
1 Lecture2: Conformal transformations and quantum fields trans-

formations

1.1 Introduction

We define now the basics about CFT. We will define the conformal transformations in

any dimension and in D = 2 dimension. In the nect Lecture we will make the conncection

with what we have seen in Lecture 1.

1.2 Conformal transformations

Consider the space RD, and a system of coordinates xµ, µ = 1, · · · , D. Henceforth we

assume the Euclidean signature where the metric in the space is given by:

(ds)2 = ηµ,νdx
µdxν , ηµ,ν = diag(1, 1, · · · , 1), (1.1)

where the summation over repeated indexes is implied. Consider a change of coordinates

xµ → (x′)ρ({xµ}). One has:

(ds)′2 = ηµ,ν(dx
′)µ(dx′)ν = ηµ,ν

∂(x′)µ

∂xρ
∂(x′)ν

∂xσ
dxµdxν (1.2)

Consider an infinitesimal transformation,

(x′)ρ({xµ}) = xρ + αρ({xµ}), |αρ| << 1, (1.3)

which gives:

(ds)′2 = (ds)2 +

(
∂αρ({xµ})

∂xσ
+
∂ασ({xµ})

∂xρ

)
dxρdxσ (1.4)

We denote αρσ = ∂αρ({xµ})/∂xσ and α =
∑D

ρ=1 ∂α
ρ({xµ})/∂xρ. We can write the function

∂αρ({xµ})/∂xσ as

αρσ =
1

2

(
αρσ − ασρ

)
+

2α

D
ηρ,σ +

(
αρσ + ασρ

)
− 2α

D
ηρ,σ︸ ︷︷ ︸

=Sρ,σ

(1.5)

In the above equation the component Sρ,σ corresponds to the traceless symmetric tensor

that takes into account of the shear transformations. The conformal transformation are

the subset of coordinate transformation for which the shear component vanishes:

Conformal Transformation: Sρ,σ = 0, (1.6)

Consider the curves γρ : xµ = csts, µ 6= ρ. A conformal transformation preserves the

angles formed by the tangents of this curves at any point. This is the origin of the name

conformal (keeps the form). Note also that, for a conformal transformation:

(ds)′2 =

(
1 +

2

D
Tr (αρσ)

)
(ds)2, (1.7)

that means that the effect of the conformal transformation can be thought as a local

dilation that vary along the space. Conformal transformation have been known and used

in the navigation map since the 1569:
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Ex: Mercator map (1569), lines of constant bearing are straight

For D ≥ 3, the expansions in the coordinates {xµ} of the functions αρ({xµ}), solutions

of (1.6), have only the constant, linear and quadratic term (see Ex 1). The infinitesimal

transformations can be written:

Translations: αρ = δvρ

Rotations: αρ = δωρ,νx
ν ωρ,ν : Antisymmetric

Dilatations: αρ = δλxρ

Special Conformal: αρ = δsρ|x|2 − 2(δsµxµ)xρ (1.8)

From the above infinitesimal transformation one sees that there are d+ d(d+ 1)/2 +

1 + d = (d + 1)(d + 2)/2 parameters that define the conformal transformation in any

dimension.

1.3 Scale invariant models: examples

1.3.1 Deterministic self-similarity

;

Na = Nombre pic with size ≥ a

Na ∼ a−D, D = 2.28± 0.06

2



1.3.2 Statistical scale invariance

Water meniscus on a random substrate

≺
∫ L

0

dx u2(x)/L �∼ L2ζ , ζ = 0.388± 0.002 (1.9)

The process u(x) considered in x ∈ [x0, x0 + L] and the process λ−ζu(x) in x ∈
[(x0)λ, (x0 + L)λ] are the same in law
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Two-dimensional Ising model:

Z =
∑
{si}

e−
J
kT

∑
<i,j> sisj (1.10)

1.4 Conformal field theories: their role in critical model

We briefly review what are the physical systems that enjoy conformal invariance, what

this means and how we are naturally lead to consider Conformal field theory. I will

illustrate this with the physics of critical phenomena. We may think to a lattice spin

system at equilibrium, with partition function. Let us call L the linear size of system,

and a0 an ultraviolet cutoff, e.g. the lattice spacing. We suppose that the system has a

second order phase transition at a critical temperature T = Tc. The correlation length

ξ(T ), determining the behavior of the thermal fluctuations and the coupling between

the system degrees of freedom, diverges at the critical temperature, lim
T→Tc

ξ(T ) → ∞.

The divergence of the correlation length is understood by observing that the fluctuations

become important over all the length scales l, a0 << l << L. Besides the UV and IR

cut-offs, the system has not characteristic length and is therefore scale invariant.

Imagine that we are able to tune the UV cutoff without affecting the global shape of

the system, as illustrated below
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a0

L

L/a0 � 1

We want to study the scaling limit a0 → 0 of the statistical averages ≺ · · · � of lattice

operators at the critical temperature Tc. The theory of renormalization assumes that

there exist operators whose statistical averages, if appropriately renormalized, admit a

finite scaling limit. The study of the scaling limit in critical systems is important because

it is has universal character. The findings obtained in this limit depend on general features,

i.e. on the dimension of space and on the symmetries of the system under consideration,

and are relevant to all systems belonging to the same class of universality. The magnetic

order parameter s(x) is an example of scaling lattice operator. Consider the limit of the

spin spin correlation;

lim
a0→0

a−2∆phys

0 ≺ s(x1)s(x2) �,

where xi are fixed positions in the domain. The limit has been (rigourously proven) to

exist for ∆phys = 1/8. Below you find real Montecarlo simulations (courtesy of Marco

Picco) taken for a lattice of size 8192× 8192:
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In the scaling limit, we can identify the statistical averages of the operators a−∆phys
σ σ(x)

with the correlation functions of fields Φ(x) in a massless (scale invariant) Euclidean quan-

tum field theory.

lim
a0→0

a−2∆phys

0 ≺ s(x1)s(x2) �∝ 〈Φ(x1)Φ(x2)〉 =
1

|x1 − x2|2∆phys (1.11)
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1.5 CFT, a first hint of the conformal bootstrap approach

Note at the limit, there is no dependence on any scale. That means that the correlation

function 〈Φ(x1)Φ(x2)〉 in invariant under dilation. Thus we require that:

x→ x̃ = λx :
〈

Φ̃(x̃1)Φ̃(x̃2)
〉

= 〈Φ(x1)Φ(x2)〉 (1.12)

As you can see, that implies that the fields transform under dilation:

x′ → λx : Φ̃(x̃1) = λ∆phys

Φ(λx1) (1.13)

So, we have here an example of how a field in a CFT transforms under a dilation:

starting from a lattice model, we have ”experimentally” argued how a quantum field

(more precisely a quasi-primary field) have to behave under a scaling transformation and

we impose the invariance of the correlation function.

Now we can reason in an inverse way: we provide the variations of the fields δΦ of

a QFT under the infinitesimanl conformal tranformations (1.8). For a scalar fields, we

have:

Translations: δTranslΦ({xµ}) = vρ∂ρΦ({xµ}) = δvρPρΦ({xµ})
Rotations: δRotΦ({xµ}) = δωρ,νx

ν∂ρΦ({xµ}) = δωρ,νΛν,ρΦ({xµ})
Dilatations: δDilΦ({xµ}) = δλ(xρ∂ρ + ∆phys)Φ({xµ}) = δλDΦ({xµ})
Special Conformal:

(
|x|2∂ρ − 2xρxµ∂µ − 2∆physxρ

)
Φ({xµ}) = δsρKρΦ({xµ}), (1.14)

where we have defined the generators of the conformal transformations (Pρ,Λν,ρ, D,Kρ).

The generators Pρ,Λν,ρ are the infinitesimal generators of the Poincare’ group. We remind

that, from the Coleman-Mandula theorem, the only what symmetries that are possible in a

massive relativistic theory of interacting particles are direct products of the Poincar group

and an internal symmetry group [1]. The conformal group is therefore the generalization

of the Coleman-Mandula theorem for mass-less quantum field theories. The algebra reads:

[Λµ,ν ,Λσ,ρ] = ην,σΛµ,σ − · · · ..
[Pµ,Λσ,ρ] = ηµ,σPσ − ηµ,σPρ
[Pµ, Pρ] = 0

[D,Λσ,ρ] = 0

[Pµ, D] = Pµ

[Kµ, D] = Kµ (1.15)

We will see in the next lecture that in D = 2 the conformal algebra that generalize the

above one has an infinite number of generators: it is the Virasoro algebra.

Let us assume a correlation function G(x1, x2) =
〈

Φ∆phys
1

(xi)Φ∆phys
2

(x2)
〉

of a general

CFT with two fields with different scaling fields exists. We impose that it is invariant
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under conformal transformations:

Translations: δTranslG =
(
∂xµ1 + ∂xµ2

)
G = 0→ G = G(x1 − x2)

Rotations: δRotsG = (xν∂ρ − xρ∂µ)G = 0→ G = G(|x1 − x2|)

Dilatations: δDilG =
(

∆phys
1 + ∆phys

2 + |x1 − x2|∂|x1−x2|
)
G = 0→

→ G(|x1 − x2|) =
1

|x1 − x2|∆
phys
1 +∆phys

2

(1.16)

Special Conformal: ..→ ∆phys
1 = ∆phys

2 , (1.17)

So, we have obtained that, in any space dimension D ≥ 3, the conformal transformations

impose the following form to the two

〈Φ1(x1)Φ2(x2)〉 =
δ∆phys

1 ,∆phys
2

|x− y|2∆phys
1

, (1.18)

In an analogous way, one obtains this result for the three-point functions:

〈Φ1(x1)Φ2(x2)Φ3(x3)〉 =
C123

|x1 − x2|η3|x2 − x3|η1|x3 − x2|η2
(1.19)

with η1 = ∆phys
2 + ∆phys

3 − ∆phys
1 , etc. So the conformal invariance fixe the spatial de-

pendence of the two and three point functions. Already this is an highly not trivial

achievment of the conformal bootstrap approach!

The values of the scaling dimension ∆phys as well as of the structure constants C123,

which are the basic informations to solve a quantum field theory, remains unknown.

Usinng an analogy with the study of angular momentum in quantum mechanics, the

dimensions ∆phys can be understood as the SU(2) Casimir invariant J2 while the structure

constants C123 are the analogous of the ClebschGordan coefficients.

1.6 Exercises

1.6.1 Ex. 1

Consider the case D = 3 and find the possible solutions αj(x, y, z), j = x, y, z for (1.6).

Show that all the derivative of type ∂3
zα

j(x, y, z) = 0, ∂2
z∂yα

j(x, y, z) = 0, vanish. Instead

for D = 2 shows that all harmonic function αj(x, y) are solution of for (1.6).

1.6.2 Ex. 2

Consider a sphere of radius 1, on which a point P has spherical coordinate (θ, φ), θ and

φ being respectively the polar and azimuthal angle (measured in radiants). Consider two

maps from the sphere to a cylinder which is tangent at the sphere on the equator. On

the cylinder we take coordinate x, x ∈ [0, 2π], and y ∈ R. Consider two coordinates

transformations:

Map1 : x = φ, y = tan(θ) (1.20)

Map2 : x = φ, y = ln

[
tan

(
π

4
+
θ

2

)]
(1.21)

The Map1 is the geometrical projection of a point on a sphere on the cylinder, Map2 is

the Mercator map (1569). Show that Map1 is not a conformal map, while Map2 is. Show

that in Map 2, there is a scaling factor that vary along the polar angle, λ(θ) = cos(θ)−1.
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1.6.3 Ex. 3

Using (1.17), prove the (1.18).
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