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Introduction

Conformal Field Theory (CFT) are mass-less quantum field theory where the scale-

invariant symmetry adds to the Poincare symmetry. The main goal of these lectures

is to provide rudiments of Conformal boostrap approach and the properties of CFTs that

are behind its connection with topological states of matter,

Lecture 1, Configuration space of indistinguishable particles: mul-

tiply connected spaces, permutation and braiding group

Introduction

The conformal bootstrap approach is an approach that is alternative to a Lagrangian

approach to quantum field theories: therefore introducing CFT is more difficult as the

concepts used are not familiar to students and they can be quite abstract. In the first

lecture we want to give one the main idea behind the relation between CFT and tolopogical

statess. More precisely, the symmetry function of the conformal algebra, the conformal

blocks, form the representations of the braiding group BN . This property has been the

one that inspired the connections between CFTs and topological states, in particular the

prediction of non-Abelian statistics in fQH.

In the first lecture we remind how to formulate correctly the problem of the statitics

of spinless quantum particle in two dimensions and we introduce to the mathematical
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structures emerging from this study. There will be no CFT, but rigorous mathematical

results of complex analysis.

Quantum mechanics on multiply connected spaces and the emergence of any-

onic statistics

The topology of the space on which the quantum particles live has very deep consequences.

We refer the student to the seminal papers [1], [2] and [3].

A simple model: particle in magnetic field

To illustrate this let start by briefly recalling the most famous example of a quantum

effect with topological origin: the magnetic Aharonov-Bohm effect [4, 5], that has been

experimentally observed [6]. Consider a plane pierced at the origin by a magnetic flux

Φ0. The vector potential ~A, that can be taken as:

~A =
Φ0

2π

( y
r2
,− x

r2

)
, (0.1)

such that : ∫
γ0

~Ad~l =

∫
~∇× ~Ad~S = Φ0

∫
δ2(x) d~S = Φ0. (0.2)

0

γ0

R2

Now consider a charged particle living in the region X1 = R2−{0}. The vector potential

appears therefore in the covariant derivative ~D an therefore in the Hamiltonian:

~D = ~∇− i ~A, H = ~D2, (0.3)

where all the constants (~, e, c = 1) has been set to one. The ~A cannot vanish (or ”gauged

away”), even when the magnetic field vanishes everywhere in the particle configuration

space X1. In topological terms, this can be expressed by saying that X1 is a multi-

connected topological space as γ0 cannot be contracted to a point (see below). The

Hamiltonian contains therefore a term which is topological in nature. In order to solve

the Schroedinger equation:

HΨ(x) = EΨ(x) Ψ(0) = 0, (0.4)

where Ψ(x) is the uni-valued wavefunction, a convenient way is to eliminate the vector

potential in H by attaching a (Dirac) tail to Ψ(x):

Ψ̃(x) = ei
∫
γ
~Ad~lΨ(x), (0.5)
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where γ is a path connecting an (arbitrary chosen) point x0 to x. The problem (0.4) is

now written as:

~D2Ψ̃(x) = EΨ̃(x), Ψ̃(xe2iπθ) = eiΦ0Ψ̃(x), Ψ̃(x) = 0 (0.6)

So one eliminates the topological term in the Hamiltonian at the price of having a wave-

function defined on a surface with a branch cut (we will return on this later).

Notions of topology

Let us recall some basic notions of topology, in particular the multiply connected space

and the homotopy classes. A (topological) space is multiply connected if any two points

can be connected (connected) by a continuous path and there exist paths that connect

two same marked points but are not homotopic . Two paths γ1, γ2 are homotopic, if they

can continuously deform one into another. The relation of homotopy fixes an equivalent

relation: we will note as [γ] the class of equivalence of a path γ. Below, on the left, an

example of a simply connected space: any couple of curves γ0 and γ1, connecting two

points p and q, can be deformed one into another continuously.

p q

γ1

γ0

γ̃1

Space 2

p q

γ1

γ0

Space 1

The Space 2 is an example of a double-connected. The curves γ1 and γ̃1 are not homotopic.

Given a topological space X, and the set of closed paths in X that start and end at a

same point x0, one can define a product γ1γ2 = γ3 between two paths by gluying them.

This product is consistent with the homotopy classes, γ1γ2 = γ3,→ [γ1][γ2] = [γ3]. The

associated group is called fundamental group, π1(XN). For instance π1(R2 − 0) = Z:

this means that the element of the groups, and therefore the homotopy classes [γ] are

associated to integers, [γn] → n, where γn is a loop that winds the origin n times. One

has [γn][γm] = [γn+m].

Statistics of indistinguishable particles

There is a very well known argument, that can still be found in many text books. Consider

N indistinguishable quantum particles living in a D dimensional space. The particles po-

sitions are denoted by xi, i = 1, · · ·N , xi ∈ RD, with xi being a vector with D components.

First one considers the many-body wave-function Ψ as a function of the N positions xi,

Ψ(x1, · · · , xN) . Note that, choosing as configuration space YN = RDN (a point in this

space is associated to the set {xi}), one is artificially labeling the particles. The exchange

operator Pj,k acts on this Hilbert space as:

Pj,kΨ (x1, · · · , xj, · · · , xk, · · · , xN) = Ψ (x1, · · · , xk, · · · , xj, · · · , xN) (0.7)
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When the particles are indistinguishable, their interaction should not depend on their

label, i.e. the operator P commutes with the Hamiltonian H, [H,P ] = 0. Therefore the

two operators have a common space of eigenstates. As P 2 = 1, the possible eigenvalue

can be only 1 (bosons) or −1 (Fermions). This argument, that does not depend on the

dimension of the space, fails to predict the existence of anyonic statistics in D = 2. The

point is that we are implicitly assuming that the exchange operation is well defined. On

the other hand, we can expect that when non-trivial topological effects are present, this

assumption is in general not true. For instance, multi-valued wavefunction can enter into

the game and the operation of exchanging two variables becomes ambiguous. Or, in D = 1

the exchange of two particles is also not well defined: one cannot exchange particle k and

particle j without scattering with other particles. For a discussion of the failure of the

above argument in the 1D case, see [7].

The problem of N indistinguishable particles has been put on more solid ground by

considering as space of configurations the space XN :

XN =
RDN − {coinciding points}

SN
, (0.8)

where SN is the permutation group of N objects. The above notation a point q ∈ XN

is the equivalence class q = [{xi}] formed by the configurations {xi, · · · , xN} of points

that are related one to the other by permutations of the particle labels. The many-body

wavefunction Ψ is now an (univalued) function defined on this space Ψ = Ψ(q). The

crucial observation is that XN is, for D > 1, a multiply-connected space (see Ex. 1).

It is very convenient to use a Feynmann path-integral approach and study the evolu-

tion of the wavefunction Ψ(q, t) during the time t ∈ [0, 1]. We denote as xj(t) the wordline

of the j− particle. The set of worldlines {xj(t)}, j = 1, · · · , N form a loop starting and

ending at the same point q in the configuration space XN . From now on, we will be not

interested in the dynamics of the particles (i.e. the precise form of the functions xi(t)),

but we will focus on the homotopy of the loops.

The Feynman sum over all the possible loops can be cast then into a sum over all the

path belonging to the same homotopy class and then a sum over the different classes,

Ψ (q, t = 1) =
∑

A=Homotopy class

χ(A)
∑

All loops in A

eiAction[loop in A]Ψ (q, t = 0)

=
∑

A∈π1(XN )

χ(A)
∑

loops∈A

eiAction[loop ∈ A]Ψ (q, t = 0)

=
∑

A∈π1(XN )

χ(A)ΨA (q, t = 1) , (0.9)

where we assume Ψ to be normalized. In the above formula we used the freedom to

associate different weights χ(A) to each homotopy class: the addition of these weights

corresponds to adding a topological term (so a term that depends only on the topology) to

the action. Every function ΨA (q, t = 1) has been obtained from the same local dynamics,

and therefore one expects any local observable O to give the same measure, in particular

〈ΨA|O|ΨA〉 = 〈Ψ|O|Ψ〉 for each A. As the physical measures are invariant under the

action of the group π1(XN), the weights χA should then be taken from its scalar unitary
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representation 1. In analogy of what we have seen for the case of a particle in a localized

magnetic flux, we can eliminate the topological term in the action by attaching a tail

to the function Ψ(q, t) and study the topology free evolution of multi-valued (in XN)

wavefunction Ψ̃(q, t). Consider an initial point q0 (arbitrary) in XN and B a the homotopy

class of braidings from q0 to q. We define

Ψ̃C(q, t) = χ(C)Ψ(q, t), C ∈ π1(XN). (0.10)

Note that the function Ψ̃C(q, t) is an uni-valued function in the covering space X̃N . It

satisfies

Ψ̃CA(q, t) = χ(C)Ψ̃A(q, t), C, A ∈ π1(XN). (0.11)

D ≥ 3

For D ≥ 3, one can show that:

SN = π1(XN), for D ≥ 3. (0.12)

In this case the different topological sectors A are in one-to-one correspondence with

the different permutations P of N objects. We can associate ΨA (q, t) → Ψ
(
{xP (i)}, t

)
.

The unitary scalar representations of SN are nothing else that the bosonic and fermionic

statistics under exchange of two particles (see Ex 2), and the above formula becomes the

more familiar symmetrization or antisymetrization formula:

Ψ ({xi(t)}) ∝
∑
P∈SN

χ(P )Ψ
(
{xP (i)}, t

)
χ(P ) = 1 or χ(P ) = sign(P ) (0.13)

D = 2

In D = 2, the situation is much more rich as the fundamental group πi (XN), called the

braid group BN ,

BN = π1 (XN) , (0.14)

is infinite dimensional.

Artin has proved that the braiding group BN is isomorph to the group generated by the

elements σi, that braids the string i below i+ 1, as in this figure:

σj :

j − 1 j j + 1 j + 2

They form the following algebra,

1 We remember that an unitary d− dimensional representation of a group G (with elements g) is

defined by a d− dimensional complex vector space with an Hermitian inner product (the representation

space) and by the set unitary d×d matrices ρ(g), acting on this vector space, such that ρ(g)ρ(h) = ρ(gh),

g, h ∈ G
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=

σlσk = σkσl (k 6= l ± 1)

σlσl+1σl = σl+1σlσl+1

There are no further relations among the σi’s. In particular note that σ2
i 6= 1.

One-dimensional representation of BN : the abelian anyons

Let us us consider first the case of one-dimensional unitary representation of the braiding

group. In this case χ(σi) is just a phase (see Ex 1):

χ(σi) = eiθ, θ ∈ [0, 2π[ (0.15)

. Consider a general element A ∈ BN obtained by a given sequence of σi. Then:

A = σkσ
−1
l · · ·σj, χ(A) = eiθ(N+−N−), (0.16)

where N+ (N−) is the number of braiding σk (σ−1
k ) where the particle k passes below

(above).

We want to give some examples of functions that satisfy (0.11). These functions can

be easily found in the realm of the complex analysis. Consider for instance the function:

f(z) = zθ/π, f(ze2πi) = e2iπθf(z). (0.17)

The point z = 0 represents a branch point: the function is discontinuous when one does

an analytic continuation of the function following a loop around z = 0. This can be seen

in the following plot,
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f(z) = z2/3 f(z) = z2/3(1− z)2/3

The plot on

the left shows the function f = z2/3: the surface is given by the absolute value |f(x+ iy)|,
while the colors shows its phase. The branch cut is visible by the discontinuity of the

green/blue colors. The z2/3(1− z)2/3 is represented on the plot on the right.

The behavior of a function going around a singularity is called the monodromy.

Consider the representations of B2. It is easy to very that the function:

˜Ψ(q, t) = (z1(t)− z2(t))θ/π (0.18)

satisfies (0.11).

For general B2 one can verify that the function:

ΨqhL(z1, · · · , · · · , zN) =
∏
i<j

(zi − zj)θ/π, (0.19)

satisfies (0.11) with (0.16).

So we have learned that the functions with non-trivial monodromy can be related to

the representation of the braiding group. These functions are solutions of a particular

class of differential equations, the Fuchs differential equation, defined below. For instance

the function (0.19),as a function of z1 = z is solution of the following ordinary differential

equation: (
d

dz
+

N∑
j=2

θ

z − zj

)
ΨqhL(z) = 0 (0.20)

that is of Fuchsian type.

Fuchsian differential equations

Consider a linear ordinary differential equation (ODE) in the complex domain P = C∪∞:(
dn

dzn
+ y1(z)

dn−1

dzn−1
+ · · ·+ yn(z)

)
f(z) = 0
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where yl(z) are analytic in P\{z2, z3, · · · , zN}. The point zi are said to be a regular

singularity if it is bounded by an algebraic function, that is

∃M ∈ N : lim
z→zi
|z − zi|M |y(z)| = 0 (0.21)

A Fuchsian equation is an equation where all singular points are regular singular points.

An equation is of Fuchsian type if and only if the function yj(z) satisf the following

property, (
p∏
i=1

(z − zi)j
)
yj(z) =

Kj∑
l=0

cl z
K , cl ∈ C, Kj ≤ j(p− 1) (0.22)

Let us illustrate with very simple examples the difference between a Fuchsian and a non-

Fuchsian equation. The following ODE,(
d

dz
+

1

z2

)
f(z) = 0, Solution: f(z) = e1/z, (0.23)

is not of Fuchs type as it presents an essential singularity at z = 0. On the other hand,

you can easily check that the following equation is Fuchsian,(
d

dz
+
α

z

)
f(z) = 0, Solution: f(z) = zα

and indeed the solution has a regular singularity.

Now, let us consider a very important example of Fuchsian equation, the Euler’s hyper-

geometric differential equation:(
z(1− z)

d2

dz2
+ [γ − (α + β + 1)z]

d

dz
− αβ

)
f(z) = 0, (0.24)

This is a Fuchsian equation of order 2 with three singularities, z1 = 0, z2 = 1 and

z3 = ∞. We can find the small z expansion of the solution by using a precedure called

the Frobenious method (see Ex 4).

The bi-dimensional space of solution is spanned by the functions f (1)(z) and f (2)(z) that

admit the following expansions:

f (1)(z) = 2F1 (α, β; γ; z) =
∞∑
l=0

(α)l(β)l
l!(γ)l

zl

f (2)(z) = z1−γ
2F1 (β + 1− γ, α− γ + 1; 2− γ; z) , (0.25)

where we used the notation (x)l = (x)(x+1) · · · (x+ l−1). The convergence radius of the

above expansion is |z| < 1: the problem is how to analytically continue the above solutions

over all the complex plane C. As we explain now, this in turn is equivalent to study the

monodromy properties of the solutions (0.25). Let us study the monodromy associated

to a small loop γ0 around zero. In this case we can remain in the region of the complex

plane where the (0.25) is convergent. This means that γ0 : f (1)(z)→ f (1)(z), f (2)(z)→
e2iπ(1−γ))f (2)(z). Using a matrix 2× 2,

γ0 : (f (1)(z), f (2)(z))→ (f (1)(z), f (2)(z))M0 , M0 =

(
1 0

0 e2iπ(1−γ)

)
. (0.26)
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Now, what about the monodromy around a loop γ1 going around the other singularity, z =

1? It is clear that one cannot use anymore the (0.25) as the loop passes in regions where

the sums are not convergent. Let explain what happens when one does a monodromy

transformation around z = 1. As we found the expansion of the solution around z = 0,

we could equivalently find the expansion of the solution around z = 1 (see Ex.4), obtaining

f (3)(z) = 2F1 (α, β; 1 + α + β − γ; 1− z)

f (4)(z) = (1− z)γ−α−β2F1 (γ − α, γ − β; 1 + γ − α− β; 1− z) . (0.27)

Being solution of the same second-order differential equation, the functions f (1)(z) and

f (2)(z) can be written in as a linear combination of f (4)(z) and f (4)(z), f (1)(z)→ f (1)(z)+

· · · f (1)(z), f (2)(z) → · · · f (1)(z) + · · · f (2)(z). In terms of these functions, which are

convergent in a radius |z − 1| < 1, the monodromy transformation around γ1 is diagonal,

γ1 : f (3)(z) → f (3)(z), f (4)(z) → e2iπ(γ−α−β))f (4)(z). So one finds that the functions

f (1)(z) and f (2)(z) mix under a monodromy around γ1. Using the linear relation between

the basis
(
f (1)(z), f (2)(z)

)
and the basis

(
f (3)(z), f (3)(z)

)
(see Ex 4), one finds:

γ1 : (f (1)(z), f (2)(z))→ (f (1)(z), f (2)(z))M1 , M1 =

(
1−e1

e1(1−e2e3)
e1e2e3−1
e1(1−e2e3)

e2−1
1−e2e3

e2(e3−1)
1−e2e3

)
(0.28)

where we set

e1 = e2π
√
−1(β−γ) , e2 = e2π

√
−1(−β) , e3 = e2π

√
−1(γ−α) . (0.29)

The linear relation between solutions allows to analytically continue the solutions on all

the domain P\{0, 1,∞}.

Ising non-abelian anyons

In the next lectures we will introduce the conformal block of the Virasoro algebra. We

will show that conformal blocks of the Rational Conformal field theories satisfy Fuchsian

equations. For instance, consider four fields Φqh(zi), at positions zi whose cross ratio is:

z =
(z1 − z2)(z3 − z4)

(z1 − z4)(z2 − z3)
. (0.30)

The cross ratio has these properties under permutation of indixes:

z 1− z 1
z

z
z−1

1− 1
z

1
1−z

permutations

id

(13)(24)

(12)(34)

(23)(14)

(13)

(24)

(1234)

(1432)

(23)

(14)

(1342)

(1243)

(12)

(34)

(1324)

(1423)

(123)

(243)

(134)

(142)

(132)

(234)

(143)

(124)

(0.31)

The conformal blocks of four quasi-hole fields takes the form:〈
4∏
i=1

Φqh(zi)

〉
= (z1 − z4)−

1
8 (z2 − z3)−

1
8 z−

3
8 (1− z)−

3
8f (z) , (0.32)
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where f(z) satifies the (0.24) with α = 5/4, β = 3/4, γ = 3/2. One has therefore an espace

of two solutions, f (1)(z) and f (2)(z). One can chose the following basis of functions:

Ψ1 =

〈
4∏
i=1

Φqh(zi)

〉
(1)

= (z1 − z2)−
1
8 (z3 − z4)−

1
8

√
(1− z)1/4 + (1− z)−1/4 (0.33)

Ψ2 =

〈
4∏
i=1

Φqh(zi)

〉
(2)

= (z1 − z2)−
1
8 (z3 − z4)−

1
8

√
(1− z)1/4 − (1− z)−1/4 (0.34)

One can now study the behavior of the vector of wave-functions (Ψ1,Ψ2) under the

elements of the braiding group. For instance the element σ2
1, corresponds to make z1 going

around z2, so (z1 − z2)→ (z1 − z2)ei2π. This gives:

σ2
1 : (Ψ1,Ψ2)→ (Ψ1,Ψ2)ρ(σ2

1) , ρ(σ2
1) =

(
e−iπ/4 0

0 e−iπ/4

)
(0.35)

The element σ2
2 corresponds to make z2 going around z3. We can use the above result

once we have permuted the indexes (23). In the above table one can see that for the cross

ration this means z → 1 − z. Writing the Ψ1 and Ψ2 in the new cross ratio, and doing

(z2 − z3)→ (z2 − z3)ei2π, one can verify that:

σ2
2 : (Ψ1,Ψ2)→ (Ψ1,Ψ2)ρ(σ2

2) , ρ(σ2
1) =

(
0 1

1 0

)
(0.36)

One can see that the above wavefunction realizes a 2− dimensional unitarian repre-

sentation of the brais group B4.

Exercises

Ex. 1

Consider N = 2 particles living in RD, and the two spaces, Y
(D)

2 =
(
R2D − I

)
and

X
(D)
2 =

(
R2D − I

)
/S2. Argue by simple drawings that:

• Y (1)
2 is not connected

• Y (3)
2 is simply-connected and X

(3)
2 is double connected

• Y (2)
2 is multiply connected.

Ex. 2

Consider an unitary one dimensional representation of the group (??). Set ρ(σj) = eiθj .

Show that the N − 1 phases θj have to be equal, θj = θ.

Ex.3

The permutation group SN can be formed by the elements si that exchange particles i

and i+1. Write the algebra formed by the si. What is the difference with the one formed

by the σi? Consider the one-dimensional representation of the si algebra and explain why

one can find only fermionic or bosonic representation.
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Ex.4

Consider a function f(z) = za (1 + c1(a)z + · · · ) that satisfies the ODE (0.24). Verify

that the (0.24) is of Fuchsian type and find the values of a and of the constant c1. Do the

same starting from f(z) = (1− z)b (1 + d1(b)(1− z) + · · · )
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