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Gauge theory
Gauge field configurations:
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Famous Example: Toric Code (G = Z2)
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Some interesting features:

• Topological Degeneracy:

GSD = |H1(Σg,Z2)| = 22g

• Long Range Entanglement

• Anyonic Statistics

• Quantum Error Correction

Higher Gauge Theory
Generalization of Gauge Theory

=⇒
New TQFT’s and Hamiltonian models?

Technical issue: poorly understood algebraic
structures(n-groups) make it hard to study the
corresponding models.

Models from Abelian Higher Gauge Theory
Key Idea:

• Use chain complex of abelian groups (G•, ∂•) (abelian version of a gauge n-group)

• Not the most general setting but can be studied in detail using homological techniques

• Chain complex (C•, ∂•) obtained from the lattice K can be used to keep track of the geometry

• Unified language that simplifies the analysis and provides an explicit procedure for obtaining
ground states
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• Field configurations: f ∈ hom(C,G)0 =⇒ states |f〉 =
⊗

n

⊗
x∈Kn

|fn (x)〉

• Gauge transformations: t ∈ hom(C,G)−1 =⇒ operators At |f〉 := |f + δt〉

• Holonomy measurement: m ∈ hom(C,G)1 =⇒ operator Bm |f〉 := χm(δf) |f〉
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Ground State Degeneracy
Theorem. The dimension of the ground state
subspace H0 is given by:

GSD = |H0(C,G)| =
∏
n

|Hn(C,Hn(G))|

The topological nature of the cohomology
groups underlines the topological ordering of the
ground states.
Each factor Hn(C,Hn(G)) provides quantum
numbers for the ground states and are related
to the different mechanisms and symmetries re-
sponsible for generating the degeneracy.

Some Remarks
• Large class of models which reproduce

models in the literature and provide new
ones

• Explicit formula for GSD for manifolds of
arbitrary dimensions

• Possible applications to quantum error
correction

• Extended excitations in higher dimensions
(fractional statistics? Motion group reps?)

• Twisted versions?
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