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Abstract

The study of the effect of hindered aggregation on the island
formation process in one-dimensional epitaxial growth. In
the proposed model the aggregation of monomers to sta-
ble islands is hindered by an additional aggregation bar-
rier, εa, which decreases the diffusion rate to those islands.
As εa increases the system exhibits a crossover between
two different kind of processes, diffusion-limited aggrega-
tion (DLA) and attachment-limited aggregation (ALA). The
island size distribution, P (s), is calculated by using a self-
consistent (SC) set of equations for the capture kernels. We
test our analytical model with extensive numerical simula-
tions and previously established results.

1. Introduction

Growth processes provide interesting non-equilibrium phe-
nomena which have been the subject of several studies
in recent years. Basically, growth mechanisms involve
three different processes: Nucleation, aggregation and
mass transport of basic growth units such as atoms and
molecules. From now on we will call these basic growth
units as monomers.

In standard models of epitaxial growth, the monomers are
deposited on the substrate at a constant (controlled) rate
F . The temperature of the substrate is usually chosen in
such away that the evaporation of deposited monomers
can be neglected. Consequently, the growth rate is con-
trolled externally: θ = F t (number of deposited monomers).
The critical nucleus size ”i” is defined as the size of the
largest unstable cluster. Only the islands consisting of
i + 1 or more monomers are completely stable. Islands
smaller than i + 1 are unstable, i.e., the monomers belong-
ing to such islands can diffuse away with diffusion constant
D = D0e

−ED/KBT . After deposition, the monomers dif-
fuse on the substrate with diffusion constant D and even-
tually will reach a cluster of monomers with a given size
s. If s = i a new island will be formed (nucleation) but
if s > i the monomer will attach to the cluster (aggrega-
tion). In the point-island model, the islands just occupy
one site in the lattice, and their size is simply the num-
ber of monomers which belong to the cluster. In contrast,
in the extended-island model the islands grow laterally.

Figure 1: Cartoon of the system for the point-island model. Two ba-
sic reactions are involved: Nucleation and Aggregation. The length of
the gap between island edges y is also indicated.

2. Hindered Aggregation

We consider a model where the absorption of monomers by
stable islands is hindered by an additional attachment bar-
rier εa which decreases the diffusion constant to D′. The
associated characteristic length (D/D′ = la + 1) is usually
defined to measure the asymmetry between D and D′.

We define the following time scales: the average time be-
tween two consecutive deposition events, τdep, the typical
time that a monomer spends inside of a gap, τres, and the
time required for a monomer to reach one of the ends of the
gap, τtr. The behavior of the system depends on the rela-
tive value of these time scales. Finally, let L be the average
size of the gap between islands.

For weak barriers, (la � L), the aggregation is diffusion
limited (DLA) τdep � τres ≈ τtr � τdis while for strong bar-
riers, (L� la), the aggregation is attachment limited (ALA)
τdep� τres� τtr � τdis.

The main objective of this work is to calculate the density of
stable islands with size s, P (s) for different values of la and
i.

3. Analytical Approach

As usual, N1 is the average density of monomers and Ns is
the average density of islands with size s. The time evolu-
tion of N1 and Ns can be determined from classical nucle-
ation theory:

dN1

dθ
= γ− (i+ 1)<σu N i+1

1 −<N1

∑
s≥i+1

σ̄sNs = 1−<N1/ξ
2

(1)
and
dNs
dθ

= <N1(σ̄s−1Ns−1 − σ̄sNs) = <N1/
(

(i + 1)ξ2
u

)
. (2)

where γ is the fraction of the substrate which is not covered
by island (γ = 1 − θ + N1 and γ = 1 − N for extended-
island and point-island models, respectively). The quan-
tities σu and σs are the capture kernels for unstable and
stable islands ,respectively. Finally, ξu and ξ are the cap-
ture lengths associated to the capture kernels. The second
term of Eq.(1), represents nucleation while the third one ag-
gregation. The first and second terms of Eq.(2), represents
the aggregation of monomers to islands with size s− 1 and
s, respectively.

In order to calculate Ns it is necessary to find σ̄s and σ̄u as
follows. The time evolution of the density of monomers at
the position x inside a single gap with length y, n1(x, θ), is
given by:

∂n1(x, θ)

∂θ
= 1 + <∂

2n1(x, θ)

∂x2
−<n1(x, θ)

ξ2
u

, (3)

where the first term represents deposition, the second one
the diffusion of monomers and the third one the nucleation.
The boundary conditions are

n1(0, θ) = la
∂n1(0, θ)

∂x
and n1(y, θ) = −la

∂n1(y, θ)

∂x
. (4)

Note that, for la = 0 and la → ∞, there are absorbing and
reflecting boundaries, respectively.
The average local monomer density in all the gaps, n̄1, is
related with N1 according to N1 = γn̄1. Then, multiplying
Eq. (1) by γ and subtracting Eq. (3), it is possible to arrive
to

∂2n1(x, θ)

∂x2
− ξ2

u

(
n1(x, θ)− ξ2

u

ξ2
N1

)
≈ 0 (5)

where the approximation dN1/dθ − dn1/dθ ≈ 0 has been
used. As usual, the capture kernel of an island with size
s and gap size y, σs(y), can be calculated equating the
expression for the rate of capture of monomers by an is-
land of size s, DσsN1, to the microscopic rate of capture
2D [dn1/dx]x=0

σs(y) =
2α2ξ−1

u sinh(ỹ/2)

γ cosh(ỹ/2) + laγξ
−1
u sinh(ỹ/2)

(6)

which implies that
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)
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−1
u tanh

(
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)
 (7)

A similar procedure can be done to find ξu and σu.

Let p(0)
s (y; θ) be the gap length distribution of islands with

size s at a coverage θ. The time evolution of p(0)
s (y; θ) is

given by

dp
(0)
i+1(y; θ)

dθ
=
dN

dθ
δ (y − 〈y〉)−<N1σi+1(y)p

(0)
i (y; θ) (8)

and

dp
(0)
s (y; θ)

dθ
= <N1

(
σs−1(y)p

(0)
s−1(y; θ)− σs(y)p

(0)
s (y; θ)

)
. (9)

The solution can be written as

p
(0)
s (y;Xy) = X

s−(i+1)
y e−Xy/

(
y2(s− (i + 1))!

)
, (10)

where Xy =
∫ θ
θy
<N1(θ′)σ(y; θ′)dθ′. Finally, the capture ker-

nels can be approximated by σs(y) ≈ σs(y
′) where y′s =

γy∗s/
∑
s y
∗
sNs and y∗s =

∑
y yp

(0)
s (y)/

∑
y p

(0)
s (y). It worth to

note that for extended islands the size of the islands have
to be taken explicitly into account by σs ≈ σ(y′s − (s− s)/2).
Henceforth, this analytical procedure will be called self-
consistent (SC) approach.

4. Results

The time (coverage) evolution of N1 and N =
∑
s>iNs is

shown in Fig 2. For la = 0 the system is in the DLA regime
while for la = 250 is in the ALA regime.
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Figure 2: Coverage evolution of the island density N for two different
attachment barriers: la = 0 and la = 250. The cases i = 1 and i = 2 are
shown in left and right panels respectively. Filled symbols corresponds
to point-islands and open symbols to extended-islands.

The behavior of Ns for DLA and ALA regimes are shown
below.
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Figure 3: Island size distribution for i = 1 with two different attach-
ment barriers, la = 0 and la = 250 for point-islands. The parameters
used are θ = 0.25 and < = 5 × 106. Symbols correspond to kMC simu-
lations while continuous lines to the SC approach. Dotted lines corre-
sponds to MF (In the MF approach σs ≈ σ).
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Figure 4: Island size distribution for i = 2 with two different attach-
ment barriers, la = 0 and la = 250 for point-islands. The parameters
used are θ = 0.25 and < = 5× 106. Symbols have the same meaning as
in Fig. 3.
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Figure 5: Island size distribution for i = 1 and i = 2 with two different
attachment barriers, la = 0 and la = 250 for extended-islands. The pa-
rameters used are θ = 0.25 and < = 5 × 106. Symbols have the same
meaning as in Fig. 3.

5. Conclusions

The additional attachment barrier changes the functional
form of P (s). Since P (s) is usually measurable experimen-
tally, we can use it to actually calculate microscopic param-
eters of the model such εa. Even in the case of strong barri-
ers the island size dependence of the capture kernels have
to be taken into account in order to describe P (s).
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