πi

∮
∞
d ωω−n+1T (ω)Φ∆(∞) (0.26)

That means that:

lim
z→∞
〈L−nΦ∆1(∞)L−mΦ∆2(0)〉 = 〈Φ∆1(∞)LnL−mΦ∆2(0) = 〈L†−n∆1|L−m∆2〉 (0.27)

So the inner product in the CFt Hilbert space is defined by:

L†−n = Ln (0.28)

We have also the following resolution of the identity operator:

I =
∑
∆∈S

∑
Y,Y ′

|L−Y ∆〉 H−1
Y,Y ′〈L†−Y ′∆|, (0.29)

The matrix HL,L′(∆) is the Gram matrix whose entries are the scalar products of the

descendants , HY,Y ′(∆) ≡ 〈L−Y ∆|L′−Y ′∆〉. These scalar products are computed by using

the Virasoro commutation relations. The Gram matrix is block-diagonal, HY,Y ′(∆) =

diag(1, H
(1)
Y,Y ′(∆), H

(2)
Y,Y ′(∆), · · · ) where the H

(l)
Y,Y ′ are obtained by the scalar products of

the descendants at level |Y | = |Y ′| = l,

Restricting to level |Y | ≤ 2, and on the basis {|∆〉, L−1|∆〉, L−2|∆〉, L2
−1|∆〉}, the

matrix H reads:

HY,Y ′(∆)


1 0 0 0

0 2∆ 0 0

0 0 c
2

+ 4∆ 6∆

0 0 6∆ 4∆(4∆ + 1)

 (0.30)

Already at this point there are very important consequences of conformal invariance. For

instance one can see that, a unitary CFT, whose inner product is positive definite, ∆ ≥ 0,

as:

〈L†−1∆|L−1∆〉 ≥ 0→ 〈L†−1∆|L−1∆〉 = 〈∆|L1L−1∆〉 = 2∆ ≥ 0 (0.31)
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0.1 Exercises

0.1.1 Ex 1.

Consider z ∈ C ∪∞ and the conformal map:

ω = g(z) =
L

2π
ln(z) (0.32)

Describe the space where ω lives and show where the axis Re[z] = 0, Re[1] = 0, Im[z] = 0

are mapped. Using (0.9), compute the two point correlation function on the ω space.

0.1.2 Ex 2.

Using the Virasoro commutation relations, rederive the matrix of the inner product (0.30)
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