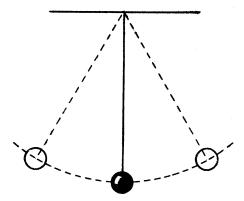
KMS states and Tomita-Takesaki Theory

Iván Mauricio Burbano Aldana

Universidad de los Andes

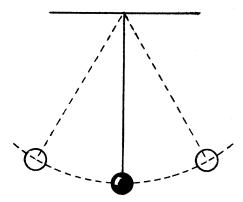
May 18, 2018

Motivation



Can we obtain the equations of motion from the equilibrium state?

Motivation



Can we obtain the equations of motion from the equilibrium state?

Maybe in quantum thermal systems.

 $e^{-eta H} \circlearrowright e^{-iHt}$

temperature $\iff i \times time$

Outline

- 2 Algebraic Quantum Mechanics
- 3 KMS States
- 4 Tomita-Takesaki Theory
- 5 The Canonical Time Evolution

Classical theories

• Auxiliary space: locally compact Hausdorff space X; Quantum theories

• Auxiliary space: separable Hilbert space ${\cal H}$

Classical theories

- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions *C*(*X*) on *X*;

Quantum theories

- Auxiliary space: separable Hilbert space ${\cal H}$
- Observables: self-adjoint operators on $\ensuremath{\mathcal{H}}$

Classical theories

- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions *C*(*X*) on *X*;
- States: probability measures *P* on *X*;

Quantum theories

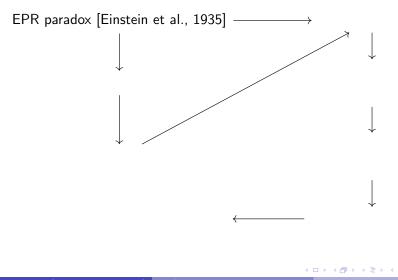
- Auxiliary space: separable Hilbert space ${\cal H}$
- Observables: self-adjoint operators on ${\cal H}$
- States: positive, self-adjoint, normalized and trace-class operators ρ on H;

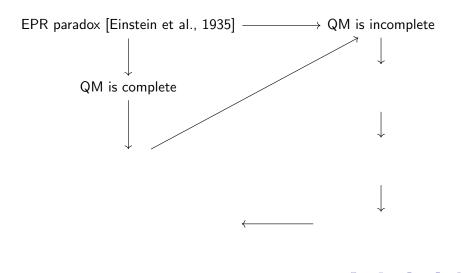
Classical theories

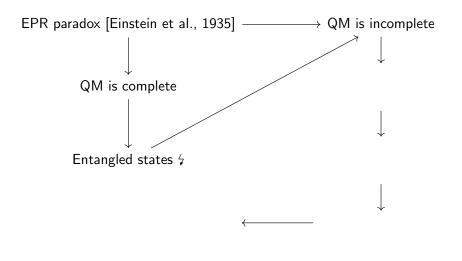
- Auxiliary space: locally compact Hausdorff space X;
- Observables: continuous functions *C*(*X*) on *X*;
- States: probability measures *P* on *X*;
- Expectation values: $\int f dP$.

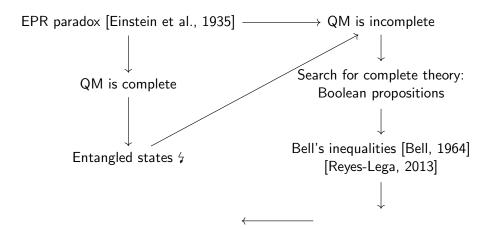
Quantum theories

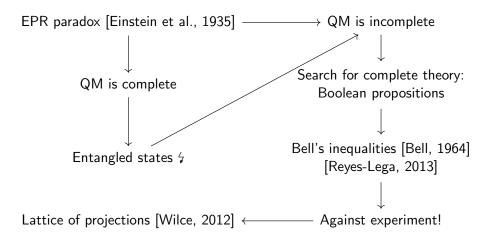
- Auxiliary space: separable Hilbert space ${\cal H}$
- Observables: self-adjoint operators on ${\cal H}$
- States: positive, self-adjoint, normalized and trace-class operators ρ on H;
- Expectation values: $tr(A\rho)$.











Algebraic Quantum Mechanics

- Observables: A C^* -algebra \mathcal{A} :
 - Complete normed vector space with product and involution;
 - C^* property: $||A^*A|| = ||A||^2$;
 - We will assume that all the algebras we discuss are unital.
- States: Linear functionals $\omega : \mathcal{A} \to \mathbb{C}$ which are non-negative $(\omega(\mathcal{A}^*\mathcal{A}) \ge 0)$ and normalized $(\omega(1) = 1)$.

Remark: The auxiliary Hilbert space will now be an emergent concept.

GNS Construction

Start with a C^* -algebra \mathcal{A} and a state ω .

•
$$\mathcal{N}_\omega := \{A \in \mathcal{A} | \omega(A^*A) = 0\}$$

- Hilbert space $\mathcal{H}_{\omega} := \overline{\mathcal{A}/\mathcal{N}_{\omega}}$ with $\langle [A], [B] \rangle := \omega(A^*B)$
- Define the representation extending

$$egin{aligned} \pi_{\omega} & : \mathcal{A}
ightarrow & \mathcal{B}(\mathcal{H}_{\omega}) \ & \mathcal{A} \mapsto & \pi_{\omega}(\mathcal{A}) : \mathcal{H}_{\omega}
ightarrow & \mathcal{H}_{\omega} \ & [B] \mapsto [\mathcal{A}B] \end{aligned}$$

- Cyclic vector $\Omega_\omega:=[1]$, that is, $\overline{\mathcal{A}\Omega_\omega}=\mathcal{H}_\omega$
- This is the unique *-representation of A with a cyclic vector Ω_ω such that ω(A) = ⟨Ω_ω, π_ω(A)Ω_ω⟩ = tr(π_ω(A)ρ_{Ω_ω}).

Example: $M_{2\times 2}(\mathbb{C})$

Consider the most general state on this algebra

$$\omega_{\lambda}(A) = \lambda A_{11} + (1 - \lambda)A_{22} = \operatorname{tr}(\rho_{\lambda}A), \quad \rho = \begin{bmatrix} \lambda & 0\\ 0 & 1 - \lambda \end{bmatrix}$$
(1)

for $\lambda \in [0,1].$ Let E_{ij} be the matrix units so that $A = A_{ij}E_{ij}$

$$\omega_{\lambda}(A^*A) = \omega_{\lambda}(A^*_{ki}A_{kj}E_{ij}) = \lambda(|A_{11}|^2 + |A_{21}|^2) + (1-\lambda)(|A_{12}|^2 + |A_{22}|^2).$$

Therefore

$$\mathcal{N}_{\lambda} = \begin{cases} \text{span}\{E_{11}, E_{21}\} & \lambda = 0\\ \text{span}\{E_{12}, E_{22}\} & \lambda = 1\\ \{0\} & \lambda \in (0, 1) \end{cases} \quad \mathcal{H}_{\lambda} = \begin{cases} \text{span}\{E_{12}, E_{22}\} & \lambda = 0\\ \text{span}\{E_{11}, E_{21}\} & \lambda = 1\\ M_{2 \times 2}(\mathbb{C}) & \lambda \in (0, 1). \end{cases}$$

(4) (日本)

Inner product

Consider $\lambda \in (0, 1)$. We have for $e_{ij} = [E_{ij}]$, $\lambda_1 := \lambda$, and $\lambda_2 := 1 - \lambda$ $\langle e_{ij}, e_{kl} \rangle = \omega(E_{ij}^* E_{kl}) = \omega(E_{ji} E_{kl}) = \omega(\delta_{ik} E_{jl}) = \delta_{ik} \delta_{jl} \lambda_l$ (2)

Therefore the basis $\{e_i^{(\alpha)} := [E_{i\alpha}]/\sqrt{\lambda_{\alpha}} | i, \alpha \in \{1, 2\}\}$ is an orthonormal basis for \mathcal{H}_{λ} . Moreover, the representation splits as

$$\mathcal{H}_{\lambda} = \mathcal{H}_{\lambda}^{(1)} \oplus \mathcal{H}_{\lambda}^{(2)}$$
 (3)

where $\mathcal{H}_{\lambda}^{(\alpha)} := \operatorname{span}\{e_i^{(\alpha)} | i \in \{1, 2\}\}$. We have the corresponding orthogonal projections $\mathcal{P}^{(\alpha)}$ onto $\mathcal{H}_{\lambda}^{(\alpha)}$. Another useful inner product to compute is

$$\langle \Omega_{\lambda}, e_{i}^{(\alpha)} \rangle = \frac{1}{\sqrt{\lambda_{\alpha}}} \langle [I_{2}], [E_{i\alpha}] \rangle = \frac{1}{\sqrt{\lambda_{\alpha}}} \omega(E_{i\alpha}) = \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{i\alpha} \lambda_{\alpha}.$$
 (4)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Constructing a Density Operator from Decompositions

$$\begin{split} \omega(A) &= \langle \Omega_{\omega}, \pi_{\omega}(A)\Omega_{\omega} \rangle = \langle \Omega_{\omega}, \sum_{\alpha \in I} P^{(\alpha)} \pi_{\omega}(A)\Omega_{\omega} \rangle \\ &= \langle \Omega_{\omega}, \sum_{\alpha \in I} P^{(\alpha)} \pi_{\omega}(A)P^{(\alpha)}\Omega_{\omega} \rangle \\ &= \langle \Omega_{\omega}, \sum_{n \in J} \langle e_{n}, \sum_{\alpha \in I} P^{(\alpha)} \pi_{\omega}(A)P^{(\alpha)}\Omega_{\omega} \rangle e_{n} \rangle \\ &= \sum_{n \in J} \langle e_{n}, \sum_{\alpha \in I} P^{(\alpha)} \pi_{\omega}(A)P^{(\alpha)} \langle \Omega_{\omega}, e_{n} \rangle \Omega_{\omega} \rangle \\ &= \sum_{n \in J} \langle e_{n}, \sum_{\alpha \in I} P^{(\alpha)} \pi_{\omega}(A)P^{(\alpha)} \rho_{\Omega_{\omega}} e_{n} \rangle \\ &= \operatorname{tr} \left(\pi_{\omega}(A) \sum_{\alpha \in I} P^{(\alpha)} \rho_{\Omega_{\omega}} P^{(\alpha)} \right) = \operatorname{tr}(\pi_{\omega}(A)\rho_{\omega}) \end{split}$$

э

(5)

The Density Operator of Our Decomposition

$$\rho_{\lambda} e_{i}^{\alpha} = \sum_{\beta \in I} P^{(\beta)} \rho_{\Omega_{\omega}} P^{(\beta)} e_{i}^{(\alpha)} = \sum_{\beta \in I} P^{(\beta)} \rho_{\Omega_{\omega}} \delta_{\alpha\beta} e_{i}^{(\alpha)} = P^{(\alpha)} \rho_{\Omega_{\omega}} e_{i}^{(\alpha)}$$

$$= P^{(\alpha)} \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{i\alpha} \lambda_{\alpha} \Omega_{\omega} = \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{i\alpha} \lambda_{\alpha} \sum_{j=1}^{2} \langle e_{j}^{\alpha}, \Omega_{\omega} \rangle e_{j}^{(\alpha)}$$

$$= \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{i\alpha} \lambda_{\alpha} \sum_{j=1}^{2} \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{j\alpha} \lambda_{\alpha} e_{j}^{(\alpha)} = \frac{1}{\sqrt{\lambda_{\alpha}}} \delta_{i\alpha} \lambda_{\alpha} \frac{1}{\sqrt{\lambda_{\alpha}}} \lambda_{\alpha} e_{\alpha}^{(\alpha)}$$

$$= \delta_{i\alpha} \lambda_{\alpha} e_{\alpha}^{(\alpha)}.$$
(6)

Therefore, in the ordered basis $\mathcal{B} = \{e_1^{(1)}, e_2^{(1)}, e_1^{(2)}, e_2^{(2)}\}$ we have

The Representation

Finally we explicitly need the GNS representatives. Using the same approach

$$\pi_{\lambda}(A)e_{i}^{(\alpha)} = \frac{1}{\sqrt{\lambda_{\alpha}}}[AE_{i\alpha}] = \frac{1}{\sqrt{\lambda_{\alpha}}}[A_{jk}\delta_{ki}\delta_{\beta\alpha}E_{j\beta}] = \frac{1}{\sqrt{\lambda_{\alpha}}}A_{ji}[E_{j\alpha}] = A_{ji}e_{j}^{(\alpha)}.$$

Therefore

$$[\pi_{\lambda}(A)]_{\mathcal{B}} = \begin{bmatrix} A & 0\\ 0 & A \end{bmatrix} (= A \otimes I_2)$$
(8)

and we explicitly check that neither ρ_{Ω_λ} or ρ_λ have an interpretation as observables.

Ambiguity in functions of states

Consider the von Neumann entropy

$$S(\rho) = -\operatorname{tr}(\rho \log(\rho)) \tag{9}$$

of a density matrix $\rho.$ In our example the entropy of our initial density matrix describing the state is

$$-\lambda \log(\lambda) - (1 - \lambda) \log(1 - \lambda) = S(\rho) = \omega(\log(\rho)).$$
(10)

This is in particular the expected value of an observable! However, in the GNS representation we have encountered two density operators $\rho_{\Omega_{\lambda}}$ and ρ_{λ} which also do the job but are not observables. However their entropies differ!

$$S(\rho_{\Omega_{\lambda}}) = 0 \neq S(\rho) = S(\rho_{\lambda}).$$
 (11)

The ambiguity is worse

What is going on here? In reality, the ambiguity is much more dramatic. Redefining the orthonormal basis by $e_i^{\alpha}(U) = \sum_{\beta=1}^2 e_i^{(\beta)} U_{\beta\alpha}$ for U unitary yields a new decomposition and thus a new density operator

$$\rho_{\lambda}(U) = \sum_{\alpha \in I} P^{(\alpha)}(U) \rho_{\Omega_{\omega}} P^{(\alpha)}(U).$$
(12)

The spectrum of the density operator will depend on U and therefore the entropy as well. As it turns out, such a shift in the decomposition of the representation can be understood as the action of the gauge group through Tomita-Takesaki theory. More about this will be discussed in Souad's lecture right after this!

W^* -algebras

What is Tomita-Takesaki theory? To understand this we must specialize our algebras. A C^* -algebra can always be realized as a uniformly closed subset of the bounded operators on a Hilbert space[Bratteli and Robinson, 1987].

Definition

A C*-algebra \mathcal{A} on a Hilbert space \mathcal{H} is called a von Neumann algebra or W^* -algebra if $\mathcal{A}'' = \mathcal{A}$ where

$$\mathcal{A}' = \{ B \in \mathcal{B}(\mathcal{H}) | AB = BA \text{ for all } A \in \mathcal{A} \}.$$
(13)

Cyclic representations of W^* -algebras

Theorem (\bigstar)

If \mathfrak{M} is a W*-algebra and ω is a faithful ($\omega(A^*A) = 0 \rightarrow A = 0$) normal ($\omega(A) = \operatorname{tr}(\rho A)$) state then its cyclic representation ($\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega}$) satisfies

- π_{ω} is faithful (injective);
- $\pi_{\omega}(\mathfrak{M})$ is a von Neumann algebra;
- Ω_{ω} is separating for $\pi_{\omega}(\mathfrak{M})$ $(\pi_{\omega}(A)\Omega_{\omega} = 0 \rightarrow \pi_{\omega}(A) = 0).$

Dynamical Systems

Time evolution is represented by a one-parameter group of automorphisms

```
\tau: \mathbb{R} \to \operatorname{Aut}(\mathcal{A})t \mapsto \tau_t.
```

Dynamical systems consist of an $C(W)^*$ -algebra with a time evolution which satisfies certain continuity properties.

Example

Given a Hamiltonian H on a Hilbert space \mathcal{H} the Schrödinger time evolution s is given by

$$s_t(O) = e^{iHt}Oe^{-iHt}$$
(14)

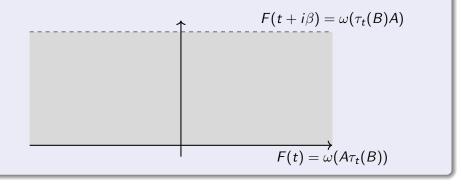
and $(\mathcal{B}(\mathcal{H}), s)$ is a dynamical system.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

KMS States

Definition

Let (A, τ) be a dynamical system. ω is said to be a (τ, β) -KMS state if for all $A, B \in A$ there exists a bounded continuous F on the strip analytic on its interior such that for all for all $t \in \mathbb{R}$



KMS states as Equilibrium states

KMS states are a candidate for a general definition of thermodynamic equilibrium in quantum systems[Haag et al., 1967]:

- KMS states are invariant under the dynamics $\omega(\tau_t(A)) = \omega(A)$;
- In finite dimensional Hilbert spaces with Schrödinger's time evolution τ , the only possible (τ , β)-KMS states are the β -Gibbs states

$$egin{aligned} \mathcal{B}(\mathcal{H}) &
ightarrow \mathbb{C} \ & A \mapsto rac{ ext{tr}ig(Ae^{-eta H}ig)}{ ext{tr}(e^{-eta H}ig)}. \end{aligned}$$

• It is clear that the Gibbs prescription cannot be the characterization of equilibrium in the thermodynamic limit since coexistence of different phases demands that there cannot be a general unique correspondence between the Hamiltonian (evolution group) and states[Connes, 1994].

Tomita-Takesaki Theory

For a W^* -algebra \mathfrak{M} equipped with a cyclic and separating vector Ω the polar decomposition of the closure of

$$\frac{S_0:\mathfrak{M}\Omega\to\mathcal{H}}{A\Omega\mapsto\mathcal{A}^*\Omega}$$
(15)

yields:

- a one-parameter unitary group $t\mapsto \Delta^{it}$;
- a modular conjugation J.

Theorem (Tomita-Takesaki)

Modular Automorphism Group

Definition

Let \mathfrak{M} be a von Neumann algebra and ω be a faithful normal state. Due to \bigstar we can perform the modular constructions on the cyclic representation $(\pi_{\omega}(\mathfrak{M}), \pi_{\omega}, \Omega_{\omega})$. We define the modular automorphism group of (\mathfrak{M}, ω) by

$$\alpha_t = \pi_\omega^{-1}(\Delta^{it}\pi_\omega(A)\Delta^{-it}).$$
(16)

Theorem $(\bigstar \bigstar)$

 (\mathfrak{M}, α) is a W*-dynamical system

Proof.

[Duvenhage, 1999]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Canonical Time Evolution

Theorem $(\star \star \star)$

Let \mathfrak{M} be a von Neumann algebra and ω be a faithful normal state. Then (\mathfrak{M}, τ) with $\tau_t(A) = \alpha_{-t/\beta}(A)$ and α the modular group of (\mathfrak{M}, ω) is the unique W*-dynamical system such that ω is a (τ, β) -KMS state.

Proof.

[Duvenhage, 1999]

On von Neumann Algebras as Dynamical Objects

- Through the modular group, states induce dynamics on the algebra of operators.
- The physical relevance of such prescription for evolution is guaranteed by the fact that it is the unique dynamical law which makes the state an equilibrium state.
- One can use an analog of the Radon-Nikodym theorem to connect the modular groups induced by different states. Such a connection brings forward a canonical homomorphism from ℝ into the automorphism group of 𝔐 modulus inner automorphisms. This suggests that the emergence of the dynamical law might have a deeper origin.

References I

Bell, J. S. (1964).
 The Einstein Podolsky Rosen Paradox.
 Physics, 1(3):195–200.

Bratteli, O. and Robinson, D. W. (1987). Operator Algebras and Quantum Statistical Mechanics 1. Springer, 2nd edition.

Burbano, I. M. (2017).
 KMS States and Tomita-Takesaki Theory.
 https://github.com/ivanmbur/Monografia/blob/master/monografia.pdf.

Connes, A. (1994). Noncommutative Geometry. Academic Press, San Diego, CA.

References II

Duvenhage, R. D. V. (1999).

Quantum statistical mechanics , KMS states and Tomita-Takesaki theory.

Msc, University of Pretoria.

 Einstein, A., Podolsky, B., and Rosen, N. (1935).
 Can Quantum-Mechanical Description of Reality Be Considered Complete?
 Physical Review, 47.

 Haag, R., Hugenholtz, N. M., and Winnink, M. (1967).
 On the Equilibrium States in Quantum Statistical Mechanics. *Commun. math. Phys*, 5:215–236.

References III

Reyes-Lega, A. F. (2013).

Some Aspects of Operator Algebras in Quantum Physics.

In Cano, L., Cardona, A., Ocampo, H., and Reyes-Lega, A. F., editors, *Geometric, Algebraic and Topological Methods for Quantum Field Theory*, pages 1–74. World Scientific.

Wilce, A. (2012).

Quantum Logic and Probability Theory. Stanford Encyclopedia of Philosophy.