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Systems with regular Lagrangians



Introduction

To begin the discussion regarding N degrees of freedom systems with
constraints let’s consider the functional S:

Slq ()] :/tzdt L(gi (), 4 (1)),

which is called an action, and contains all the information about the
dynamics of the system.

The path taken by the system is that for which the action is stationary
(68 = 0) under small system configuration changes (6q).

0S = 0 leads us to the Euler-Lagrange equations:

oL d oL
dq;  dtog;

0.



Condition for regular Lagrangians

Explicitly, we obtain

L L oL 9L
U oq0q — oq Vogqog
—
Wi

From the above equations we can only determine the accelerations in
terms of positions and speeds if W = det\W" £ 0.



Hamiltonian formulation for systems with regular Lagrangians

In addition to the Lagrangian formulation of classical mechanics, there is

a formulation due to Hamilton.

The transition to the Hamiltonian formulation of the mechanics is given
by the Legendre transformation

The variation of H gives us

oL
dq;

From where we can see that H is independent of the speeds.

§H = Giop' — —6q;.




Hamiltonian formulation for systems with regular Lagrangians

We have g—’;l_ = WY, from where we see that W/ # 0 is necessary to
J .
obtain ¢; as a function of p'.

If we write the action as:

St = [ e [~ H (@), ()],

1

we can find , making variations of the action. Then,
we have:
. OH
ql ap,‘?
i OH
P 6q,~’



Hamiltonian formulation for systems with regular Lagrangians

Let's recall that for two functions of the phase space, the Poisson bracket

is defined as

A 0B  O9A OB
{A(p.q),B(p,q)} = 5090 05 5a’

and d 2A

With what we have seen we can find the relevant information from our
system.



Hamiltonian Formulation of
Singular Lagrangians




Condition for the singularity of the Lagrangian

The Lagrangian is said to be singular if W/ = 0.

The singularity of the Hessian is equivalent to the non-invertibility of
p = g—é this means that we have variables that are not independent.
This results in the existence of relations that connect the positions

variables and the momentum variables

é:(q,p) =0, r=1,...,R.

These conditions are called the primary constraints.

To take into account the constraints, we attach these to the theory via
Lagrange multipliers. Here the multipliers act as new dynamical variables.



Hamiltonian Formulation of Singular Lagrangians

Then we come to the action
s = [ dt[p()ae) - H(p(0). a(0) ~ N (D)6 (p(e) a(e)].

By making variations of the action we obtain

g 70H B )\ré)gﬁ,
P = "o oq;’
. oH 0o,
= -+ N
£ ap' * ap'
¢r = 0

We can rewrite p’ and ¢; in the following way
po= [{p HY + X {p' ¢r}] ’r ’
,

[{ar. H} + X {ar. 0] | _.

qi



Hamiltonian Formulation of Singular Lagrangians

Then, since the Hamiltonian is not uniquely determined, we can go over
to another Hamiltonian
H=H+X\o,.

Using this Hamiltonian the equations of motion take their ordinary form
similar to the case in which there are no constraints

E

{F, A} = {F, X}, |
{F,HA}.

Fp

Q
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Hamiltonian Formulation of Singular Lagrangians

To have a consistent system we need the time derivatives of the
constraints ¢, to be zero

6n = {6, i} = {60, H} + Mr{n, 0/} % 0.
The following may happen:

e We get an expression for \,.

e New relationships emerge between momenta variables and positions
variables that are independent of the primary constraints (secondary
constraints). When secondary constraints arise, the process is
repeated until no new constraints appear.
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Hamiltonian Formulation of Singular Lagrangians

The distinction between primary and secondary constraints is of little
importance in the final form of the Hamiltonian formulation.

A different classification of constraints, and more generally, of functions
defined in the phase space, plays a central role.

This is the concept of first-class and second-class functions.

e A function F(gq, p) is said to be First Class if: {F,,} ~ 0 with all
the constraints.

e F will be Second Class otherwise.

12



Hamiltonian Formulation of Singular Lagrangians

Second-class constraints give rise to a matrix with entries

Cmn S {va Xn}a

whose determinant is not zero even weakly.

Then we can define the Dirac bracket for two functions of the phase
space as

{A’ B}* = {A’ B} - {Avxm} cm {Xna B};

where C™" is the inverse of Cpp.

13



Generalization to infinite degrees
of freedom




Generalization to infinite degrees of freedom

Now the Lagrangian is a function of the fields and their derivatives with
respect to time.

L=Llp(x), o ()],

L can be expressed as:

L= /dD—lx L.

L is a function of ¢ and its first derivatives, £ (¢, 0,¢).

14



Generalization to infinite degrees of freedom

Then, the action is

Sle] = /de L.

From this we get the Euler-Lagrange equations for the fields

oL _, o
dpa "0 (Oupa)

We define the of the fields as:

=0.

Lo
dpa(x)  0oa(x)

7 (x)
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Generalization to infinite degrees of freedom

The Hamiltonian is:

H:/dx?-[z/dx(wa(x)gba(x)—/j)

The Poisson brackets for two functional of the phase space become
B(y) 0A(x) 6B (y)

{A().B(y)} = ) oA |
&pa 577 (z) o072 (2) 0wa(2)

The fundamental Poisson brackets are defined as

{pa(x), 06 (1)} =0={n"(x), 7" ()},

oc "

=22
O%a

{pa(x),7° ()} = 6,°6°7D (x —y).
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Generalization to infinite degrees of freedom

The Dirac brackets for fields are:

(AR, BW)Y = {AX). B()}+
- / dx'dy' {A(x), xs ()}C (x',y") {xs (v') B ()},

where C*' (x,y') is the inverse of the Dirac matrix such that:

/ dz Cogr (x,2)C% (2,x') = 8esr6 (x — X') .

With this we go from a system of N degrees of freedom to a system with
infinite degrees of freedom.
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Example: Proca theory




The Proca action is:
4 1 Qv 1 2 I
S:_ d*x ZFIU,F +§m AHA o
Where F,, = 0,A, — 0, A,.
Then, separating the terms into space and time, we get
1
S=7 / d*x (2FgiFoi — FijFjj +2m?AgAg — 2m*AjA;) .

The generalized momenta are

; B oL B oL e _ ;
T = @A) ~ dEAr) o = TE R
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The Hamiltonian with the coupled constraint is
- 1 . .
A= / d*x (2r'w" + 47" 9; Ao + FiiFy — 2m* AoAo + 2m*AA; + X ¢1)

where ¢; = 70 ~ 0.

We define
{7 (x), 7 (y)} = 0, {Au(x), Au(y)} = 0, {Au(x), 7"(y)} = 8% & (x~y).
Preserving the constraint in time we obtain a secondary constraint

¢p = Oim' + m*Ag ~ 0

Then, preserving the secondary constraint in time, we are able to find the
Lagrange multiplier
A= —m28;A;

19



The Dirac matrix is

_ 0 —m?*$*(x —y)
Css’(xvy)* <m253(x_y) 0 >

Its inverse is

0 53(;72—}')
C* (x,y) = 8 (x—y) 0
——=

20



Then the Dirac’'s brackets are

ALLT DN = (8= 55— ),
(Al A == (8081 + 8,81, 0 ((x — ¥))

{r"(x), 7" (y)}* = 0.

The theory is described by the Hamiltonian

1 o .
H= . / Px(2n'n’ + AT’ 0;Ag + FFy — 2m?AgAg + 2m* A A;).
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Dirac method for the Morand
and Solodukhin action




Study of the kinematics of the model of Morand and Solodukhin

The Morand and Solodukhin action is

S[h,B] = /d“ h,wh”” —h b))+

—% (Baﬂpg b _ope pof )4 Baﬁf‘a,,hwsmﬂ

Baﬁw - _Bﬁa,u

Making variations of the action we obtain the following equations
my (W — 0" h) + 7P §,Baps " = 0 (1)

mo (Baﬁ,a _ naanﬂﬁ 4 ,r]ﬁUB“/aﬁ) _ Eupaﬁaphoy -0 (2)
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Study of the kinematics of the model of Morand and Solodukhin

By studying the equations of motion we obtain:

Substituting the above in (2) and (3) we have left
mh* + /PP §,Bop * =0, (3)

mp B8 — 7P 7, = 0. (4)

From this we see how to represent h,,,, in terms of B,z , and vice versa.

23



Study of the kinematics of the model of Morand and Solodukhin

Substituting (4) in (5) we have left
(O-m?) B>, =0,
and substituting (5) in (4),
(O—m?) hy, =0,

2 _ _
where m* = ™2 y [0 = 0#0,.
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Canonical formulation of the Morand and Solodukhin action

Separating the Morand and Solodukhin action in space and time, we
obtain

S = /d4x [hoo (—myhij + €50, Bjx0) — hio (—myho + €7 0;Bjw1) +
+Boio (—2maBji j + 267 8;hok) + Boij (m2Boij — madijBok k — 26™ Dychyp)

m m
_71 (highji — hithy;) — 72 (B« Bijk — Bij.oBjj.0 — 2BikiBjkj) +
+e" Bjj 000 hox — €7 Byj. 180 hik] -

Let's define the following: Byjo = A; , Boij = Ajj . Bijo = cijuWi .
_ 1 1
Biji = Wi » Wi = 3¢e4iiBijo » Wi = 5e4iiBij,i

25



Canonical formulation of the Morand and Solodukhin action

Substituting the definitions in the action we have

S = /d4X [hoo (—mlh,-,- + 28/1/‘/,') — hpo (—m1h0/ + 20,’WI'/) +
+2A;€,'jk (*mg Vij + 8jh0k) + A,‘j (7m25,'jAkk + mzA,'j — 25,-k,8khj,) +

—% (hihii — hithy) — ma (Wy Wy — Wi W) + 2Widohoi — 2Wiidohy| -

Then we can establish the following:

7l = —2Wj, n' = 2W;, {ho;,m} = 6763 (x — y),
{hy, 7} = 6;45,'6% (x — y)

26



Canonical formulation of the Morand and Solodukhin action

On substitution, we obtain

S = /d4x [hoo (—mlh,',' + 8,'7Ti) + h,'o (mlhof + 8_,'7TU>
+Ai€iik ((8jh0k = 8kh0j) = mgwjk) + Aj (—m25,-jAkk + mA; — 25iklakhjl)
7% (huhj, — h,‘,‘hjj) — % ( ijTrji - 7ri7ri) + Wiaoho,' + Wuaohu] .

Aj; has no dynamics and is associated with a constraint that allows us to
determine it. So,

1
Aj = 2 (0ii€imnOrhmn + 2€i1 Ok hjr)

27



Canonical formulation of the Morand and Solodukhin action

Substituting in the action and rearranging we have:
S = /d4X [hoo (—mlh,-,- - 8;7ri) 4 h,'() (mlho,' —+ aj’ﬁ"j) +
: 1
—‘rA,'E,'j/( (aihOk = 8kh0j = m27r1k) + R&yzs/mne%a,hmnaihjk—&—

m
“om (OkhjOkhjr) (OxhjOrhjk) — 71 (hijhji — hijh;;) +

—% ( bl — 7Ti7Ti) + 7' Bphoi + Tl'ijﬁoh,‘j:| .

28



Canonical formulation of the Morand and Solodukhin action

We see that the Hamiltonian is
H = / d3X {% (h,‘jhj,' - h,‘,‘hl'j) + % (ﬂ'ijﬂ'ﬂ — 7Ti7'l'i) +
1
“om 5UE/mn€Uk5/hmna hjx i (8khjlakhjl) (O hjiOrhj) +
+hoo<»9 + hio' + Ai']
with

© = myhj — 8im’, o' = — (myhg; + jm?), ' = e (mem* — 205 ho)

29



Canonical formulation of the Morand and Solodukhin action

By preserving constraints in time, we get new constraints

XS 771’" X’ = 7271" + 8jhj,' — 8;/71']' f’ = mge,-jkhjk

By preserving again we can find Lagrange multipliers

2 2 1
hoo = 5 hik + 5 ———¢ni€ ki’ m Op On hipy
3 3mim;

1 .
h,‘o = Fl (8;7Tkk — 8j7r’f)

1 . 1
Ai = €iji <47Tjk - 2m28khjo)
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canonical formulation of the Morand and Solodukhin action

To count the physical degrees of freedom of the theory we can use the
following expression

5 x Number of physical\  ( total number of
degrees of freedom /  \ canonical variables

number of original
second-class constraints

31



canonical formulation of the Morand and Solodukhin action

After finding the Dirac matrix and its inverse, we are able to calculate the
Dirac brackets

{hoi (X)JTJ )}
1

1
o (30000 - S0000?

aiakpkj

W = Il

1 my 1 m
- Eajakp/(«' S gakakpfj )> F(x—y)

Ll m 1 m) 1. m)) 3
ml(za/pik + 50kPi = 30iPu 5 (x —y)

. 1oom , 1o m 1 m
{hy (07 023 = (300030 + S0l — Sourd ) )%0x— )

{hoi (x), hia (y)}*

{7 (x), 7" (y)}* =
2

P <3ka,- oy 30 (5IP§/< ) — k) )> - Eajpfk = 5%'5//’/(,- )> 3*(x — y)
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canonical formulation of the Morand and Solodukhin action

{hoi (x), 7 ()} = 0] | {h (x),7* (y)}" = 0
[{1hi (%) ha ()} =0 [ {77 (), 7 ()} =0

{r' (x), 7 (¥)}* = 0] | {hoi (x) , hoj (¥)}* = 0]

The Hamiltonian of the theory is

H= /d3x {71 (h/jhj/ = h,','hjj) + 72 ( Ul — 7T’7T’) + A;J'E/k/akhj/}

33



canonical formulation of the Morand and Solodukhin action

The time derivatives of the phase space variables are

my

hy = > 70+ 0;ho;
hoi = Okhik
7 = —(mihy + 2£ju0,Ap)
i = myhoi + 2eu kA,

34



Conclusions




Conclusions

In this work we carried out the canonical formulation in flat
space-time of an alternative model for linearised massive gravity in (3+1)
dimensions proposed by Morand and Solodukhin.

We found that the field h,,, has 5 independent components, like the
field B.g,s.Then these fields describe a theory with 5 degrees of freedom,
so it is a good candidate for a massive theory of spin-2.

When applying the Dirac method to the theory, we found that all
constraints were second class, so there are no generators for gauge
transformations. Therefore this theory is not gauge invariant.
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Conclusions

We found that the theory is written in terms of the Dirac brackets
and by the Hamiltonian

H = /d3X [% (hUhJ - h,,hﬂ) + % (7Tij71'ﬂ - 7Ti7Ti) + A,'J'E,'k/akhj[
Using the obtained algebra in terms of the Dirac brackets and this

Hamiltonian, we saw that the covariant equations of motion found by the
Lagrangian formulation are reproduced as expected.
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