Canonical formulation of an alternative model of linearised massive gravity

Gustavo Adolfo Melgarejo Cedeño
24 de mayo de 2018
School of Physics. Faculty of Sciences. Universidad Central de Venezuela
Advisor: PhD. Pío J. Arias

Table of contents

1. Systems with regular Lagrangians
2. Hamiltonian Formulation of Singular Lagrangians
3. Generalization to infinite degrees of freedom
4. Example: Proca theory
5. Dirac method for the Morand and Solodukhin action

Table of contents

6. Conclusions

Systems with regular Lagrangians

Introduction

To begin the discussion regarding N degrees of freedom systems with constraints let's consider the functional \mathcal{S} :

$$
\mathcal{S}\left[q_{i}(t)\right]=\int_{t_{1}}^{t_{2}} d t L\left(q_{i}(t), \dot{q}_{i}(t)\right)
$$

which is called an action, and contains all the information about the dynamics of the system.

The path taken by the system is that for which the action is stationary ($\delta \mathcal{S}=0$) under small system configuration changes (δq).
$\delta \mathcal{S}=0$ leads us to the Euler-Lagrange equations:

$$
\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=0
$$

Condition for regular Lagrangians

Explicitly, we obtain

$$
\ddot{q}_{j} \underbrace{\frac{\partial^{2} L}{\partial \dot{q}_{j} \partial \dot{q}_{i}}}_{W^{i j}}=\frac{\partial L}{\partial q_{i}}-\dot{q}_{j} \frac{\partial^{2} L}{\partial q_{j} \partial \dot{q}_{i}} .
$$

From the above equations we can only determine the accelerations in terms of positions and speeds if $W=\operatorname{det} W^{i j} \neq 0$.

Hamiltonian formulation for systems with regular Lagrangians

In addition to the Lagrangian formulation of classical mechanics, there is a formulation due to Hamilton.

The transition to the Hamiltonian formulation of the mechanics is given by the Legendre transformation

$$
H(p(t), q(t))=\left.\left[p^{i}(t) \dot{q}_{i}(t)-L(q(t), \dot{q}(t))\right]\right|_{p^{i}=\frac{\partial L}{\partial q_{i}} .}
$$

The variation of H gives us

$$
\delta H=\dot{q}_{i} \delta p^{i}-\frac{\partial L}{\partial q_{i}} \delta q_{i} .
$$

From where we can see that H is independent of the speeds.

Hamiltonian formulation for systems with regular Lagrangians

We have $\frac{\partial p^{i}}{\partial \dot{q}_{j}}=W^{i j}$, from where we see that $W \neq 0$ is necessary to obtain \dot{q}_{i} as a function of p^{i}.

If we write the action as:

$$
\mathcal{S}\left[q_{i}(t)\right]=\int_{t_{1}}^{t_{2}} d t\left[p^{i} \dot{q}_{i}-H\left(q_{i}(t), p^{i}(t)\right)\right]
$$

we can find Hamilton's equations, making variations of the action. Then, we have:

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p^{i}} \\
\dot{p}^{i} & =-\frac{\partial H}{\partial q_{i}} .
\end{aligned}
$$

Hamiltonian formulation for systems with regular Lagrangians

Let's recall that for two functions of the phase space, the Poisson bracket is defined as

$$
\{A(p, q), B(p, q)\}=\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p^{i}}-\frac{\partial A}{\partial p^{i}} \frac{\partial B}{\partial q_{i}},
$$

and

$$
\frac{d}{d t} A=\{A, H\}+\frac{\partial A}{\partial t}
$$

With what we have seen we can find the relevant information from our system.

Hamiltonian Formulation of

 Singular Lagrangians
Condition for the singularity of the Lagrangian

The Lagrangian is said to be singular if $W=0$.
The singularity of the Hessian is equivalent to the non-invertibility of $p^{i}=\frac{\partial L}{\partial \dot{q}_{i}}$, this means that we have variables that are not independent. This results in the existence of relations that connect the positions variables and the momentum variables

$$
\phi_{r}(q, p)=0, r=1, \ldots, R .
$$

These conditions are called the primary constraints.
To take into account the constraints, we attach these to the theory via Lagrange multipliers. Here the multipliers act as new dynamical variables.

Hamiltonian Formulation of Singular Lagrangians

Then we come to the action

$$
\mathcal{S}=\int d t\left[p^{i}(t) \dot{q}_{i}(t)-H(p(t), q(t))-\lambda^{r}(t) \phi_{r}(p(t), q(t))\right] .
$$

By making variations of the action we obtain

$$
\begin{aligned}
\dot{p}^{i} & =-\frac{\partial H}{\partial q_{i}}-\lambda^{r} \frac{\partial \phi_{r}}{\partial q_{i}}, \\
\dot{q}_{i} & =\frac{\partial H}{\partial p^{i}}+\lambda^{r} \frac{\partial \phi_{r}}{\partial p^{i}}, \\
\phi_{r} & =0 .
\end{aligned}
$$

We can rewrite \dot{p}^{i} and \dot{q}_{i} in the following way

$$
\begin{aligned}
\dot{p}^{i} & =\left.\left[\left\{p^{i}, H\right\}+\lambda^{r}\left\{p^{i}, \phi_{r}\right\}\right]\right|_{\Gamma_{p}} \\
\dot{q}_{i} & =\left.\left[\left\{q_{i}, H\right\}+\lambda^{r}\left\{q_{i}, \phi_{r}\right\}\right]\right|_{\Gamma_{p}}
\end{aligned}
$$

Hamiltonian Formulation of Singular Lagrangians

Then, since the Hamiltonian is not uniquely determined, we can go over to another Hamiltonian

$$
\tilde{H}=H+\lambda_{r} \phi_{r} .
$$

Using this Hamiltonian the equations of motion take their ordinary form similar to the case in which there are no constraints

$$
\begin{aligned}
\dot{F} & =\left.\left[\{F, \tilde{H}\}-\left\{F, \lambda^{r}\right\} \phi_{r}\right]\right|_{\Gamma_{p}} \\
& \approx\{F, \tilde{H}\} .
\end{aligned}
$$

Hamiltonian Formulation of Singular Lagrangians

To have a consistent system we need the time derivatives of the constraints ϕ_{r} to be zero

$$
\dot{\phi}_{n}=\left\{\phi_{n}, \tilde{H}\right\}=\left\{\phi_{n}, H\right\}+\lambda_{r}\left\{\phi_{n}, \phi_{r}\right\} \approx 0 .
$$

The following may happen:

- We get an expression for λ_{r}.
- New relationships emerge between momenta variables and positions variables that are independent of the primary constraints (secondary constraints). When secondary constraints arise, the process is repeated until no new constraints appear.

Hamiltonian Formulation of Singular Lagrangians

The distinction between primary and secondary constraints is of little importance in the final form of the Hamiltonian formulation.

A different classification of constraints, and more generally, of functions defined in the phase space, plays a central role.

This is the concept of first-class and second-class functions.

- A function $F(q, p)$ is said to be First Class if: $\left\{F, \varphi_{r}\right\} \approx 0$ with all the constraints.
- F will be Second Class otherwise.

Hamiltonian Formulation of Singular Lagrangians

Second-class constraints give rise to a matrix with entries

$$
\mathcal{C}_{m n}=\left\{\chi_{m}, \chi_{n}\right\},
$$

whose determinant is not zero even weakly.
Then we can define the Dirac bracket for two functions of the phase space as

$$
\{A, B\}^{*}=\{A, B\}-\left\{A, \chi_{m}\right\} \mathcal{C}^{m n}\left\{\chi_{n}, B\right\}
$$

where $\mathcal{C}^{m n}$ is the inverse of $\mathcal{C}_{m n}$.

Generalization to infinite degrees of freedom

Generalization to infinite degrees of freedom

Now the Lagrangian is a function of the fields and their derivatives with respect to time.

$$
L=L[\varphi(x), \dot{\varphi}(x)],
$$

L can be expressed as:

$$
L=\int d^{D-1} \times \mathcal{L} .
$$

\mathcal{L} is a function of φ and its first derivatives, $\mathcal{L}\left(\varphi, \partial_{\mu} \varphi\right)$.

Generalization to infinite degrees of freedom

Then, the action is

$$
\mathcal{S}[\varphi]=\int d^{D} \times \mathcal{L}
$$

From this we get the Euler-Lagrange equations for the fields

$$
\frac{\partial \mathcal{L}}{\partial \varphi_{a}}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi_{a}\right)}=0
$$

We define the conjugated momentum of the fields as:

$$
\pi^{a}(x)=\frac{\delta L}{\delta \dot{\varphi}_{a}(x)}=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}_{a}(x)}
$$

Generalization to infinite degrees of freedom

The Hamiltonian is:

$$
H=\int d \boldsymbol{x} \mathcal{H}=\left.\int d \boldsymbol{x}\left(\pi^{a}(x) \dot{\varphi}_{a}(x)-\mathcal{L}\right)\right|_{\pi^{a}=\frac{\partial \mathcal{C}}{\partial \dot{\varphi}_{a}}} .
$$

The Poisson brackets for two functional of the phase space become

$$
\{A(x), B(y)\}=\int d z\left(\frac{\delta A(x)}{\delta \varphi_{\mathrm{a}}(z)} \frac{\delta B(y)}{\delta \pi^{a}(z)}-\frac{\delta A(x)}{\delta \pi^{a}(z)} \frac{\delta B(y)}{\delta \varphi_{\mathrm{a}}(z)}\right) .
$$

The fundamental Poisson brackets are defined as

$$
\begin{gathered}
\left\{\varphi_{a}(x), \varphi_{b}(y)\right\}=0=\left\{\pi^{a}(x), \pi^{b}(y)\right\}, \\
\left\{\varphi_{a}(x), \pi^{b}(y)\right\}=\delta_{a}^{b} \delta^{(D-1)}(\boldsymbol{x}-\boldsymbol{y}) .
\end{gathered}
$$

Generalization to infinite degrees of freedom

The Dirac brackets for fields are:

$$
\begin{aligned}
& \{A(x), B(y)\}^{*}=\{A(x), B(y)\}+ \\
& \quad-\int d \boldsymbol{x}^{\prime} d \boldsymbol{y}^{\prime}\left\{A(x), \chi_{s}\left(x^{\prime}\right)\right\} \mathcal{C}^{s s^{\prime}}\left(x^{\prime}, y^{\prime}\right)\left\{\chi_{s^{\prime}}\left(y^{\prime}\right), B(y)\right\},
\end{aligned}
$$

where $\mathcal{C}^{s s^{\prime}}\left(x^{\prime}, y^{\prime}\right)$ is the inverse of the Dirac matrix such that:

$$
\int d z \mathcal{C}_{s s^{\prime \prime}}(x, z) \mathcal{C}^{s^{\prime \prime} s^{\prime}}\left(z, x^{\prime}\right)=\delta_{s s^{\prime}} \delta\left(x-x^{\prime}\right)
$$

With this we go from a system of N degrees of freedom to a system with infinite degrees of freedom.

Example: Proca theory

Proca theory

The Proca action is:

$$
\mathcal{S}=-\int d^{4} \times\left[\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}\right] .
$$

Where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
Then, separating the terms into space and time, we get

$$
\mathcal{S}=\frac{1}{4} \int d^{4} \times\left(2 F_{0 i} F_{0 i}-F_{i j} F_{i j}+2 m^{2} A_{0} A_{0}-2 m^{2} A_{i} A_{i}\right) .
$$

The generalized momenta are

$$
\begin{gathered}
\pi^{i}(\boldsymbol{x})=\frac{\delta L}{\delta\left(\partial_{0} A_{i}(\boldsymbol{x})\right)}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} A_{i}(\boldsymbol{x})\right)}=F_{0 i}(\boldsymbol{x})=-E^{i}(\boldsymbol{x}) \\
\pi^{0}(\boldsymbol{x})=\frac{\delta L}{\delta\left(\partial_{0} A_{0}(\boldsymbol{x})\right)}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} A_{0}(\boldsymbol{x})\right)}=0 .
\end{gathered}
$$

Proca theory

The Hamiltonian with the coupled constraint is
$\tilde{H}=\frac{1}{4} \int d^{3} \times\left(2 \pi^{i} \pi^{i}+4 \pi^{i} \partial_{i} A_{0}+F_{i j} F_{i j}-2 m^{2} A_{0} A_{0}+2 m^{2} A_{i} A_{i}+\lambda \phi_{1}\right)$,
where $\phi_{1}=\pi^{0} \approx 0$.
We define
$\left\{\pi^{\mu}(\boldsymbol{x}), \pi^{\nu}(\boldsymbol{y})\right\}=0,\left\{A_{\mu}(\boldsymbol{x}), A_{\nu}(\boldsymbol{y})\right\}=0,\left\{A_{\nu}(\boldsymbol{x}), \pi^{\mu}(\boldsymbol{y})\right\}=\delta_{\nu}^{\mu} \delta^{3}(\boldsymbol{x}-\boldsymbol{y})$.
Preserving the constraint in time we obtain a secondary constraint

$$
\phi_{2}=\partial_{i} \pi^{i}+m^{2} A_{0} \approx 0
$$

Then, preserving the secondary constraint in time, we are able to find the Lagrange multiplier

$$
\lambda=-m^{2} \partial_{i} A_{i}
$$

Proca theory

The Dirac matrix is

$$
\mathcal{C}_{s s^{\prime}}(\boldsymbol{x}, \boldsymbol{y})=\left(\begin{array}{cc}
0 & -m^{2} \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \\
m^{2} \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) & 0
\end{array}\right)
$$

Its inverse is

$$
\mathcal{C}^{s s^{\prime}}(\boldsymbol{x}, \boldsymbol{y})=\left(\begin{array}{cc}
0 & \frac{\delta^{3}(x-y)}{m^{2}} \\
-\frac{\delta^{3}(x-y)}{m^{2}} & 0
\end{array}\right) .
$$

Proca theory

Then the Dirac's brackets are

$$
\begin{gathered}
\left\{A_{\mu}(\boldsymbol{x}), \pi^{\nu}(\boldsymbol{y})\right\}^{*}=\left(\delta^{\nu}{ }_{\mu}-\delta^{0}{ }_{\mu} \delta^{\nu}{ }_{0}\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{y}), \\
\left\{A_{\mu}(\boldsymbol{x}), A_{\nu}(\boldsymbol{y})\right\}^{*}=-\frac{1}{m^{2}}\left(\delta^{0}{ }_{\mu} \delta^{i}{ }_{\nu}+\delta^{0}{ }_{\nu} \delta^{i}{ }_{\mu}\right) \partial_{i}\left(\delta^{3}(\boldsymbol{x}-\boldsymbol{y})\right), \\
\left\{\pi^{\mu}(\boldsymbol{x}), \pi^{\nu}(\boldsymbol{y})\right\}^{*}=0 .
\end{gathered}
$$

The theory is described by the Hamiltonian

$$
H=\frac{1}{4} \int d^{3} \times\left(2 \pi^{i} \pi^{i}+4 \pi^{i} \partial_{i} A_{0}+F_{i j} F_{i j}-2 m^{2} A_{0} A_{0}+2 m^{2} A_{i} A_{i}\right) .
$$

Dirac method for the Morand and Solodukhin action

Study of the kinematics of the model of Morand and Solodukhin

The Morand and Solodukhin action is

$$
\begin{gathered}
\mathcal{S}[h, B]=\int d^{4} x\left[-\frac{m_{1}}{2}\left(h_{\mu \nu} h^{\nu \mu}-h_{\mu}{ }^{\mu} h_{\nu}{ }^{\nu}\right)+\right. \\
\left.-\frac{m_{2}}{2}\left(B_{\alpha \beta, \sigma} B^{\alpha \beta, \sigma}-2 B_{\beta, \alpha}^{\alpha} B^{\sigma \beta}{ }_{, \sigma}\right)+B_{\alpha \beta,}{ }^{\mu} \partial_{\rho} h_{\mu \sigma} \varepsilon^{\sigma \rho \alpha \beta}\right] \\
B_{\alpha \beta, \mu}=-B_{\beta \alpha, \mu}
\end{gathered}
$$

Making variations of the action we obtain the following equations

$$
\begin{gather*}
m_{1}\left(h^{\mu \nu}-\eta^{\mu \nu} h\right)+\varepsilon^{\nu \rho \alpha \beta} \partial_{\rho} B_{\alpha \beta}{ }^{\mu}=0 \tag{1}\\
m_{2}\left(B^{\alpha \beta, \sigma}-\eta^{\alpha \sigma} B^{\gamma \beta}{ }_{, \gamma}+\eta^{\beta \sigma} B^{\gamma \alpha}{ }_{, \gamma}\right)-\varepsilon^{\nu \rho \alpha \beta} \partial_{\rho} h^{\sigma}{ }_{\nu}=0 \tag{2}
\end{gather*}
$$

Study of the kinematics of the model of Morand and Solodukhin

By studying the equations of motion we obtain:
$h=0, \partial_{\nu} h^{\nu \mu}=0, h_{\mu \nu}=h_{\nu \mu}, B^{\gamma \beta}{ }_{, \gamma}=0, \partial_{\sigma} B^{\alpha \beta, \sigma}=0, \partial_{\alpha} B^{\alpha \beta, \sigma}=0$, $\varepsilon_{\alpha \beta \sigma \theta} B^{\alpha \beta, \sigma}=0$

Substituting the above in (2) and (3) we have left

$$
\begin{align*}
& m_{1} h^{\mu \nu}+\varepsilon^{\nu \rho \alpha \beta} \partial_{\rho} B_{\alpha \beta}{ }^{\mu}=0, \tag{3}\\
& m_{2} B^{\alpha \beta, \sigma}-\varepsilon^{\nu \rho \alpha \beta} \partial_{\rho} h^{\sigma}{ }_{\nu}=0 . \tag{4}
\end{align*}
$$

From this we see how to represent $h_{\mu \nu}$ in terms of $B_{\alpha \beta, \sigma}$ and vice versa.

Study of the kinematics of the model of Morand and Solodukhin

Substituting (4) in (5) we have left

$$
\left(\square-m^{2}\right) B_{, \sigma}^{\alpha \beta}=0,
$$

and substituting (5) in (4),

$$
\left(\square-m^{2}\right) h_{\mu \nu}=0,
$$

where $m^{2}=\frac{m_{1} m_{2}}{2}$ y $\square=\partial^{\mu} \partial_{\mu}$.

Canonical formulation of the Morand and Solodukhin action

Separating the Morand and Solodukhin action in space and time, we obtain

$$
\begin{aligned}
& \mathcal{S}=\int d^{4} x\left[h_{00}\left(-m_{1} h_{i i}+\varepsilon^{i j k} \partial_{i} B_{j k, 0}\right)-h_{l 0}\left(-m_{1} h_{0 l}+\varepsilon^{i j k} \partial_{i} B_{j k, l}\right)+\right. \\
& +B_{0 i, 0}\left(-2 m_{2} B_{j i, j}+2 \varepsilon^{i j k} \partial_{j} h_{0 k}\right)+B_{0 i, j}\left(m_{2} B_{0 i, j}-m_{2} \delta_{i j} B_{0 k, k}-2 \varepsilon^{i k l} \partial_{k} h_{j l}\right) \\
& -\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)-\frac{m_{2}}{2}\left(B_{i j, k} B_{i j k}-B_{i j, 0} B_{i j, 0}-2 B_{i k, i} B_{j k, j}\right)+ \\
& \left.+\varepsilon^{i j k} B_{i j, 0} \partial_{0} h_{0 k}-\varepsilon^{i j k} B_{i j, l} \partial_{0} h_{l k}\right] .
\end{aligned}
$$

Let's define the following: $B_{0 i, 0} \equiv A_{i}, B_{0 i, j} \equiv A_{i j}, B_{i j, 0} \equiv \varepsilon_{i j k} W_{k}$,
$B_{i j, l} \equiv \varepsilon_{i j k} W_{k l}, W_{k}=\frac{1}{2} \varepsilon_{k i j} B_{i j, 0}, W_{k l}=\frac{1}{2} \varepsilon_{k i j} B_{i j, l}$

Canonical formulation of the Morand and Solodukhin action

Substituting the definitions in the action we have

$$
\begin{aligned}
& \mathcal{S}=\int d^{4} \times\left[h_{00}\left(-m_{1} h_{i j}+2 \partial_{i} W_{i}\right)-h_{10}\left(-m_{1} h_{0 I}+2 \partial_{i} W i l\right)+\right. \\
& +2 A_{i} \varepsilon_{i j k}\left(-m_{2} W_{j k}+\partial_{j} h_{0 k}\right)+A_{i j}\left(-m_{2} \delta_{i j} A_{k k}+m_{2} A_{i j}-2 \varepsilon_{i k l} \partial_{k} h_{j l}\right)+ \\
& \left.-\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)-m_{2}\left(W_{i j} W_{i j}-W_{i} W_{i}\right)+2 W_{i} \partial_{0} h_{0 i}-2 W_{j i} \partial_{0} h_{i j}\right] .
\end{aligned}
$$

Then we can establish the following:

$$
\begin{aligned}
& \pi^{i j}=-2 W_{j i}, \pi^{i}=2 W_{i},\left\{h_{0 i}, \pi^{j}\right\}=\delta_{i}^{j} \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \\
& \left\{h_{i j}, \pi^{k l}\right\}=\delta_{i}^{k} \delta_{j}^{\prime} \delta^{3}(\boldsymbol{x}-\boldsymbol{y})
\end{aligned}
$$

Canonical formulation of the Morand and Solodukhin action

On substitution, we obtain

$$
\begin{aligned}
& \mathcal{S}=\int d^{4} \times\left[h_{00}\left(-m_{1} h_{i i}+\partial_{i} \pi^{i}\right)+h_{i 0}\left(m_{1} h_{0 i}+\partial_{j} \pi^{i j}\right)\right. \\
& +A_{i} \varepsilon_{i j k}\left(\left(\partial_{j} h_{0 k}-\partial_{k} h_{0 j}\right)-m_{2} \pi^{j k}\right)+A_{i j}\left(-m_{2} \delta_{i j} A_{k k}+m_{2} A_{i j}-2 \varepsilon_{i k l} \partial_{k} h_{j l}\right) \\
& \left.-\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)-\frac{m_{2}}{4}\left(\pi^{i j} \pi^{j i}-\pi^{i} \pi^{i}\right)+\pi^{i} \partial_{0} h_{0 i}+\pi^{i j} \partial_{0} h_{i j}\right] .
\end{aligned}
$$

$A_{i j}$ has no dynamics and is associated with a constraint that allows us to determine it. So,

$$
A_{i j}=\frac{1}{2 m_{2}}\left(\delta_{i j} \varepsilon_{l m n} \partial_{l} h_{m n}+2 \varepsilon_{i k l} \partial_{k} h_{j l}\right)
$$

Canonical formulation of the Morand and Solodukhin action

Substituting in the action and rearranging we have:

$$
\begin{aligned}
& \mathcal{S}=\int d^{4} \times\left[h_{00}\left(-m_{1} h_{i i}+\partial_{i} \pi^{i}\right)+h_{i 0}\left(m_{1} h_{0 i}+\partial_{j} \pi^{i j}\right)+\right. \\
& +A_{i} \varepsilon_{i j k}\left(\partial_{j} h_{0 k}-\partial_{k} h_{0 j}-m_{2} \pi^{j k}\right)+\frac{1}{2 m_{2}} \delta_{i j} \varepsilon_{l m n} \varepsilon_{i j k} \partial_{l} h_{m n} \partial_{i} h_{j k}+ \\
& -\frac{1}{2 m_{2}}\left(\partial_{k} h_{j l} \partial_{k} h_{j l}\right)\left(\partial_{k} h_{j l} \partial_{l} h_{j k}\right)-\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)+ \\
& \left.-\frac{m_{2}}{4}\left(\pi^{i j} \pi^{j i}-\pi^{i} \pi^{i}\right)+\pi^{i} \partial_{0} h_{0 i}+\pi^{i j} \partial_{0} h_{i j}\right] .
\end{aligned}
$$

Canonical formulation of the Morand and Solodukhin action

We see that the Hamiltonian is

$$
\begin{aligned}
H= & \int d^{3} x\left[\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)+\frac{m_{2}}{4}\left(\pi^{i j} \pi^{j i}-\pi^{i} \pi^{i}\right)+\right. \\
& -\frac{1}{2 m_{2}} \delta_{i j} \varepsilon_{l m n} \varepsilon_{i j k} \partial_{l} h_{m n} \partial_{i} h_{j k}+\frac{1}{2 m_{2}}\left(\partial_{k} h_{j j} \partial_{k} h_{j l}\right)\left(\partial_{k} h_{j l} \partial_{l} h_{j k}\right)+ \\
& \left.+h_{00} \varphi+h_{i 0} \varphi^{i}+A_{i} \psi^{i}\right],
\end{aligned}
$$

with
$\varphi=m_{1} h_{i i}-\partial_{i} \pi^{i}, \varphi^{i}=-\left(m_{1} h_{0 i}+\partial_{j} \pi^{i j}\right), \psi^{i}=\varepsilon_{i j k}\left(m_{2} \pi^{j k}-2 \partial_{j} h_{0 k}\right)$

Canonical formulation of the Morand and Solodukhin action

By preserving constraints in time, we get new constraints

$$
\chi=\frac{m_{2}}{2} \pi^{i i}
$$

$$
\chi^{i}=\frac{m_{2}}{2} \pi^{i}+\partial_{j} h_{j i}-\partial_{i} h_{j j}
$$

$$
\xi^{i}=m_{2} \varepsilon_{i j k} h_{j k}
$$

By preserving again we can find Lagrange multipliers

$$
h_{00}=\frac{2}{3} h_{k k}+\frac{2}{3} \frac{1}{m_{1} m_{2}} \varepsilon_{k n i} \varepsilon_{k l^{\prime} m^{\prime}} \partial_{l^{\prime}} \partial_{n} h_{i m^{\prime}}
$$

$$
h_{i 0}=\frac{1}{m_{1}}\left(\partial_{i} \pi^{k k}-\partial_{j} \pi^{i j}\right)
$$

$$
A_{i}=\varepsilon_{i j k}\left(\frac{1}{4} \pi^{j k}-\frac{1}{2 m_{2}} \partial_{k} h_{j 0}\right)
$$

canonical formulation of the Morand and Solodukhin action

To count the physical degrees of freedom of the theory we can use the following expression

$$
\begin{aligned}
& 2 \times\binom{\text { Number of physical }}{\text { degrees of freedom }}=\binom{\text { total number of }}{\text { canonical variables }}+ \\
& -\binom{\text { number of original }}{\text { second-class constraints }}
\end{aligned}
$$

canonical formulation of the Morand and Solodukhin action

After finding the Dirac matrix and its inverse, we are able to calculate the Dirac brackets

$$
\begin{aligned}
& \left\{h_{0 i}(\boldsymbol{x}), \pi^{j}(\boldsymbol{y})\right\}^{*}= \\
& \frac{1}{m^{2}}\left(\frac{1}{3} \partial_{i} \partial_{j} p_{k k}^{(m)}-\frac{1}{3} \partial_{i} \partial_{k} p_{k j}^{(m)}-\frac{1}{2} \partial_{j} \partial_{k} p_{k i}^{(m)}+\frac{1}{2} \partial_{k} \partial_{k} p_{i j}^{(m)}\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \\
& \left\{h_{0 i}(\boldsymbol{x}), h_{k l}(\boldsymbol{y})\right\}^{*}=\frac{1}{m_{1}}\left(\frac{1}{2} \partial_{l} p_{i k}^{(m)}+\frac{1}{2} \partial_{k} p_{i l}^{(m)}-\frac{1}{3} \partial_{i} p_{k l}^{(m)}\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \\
& \left.\left\{h_{i j}(\boldsymbol{x}), \pi^{k l}(\boldsymbol{y})\right\}^{*}=\left(\frac{1}{2} \delta_{i l} p_{j k}^{(m)}+\frac{1}{2} \delta_{j l} p_{i k}^{(m)}-\frac{1}{3} \delta_{k l} p_{i j}^{(m)}\right)\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{y}) \\
& \quad\left\{\pi^{i j}(\boldsymbol{x}), \pi^{k}(\boldsymbol{y})\right\}^{*}= \\
& \frac{2}{m_{2}}\left(\partial_{k} p_{i j}^{(m)}+\frac{1}{3} \delta_{i j}\left(\partial_{l l} p_{l k}^{(m)}-\partial_{k} p_{l l}^{(m)}\right)-\frac{1}{2} \partial_{j} p_{i k}^{(m)}-\frac{1}{2} \delta_{k j} \partial_{l l} p_{l i}^{(m)}\right) \delta^{3}(\boldsymbol{x}-\boldsymbol{y})
\end{aligned}
$$

canonical formulation of the Morand and Solodukhin action

$$
\begin{array}{l|l|}
\hline\left\{h_{0 i}(\boldsymbol{x}), \pi^{k l}(\boldsymbol{y})\right\}^{*}=0 & \left\{h_{i j}(\boldsymbol{x}), \pi^{k}(\boldsymbol{y})\right\}^{*}=0 \\
\begin{array}{ll}
\left\{h_{i j}(\boldsymbol{x}), h_{k l}(\boldsymbol{y})\right\}^{*}=0 & \left\{\pi^{i j}(\boldsymbol{x}), \pi^{k l}(\boldsymbol{y})\right\}^{*}=0 \\
\left\{\pi^{i}(\boldsymbol{x}), \pi^{j}(\boldsymbol{y})\right\}^{*}=0 & \left\{h_{0 i}(\boldsymbol{x}), h_{0 j}(\boldsymbol{y})\right\}^{*}=0 \\
\hline
\end{array}
\end{array}
$$

The Hamiltonian of the theory is

$$
H=\int d^{3} x\left[\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)+\frac{m_{2}}{4}\left(\pi^{i j} \pi^{j i}-\pi^{i} \pi^{i}\right)+A_{i j} \varepsilon_{i k l} \partial_{k} h_{j l}\right]
$$

The time derivatives of the phase space variables are

$$
\begin{gathered}
\dot{h}_{i j}=\frac{m_{2}}{2} \pi^{i j}+\partial_{j} h_{0 i} \\
\dot{h}_{0 i}=\partial_{k} h_{i k} \\
\dot{\pi}^{i j}=-\left(m_{1} h_{i j}+2 \varepsilon_{j r l} \partial_{r} A_{l i}\right) \\
\dot{\pi}^{i}=m_{1} h_{0 i}+2 \varepsilon_{i k r} \partial_{k} A_{r}
\end{gathered}
$$

Conclusions

Conclusions

In this work we carried out the canonical formulation in flat space-time of an alternative model for linearised massive gravity in (3+1) dimensions proposed by Morand and Solodukhin.

We found that the field $h_{\mu \nu}$ has 5 independent components, like the field $B_{\alpha \beta, \sigma}$. Then these fields describe a theory with 5 degrees of freedom, so it is a good candidate for a massive theory of spin-2.

When applying the Dirac method to the theory, we found that all constraints were second class, so there are no generators for gauge transformations. Therefore this theory is not gauge invariant.

Conclusions

We found that the theory is written in terms of the Dirac brackets and by the Hamiltonian

$$
H=\int d^{3} x\left[\frac{m_{1}}{2}\left(h_{i j} h_{j i}-h_{i i} h_{j j}\right)+\frac{m_{2}}{4}\left(\pi^{i j} \pi^{j i}-\pi^{i} \pi^{i}\right)+A_{i j} \varepsilon_{i k l} \partial_{k} h_{j l}\right]
$$

Using the obtained algebra in terms of the Dirac brackets and this Hamiltonian, we saw that the covariant equations of motion found by the Lagrangian formulation are reproduced as expected.

